in

Reduced predation pressure as a potential driver of prey diversity and abundance in complex habitats

  • Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. R. Soc. B. 288, 20210547 (2021).

    Article 

    Google Scholar 

  • Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).

    Article 
    CAS 

    Google Scholar 

  • Loke, L. H. L. & Todd, P. A. Structural complexity and component type increase intertidal biodiversity independently of area. Ecology 97, 383–393 (2016).

    Article 

    Google Scholar 

  • Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends in Ecol. Evol. 30, 673–684 (2015).

    Article 

    Google Scholar 

  • Bullock, J. M. et al. Future restoration should enhance ecological complexity and emergent properties at multiple scales. Ecography ecog. 4, 05780 (2022).

  • Ortega, J. C. G., Thomaz, S. M. & Bini, L. M. Experiments reveal that environmental heterogeneity increases species richness, but they are rarely designed to detect the underlying mechanisms. Oecologia 188, 11–22 (2018).

    Article 

    Google Scholar 

  • Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).

    Article 

    Google Scholar 

  • Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435 (2015).

    Article 

    Google Scholar 

  • Loke, L. H. L., Ladle, R. J., Bouma, T. J. & Todd, P. A. Creating complex habitats for restoration and reconciliation. Ecol. Eng. 77, 307–313 (2015).

    Article 

    Google Scholar 

  • Torres-Pulliza, D. et al. A geometric basis for surface habitat complexity and biodiversity. Nat. Ecol. Evol. 4, 1495–1501 (2020).

    Article 

    Google Scholar 

  • Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar 

  • Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).

    Article 
    CAS 

    Google Scholar 

  • Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. USA 112, 11415–11422 (2015).

    Article 
    CAS 

    Google Scholar 

  • Pringle, R. M. et al. Predator-induced collapse of niche structure and species coexistence. Nature 570, 58–64 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sandom, C. et al. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94, 1112–1122 (2013).

    Article 

    Google Scholar 

  • Grabowski, J. H. Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology 85, 995–1004 (2004).

    Article 

    Google Scholar 

  • Crowder, L. B. & Cooper, W. E. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63, 1802 (1982).

    Article 

    Google Scholar 

  • Almany, G. R. Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106, 275–284 (2004).

    Article 

    Google Scholar 

  • Anderson, T. L. & Semlitsch, R. D. Top predators and habitat complexity alter an intraguild predation module in pond communities. J. Anim. Ecol. 85, 548–558 (2016).

    Article 

    Google Scholar 

  • Brothers, C. A. & Blakeslee, A. M. H. Alien vs predator play hide and seek: How habitat complexity alters parasite mediated host survival. J. Exp. Mar. Biol. Ecol. 535, 151488 (2021).

    Article 

    Google Scholar 

  • Horinouchi, M. et al. Seagrass habitat complexity does not always decrease foraging efficiencies of piscivorous fishes. Mar. Ecol. Prog. Ser. 377, 43–49 (2009).

    Article 

    Google Scholar 

  • Ryer, C., Stoner, A. & Titgen, R. Behavioral mechanisms underlying the refuge value of benthic habitat structure for two flatfishes with differing anti-predator strategies. Mar. Ecol. Prog. Ser. 268, 231–243 (2004).

    Article 

    Google Scholar 

  • Flynn, A. J. & Ritz, D. A. Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated prey. J. Mar. Biol. Ass. 79, 487–494 (1999).

    Article 

    Google Scholar 

  • Klecka, J. & Boukal, D. S. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 176, 183–191 (2014).

    Article 

    Google Scholar 

  • James, P. L. & Heck, K. L. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. Exp. Mar. Biol. Ecol. 176, 187–200 (1994).

    Article 

    Google Scholar 

  • Michel, M. J. & Adams, M. M. Differential effects of structural complexity on predator foraging behavior. Behav. Ecol. 20, 313–317 (2009).

    Article 

    Google Scholar 

  • Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).

    Article 

    Google Scholar 

  • Preisser, E. L., Orrock, J. L. & Schmitz, O. J. Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions. Ecology 88, 2744–2751 (2007).

    Article 

    Google Scholar 

  • Rypstra, A. L., Schmidt, J. M., Reif, B. D., DeVito, J. & Persons, M. H. Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116, 853–863 (2007).

    Article 

    Google Scholar 

  • Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M. & van der Hammen, T. Habitat structure affects intraguild predation. Ecology 88, 2713–2719 (2007).

    Article 

    Google Scholar 

  • Grabowski, J. H., Hughes, A. R. & Kimbro, D. L. Habitat complexity influences cascading effects of multiple predators. Ecology 89, 3413–3422 (2008).

    Article 

    Google Scholar 

  • Hughes, A. R. & Grabowski, J. H. Habitat context influences predator interference interactions and the strength of resource partitioning. Oecologia 149, 256–264 (2006).

    Article 

    Google Scholar 

  • Bonett, D. G. Meta-analytic interval estimation for standardized and unstandardized mean differences. Psychol. Methods 14, 225–238 (2009).

    Article 

    Google Scholar 

  • Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).

    Article 

    Google Scholar 

  • Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    Article 
    CAS 

    Google Scholar 

  • Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).

    Article 

    Google Scholar 

  • Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity: pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

    Article 

    Google Scholar 

  • Paxton, A. B. et al. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front. Mar. Sci. 7, 282 (2020).

    Article 

    Google Scholar 

  • Eggleston, D. B., Lipcius, R. N., Miller, D. L. & Coba-Cetina, L. Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus. Mar. Ecol. Prog. Ser. 62, 79–88 (1990).

  • Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).

    Article 

    Google Scholar 

  • Gontijo, L. M. Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol. Control 130, 155–163 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    New MIT internships expand research opportunities in Africa

    Bacterial response to glucose addition: growth and community structure in seawater microcosms from North Pacific Ocean