in

The performance of protected-area expansions in representing tropical Andean species: past trends and climate change prospects

  • Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. Protected areas. Goals, limitations, and design. In Principles of Conservation Biology (eds Groom, M. J. et al.) 507–549 (Sinauer Associates Inc, 2006).

    Google Scholar 

  • Marquet, P. A., Lessmann, J. & Shaw, M. R. Protected-area management and climate change. In Biodiversity and Climate Change: Transforming the Biosphere (eds Lovejoy, T. E. & Hannah, L.) 283–293 (Yale University Press, 2019).

    Chapter 

    Google Scholar 

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. PNAS https://doi.org/10.1073/pnas.1908221116 (2019).

    Article 

    Google Scholar 

  • Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Article 
    ADS 

    Google Scholar 

  • Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dudley, N., Mansourian, S., Stolton, S. & Suksuwan, S. Do protected areas contribute to poverty reduction?. Biodiversity 11, 5–7 (2010).

    Article 

    Google Scholar 

  • Dudley, N. & Stolton, S. Arguments for Protected Areas (Earthscan, 2010).

    Book 

    Google Scholar 

  • CBD. Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. http://www.cbd.int/sp/ and http://www.cbd.int/decision/cop/?id=12268 (2010).

  • UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). www.protectedplanet.net. Accessed October 2022 (2022).

  • Watson, J. E. M. et al. Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conserv. Lett. 9, 413–421 (2016).

    Article 

    Google Scholar 

  • Díaz, S. et al. Summary for Policymakers of the IPBES Global Assessment Report on Biodiversity and Ecosystem Services. (2019).

  • Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).

    Article 

    Google Scholar 

  • Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).

    Article 

    Google Scholar 

  • Joppa, L. N. & Pfaff, A. High and Far: Biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 
    ADS 

    Google Scholar 

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • CBD. CoP 7 Decision VII/30. Strategic Plan: Future Evaluation of progress. 12 https://www.cbd.int/doc/decisions/cop-07/cop-07-dec-30-en.pdf (2004).

  • Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2017).

    Article 

    Google Scholar 

  • Kuempel, C. D., Chauvenet, A. L. M. & Possingham, H. P. Equitable representation of ecoregions is slowly improving despite strategic planning shortfalls. Conserv. Lett. 9, 422–428 (2016).

    Article 

    Google Scholar 

  • Barr, L. M., Watson, J. E. M., Possingham, H. P., Iwamura, T. & Fuller, R. A. Progress in improving the protection of species and habitats in Australia. Biol. Conserv. 200, 184–191 (2016).

    Article 

    Google Scholar 

  • Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 1–10 (2019).

    Article 

    Google Scholar 

  • Hannah, L. Protected areas and climate change. Ann. N. Y. Acad. Sci. 1134, 201–212 (2008).

    Article 
    ADS 

    Google Scholar 

  • Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Lin. Soc. 115, 718–730 (2015).

    Article 

    Google Scholar 

  • Ramirez-Villegas, J. et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 22, 391–404 (2014).

    Article 

    Google Scholar 

  • Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manage. 232, 387–396 (2019).

    Article 

    Google Scholar 

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. PNAS 110, E2602–E2610 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).

    Article 

    Google Scholar 

  • Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2015).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 
    MATH 

    Google Scholar 

  • Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    Article 
    MATH 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. (2017).

  • Gotelli, N. J. & Graves, G. R. Null Models in Ecology. (1996).

  • Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).

    Article 

    Google Scholar 

  • Watson, J. E. M., Grantham, H. S., Wilson, K. A. & Possingham, H. P. Systematic conservation planning: Past, present and future. In Conservation Biogeography (eds Ladle, R. J. & Whittaker, R. J.) (Wiley, 2011).

    Google Scholar 

  • Bevilacqua, M. Áreas protegidas y conservación de la diversidad biológica. Biodivers. Venezuela 2, 922–943 (2003).

    Google Scholar 

  • Franco, P., Saavedra-Rodríguez, C. A. & Kattan, G. H. Bird species diversity captured by protected areas in the Andes of Colombia: A gap analysis. Oryx 41, 57–63 (2007).

    Article 

    Google Scholar 

  • Barzetti, V. Parks and Progress: Protected Areas and Economic Development in Latin America and the Caribbean. (1993).

  • Schulman, L. et al. Amazonian biodiversity and protected areas: Do they meet?. Biodivers. Conserv. 16, 3011–3051 (2007).

    Article 

    Google Scholar 

  • Dourojeanni, M. J. Áreas naturales protegidas e investigación científica en el Perú. Rev. For. Perú 33, 91–101 (2018).

    Google Scholar 

  • Rodriguez, L. & Young, K. Biological diversity of peru: Determining priority areas for conservation. Ambio 29, 329–337 (2000).

    Article 

    Google Scholar 

  • Ministerio del Ambiente & SERNANP. Plan Director de las Áreas Naturales Protegidas (Estrategia Nacional) (2009).

  • Cuesta-Camacho, F. et al. Identificación de Vacíos y Prioridades de Conservación Para la Biodiversidad Terrestre en el Ecuador Continental. http://protectedareas.info/upload/document/ecuador_terrestrial_gap_analysis.pdf (2006).

  • Naveda, J. A. Evaluación del grado de representatividad ecológica y geográfica del sistema de parques nacionales de Venezuela al norte del Orinoco: Anteproyecto. Rev. Geog. Venez. 38, 193–208 (1997).

    Google Scholar 

  • Araujo, N., Müller, R., Nowicki, C. & Ibisch, P. L. Prioridades de conservación de la biodiversidad de Bolivia (editorial FAN, 2010)

  • Arango, N. et al. Vacíos de Conservación del Sistema de Parques Nacionales Naturales de Colombia desde una Perspectiva Ecorregional. https://wwflac.awsassets.panda.org/downloads/vacios_de_conservacion.pdf (2003).

  • Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Article 
    CAS 

    Google Scholar 

  • Sarkar, S., Sánchez-Cordero, V., Londoño, M. C. & Fuller, T. Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: A preliminary analysis. Biodivers. Conserv. 18, 1793–1828 (2009).

    Article 

    Google Scholar 

  • Lessmann, J., Muñoz, J. & Bonaccorso, E. Maximizing species conservation in continental Ecuador: A case of systematic conservation planning for biodiverse regions. Ecol. Evol. 4, 2410–2422 (2014).

    Article 

    Google Scholar 

  • Young, B. E. et al. Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. Auk 126, 554–565 (2009).

    Article 

    Google Scholar 

  • Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9, 1–23 (2014).

    Article 

    Google Scholar 

  • Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article 

    Google Scholar 

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 6187 (2014).

    Article 

    Google Scholar 

  • Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecol. 12, 1 (2012).

    Article 

    Google Scholar 

  • Lessmann, J., Fajardo, J., Bonaccorso, E. & Bruner, A. Cost-effective protection of biodiversity in the western Amazon. Biol. Conserv. 235, 250–259 (2019).

    Article 

    Google Scholar 

  • Rodrigues, A. S. L. & Gaston, K. J. How large do reserve networks need to be?. Ecol. Lett. 4, 602–609 (2001).

    Article 

    Google Scholar 

  • Reyes-Puig, C. Diversity, threat, and conservation of reptiles from continental Ecuador. Amphib. Reptile Conserv. 11, 8 (2017).

    Google Scholar 

  • Shanee, S. et al. Protected area coverage of threatened vertebrates and ecoregions in Peru: Comparison of communal, private and state reserves. J. Environ. Manage. 202, 12–20 (2017).

    Article 

    Google Scholar 

  • Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 1–11 (2020).

    Article 

    Google Scholar 

  • Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).

    Article 

    Google Scholar 

  • del Avalos, V. R. & Hernández, J. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change. Glob. Ecol. Conserv. 4, 459–469 (2015).

    Article 

    Google Scholar 

  • Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article 
    ADS 

    Google Scholar 

  • Golden Kroner, R. et al. COVID-era policies and economic recovery plans: Are governments building back better for protected and conserved areas?. PARKS 27, 135–148 (2021).

    Article 

    Google Scholar 

  • IPCC Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, 2013).

    Google Scholar 

  • Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G. & Guisan, A. Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.944116 (2022).

    Article 

    Google Scholar 

  • Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).

    Article 

    Google Scholar 

  • CBD. Kunming-Montreal Global Biodiversity Framework, Draft Decision Submitted by the PRESIDENT. (2022). CBD/COP/15/L.25. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf

  • CBD. Report of the Expert Workshop on the Monitoring Framework for the Post-2020 Global Biodiversity Framework (CBD, 2022).

    Google Scholar 

  • Chaplin-Kramer, R. et al. Mapping the planet’s critical natural assets. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01934-5 (2022).

    Article 

    Google Scholar 

  • Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article 

    Google Scholar 

  • Elbers, J. Las Áreas Protegidas de América Latina: Situación Actual y Perspectivas PARA el Futuro (2011).

  • Miller, D. C. & Nakamura, K. S. Protected areas and the sustainable governance of forest resources. Curr. Opin. Environ. Sustain. 32, 96–103 (2018).

    Article 

    Google Scholar 

  • Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).

    Article 

    Google Scholar 

  • Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).

    Article 

    Google Scholar 

  • Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Article 

    Google Scholar 

  • Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol 15, 96 (2017).

    Article 

    Google Scholar 

  • Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).

    Article 

    Google Scholar 

  • Kershaw, F. et al. Informing conservation units: Barriers to dispersal for the yellow anaconda. Divers. Distrib. 19, 1164–1174 (2013).

    Article 

    Google Scholar 

  • Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article 

    Google Scholar 

  • Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).

    Google Scholar 

  • Yin, L., Fu, R., Shevliakova, E. & Dickinson, R. E. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America?. Clim. Dyn. 41, 3127–3143 (2013).

    Article 

    Google Scholar 

  • Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys

    The impact of industrial agglomeration on urban green land use efficiency in the Yangtze River Economic Belt