in

The performance of protected-area expansions in representing tropical Andean species: past trends and climate change prospects

  • Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. Protected areas. Goals, limitations, and design. In Principles of Conservation Biology (eds Groom, M. J. et al.) 507–549 (Sinauer Associates Inc, 2006).

    Google Scholar 

  • Marquet, P. A., Lessmann, J. & Shaw, M. R. Protected-area management and climate change. In Biodiversity and Climate Change: Transforming the Biosphere (eds Lovejoy, T. E. & Hannah, L.) 283–293 (Yale University Press, 2019).

    Chapter 

    Google Scholar 

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. PNAS https://doi.org/10.1073/pnas.1908221116 (2019).

    Article 

    Google Scholar 

  • Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Article 
    ADS 

    Google Scholar 

  • Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dudley, N., Mansourian, S., Stolton, S. & Suksuwan, S. Do protected areas contribute to poverty reduction?. Biodiversity 11, 5–7 (2010).

    Article 

    Google Scholar 

  • Dudley, N. & Stolton, S. Arguments for Protected Areas (Earthscan, 2010).

    Book 

    Google Scholar 

  • CBD. Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. http://www.cbd.int/sp/ and http://www.cbd.int/decision/cop/?id=12268 (2010).

  • UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). www.protectedplanet.net. Accessed October 2022 (2022).

  • Watson, J. E. M. et al. Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conserv. Lett. 9, 413–421 (2016).

    Article 

    Google Scholar 

  • Díaz, S. et al. Summary for Policymakers of the IPBES Global Assessment Report on Biodiversity and Ecosystem Services. (2019).

  • Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).

    Article 

    Google Scholar 

  • Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).

    Article 

    Google Scholar 

  • Joppa, L. N. & Pfaff, A. High and Far: Biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 
    ADS 

    Google Scholar 

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • CBD. CoP 7 Decision VII/30. Strategic Plan: Future Evaluation of progress. 12 https://www.cbd.int/doc/decisions/cop-07/cop-07-dec-30-en.pdf (2004).

  • Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2017).

    Article 

    Google Scholar 

  • Kuempel, C. D., Chauvenet, A. L. M. & Possingham, H. P. Equitable representation of ecoregions is slowly improving despite strategic planning shortfalls. Conserv. Lett. 9, 422–428 (2016).

    Article 

    Google Scholar 

  • Barr, L. M., Watson, J. E. M., Possingham, H. P., Iwamura, T. & Fuller, R. A. Progress in improving the protection of species and habitats in Australia. Biol. Conserv. 200, 184–191 (2016).

    Article 

    Google Scholar 

  • Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 1–10 (2019).

    Article 

    Google Scholar 

  • Hannah, L. Protected areas and climate change. Ann. N. Y. Acad. Sci. 1134, 201–212 (2008).

    Article 
    ADS 

    Google Scholar 

  • Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Lin. Soc. 115, 718–730 (2015).

    Article 

    Google Scholar 

  • Ramirez-Villegas, J. et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 22, 391–404 (2014).

    Article 

    Google Scholar 

  • Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manage. 232, 387–396 (2019).

    Article 

    Google Scholar 

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. PNAS 110, E2602–E2610 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).

    Article 

    Google Scholar 

  • Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2015).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 
    MATH 

    Google Scholar 

  • Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    Article 
    MATH 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. (2017).

  • Gotelli, N. J. & Graves, G. R. Null Models in Ecology. (1996).

  • Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).

    Article 

    Google Scholar 

  • Watson, J. E. M., Grantham, H. S., Wilson, K. A. & Possingham, H. P. Systematic conservation planning: Past, present and future. In Conservation Biogeography (eds Ladle, R. J. & Whittaker, R. J.) (Wiley, 2011).

    Google Scholar 

  • Bevilacqua, M. Áreas protegidas y conservación de la diversidad biológica. Biodivers. Venezuela 2, 922–943 (2003).

    Google Scholar 

  • Franco, P., Saavedra-Rodríguez, C. A. & Kattan, G. H. Bird species diversity captured by protected areas in the Andes of Colombia: A gap analysis. Oryx 41, 57–63 (2007).

    Article 

    Google Scholar 

  • Barzetti, V. Parks and Progress: Protected Areas and Economic Development in Latin America and the Caribbean. (1993).

  • Schulman, L. et al. Amazonian biodiversity and protected areas: Do they meet?. Biodivers. Conserv. 16, 3011–3051 (2007).

    Article 

    Google Scholar 

  • Dourojeanni, M. J. Áreas naturales protegidas e investigación científica en el Perú. Rev. For. Perú 33, 91–101 (2018).

    Google Scholar 

  • Rodriguez, L. & Young, K. Biological diversity of peru: Determining priority areas for conservation. Ambio 29, 329–337 (2000).

    Article 

    Google Scholar 

  • Ministerio del Ambiente & SERNANP. Plan Director de las Áreas Naturales Protegidas (Estrategia Nacional) (2009).

  • Cuesta-Camacho, F. et al. Identificación de Vacíos y Prioridades de Conservación Para la Biodiversidad Terrestre en el Ecuador Continental. http://protectedareas.info/upload/document/ecuador_terrestrial_gap_analysis.pdf (2006).

  • Naveda, J. A. Evaluación del grado de representatividad ecológica y geográfica del sistema de parques nacionales de Venezuela al norte del Orinoco: Anteproyecto. Rev. Geog. Venez. 38, 193–208 (1997).

    Google Scholar 

  • Araujo, N., Müller, R., Nowicki, C. & Ibisch, P. L. Prioridades de conservación de la biodiversidad de Bolivia (editorial FAN, 2010)

  • Arango, N. et al. Vacíos de Conservación del Sistema de Parques Nacionales Naturales de Colombia desde una Perspectiva Ecorregional. https://wwflac.awsassets.panda.org/downloads/vacios_de_conservacion.pdf (2003).

  • Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Article 
    CAS 

    Google Scholar 

  • Sarkar, S., Sánchez-Cordero, V., Londoño, M. C. & Fuller, T. Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: A preliminary analysis. Biodivers. Conserv. 18, 1793–1828 (2009).

    Article 

    Google Scholar 

  • Lessmann, J., Muñoz, J. & Bonaccorso, E. Maximizing species conservation in continental Ecuador: A case of systematic conservation planning for biodiverse regions. Ecol. Evol. 4, 2410–2422 (2014).

    Article 

    Google Scholar 

  • Young, B. E. et al. Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. Auk 126, 554–565 (2009).

    Article 

    Google Scholar 

  • Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9, 1–23 (2014).

    Article 

    Google Scholar 

  • Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article 

    Google Scholar 

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 6187 (2014).

    Article 

    Google Scholar 

  • Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecol. 12, 1 (2012).

    Article 

    Google Scholar 

  • Lessmann, J., Fajardo, J., Bonaccorso, E. & Bruner, A. Cost-effective protection of biodiversity in the western Amazon. Biol. Conserv. 235, 250–259 (2019).

    Article 

    Google Scholar 

  • Rodrigues, A. S. L. & Gaston, K. J. How large do reserve networks need to be?. Ecol. Lett. 4, 602–609 (2001).

    Article 

    Google Scholar 

  • Reyes-Puig, C. Diversity, threat, and conservation of reptiles from continental Ecuador. Amphib. Reptile Conserv. 11, 8 (2017).

    Google Scholar 

  • Shanee, S. et al. Protected area coverage of threatened vertebrates and ecoregions in Peru: Comparison of communal, private and state reserves. J. Environ. Manage. 202, 12–20 (2017).

    Article 

    Google Scholar 

  • Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 1–11 (2020).

    Article 

    Google Scholar 

  • Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).

    Article 

    Google Scholar 

  • del Avalos, V. R. & Hernández, J. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change. Glob. Ecol. Conserv. 4, 459–469 (2015).

    Article 

    Google Scholar 

  • Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article 
    ADS 

    Google Scholar 

  • Golden Kroner, R. et al. COVID-era policies and economic recovery plans: Are governments building back better for protected and conserved areas?. PARKS 27, 135–148 (2021).

    Article 

    Google Scholar 

  • IPCC Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, 2013).

    Google Scholar 

  • Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G. & Guisan, A. Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.944116 (2022).

    Article 

    Google Scholar 

  • Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).

    Article 

    Google Scholar 

  • CBD. Kunming-Montreal Global Biodiversity Framework, Draft Decision Submitted by the PRESIDENT. (2022). CBD/COP/15/L.25. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf

  • CBD. Report of the Expert Workshop on the Monitoring Framework for the Post-2020 Global Biodiversity Framework (CBD, 2022).

    Google Scholar 

  • Chaplin-Kramer, R. et al. Mapping the planet’s critical natural assets. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01934-5 (2022).

    Article 

    Google Scholar 

  • Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article 

    Google Scholar 

  • Elbers, J. Las Áreas Protegidas de América Latina: Situación Actual y Perspectivas PARA el Futuro (2011).

  • Miller, D. C. & Nakamura, K. S. Protected areas and the sustainable governance of forest resources. Curr. Opin. Environ. Sustain. 32, 96–103 (2018).

    Article 

    Google Scholar 

  • Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).

    Article 

    Google Scholar 

  • Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).

    Article 

    Google Scholar 

  • Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Article 

    Google Scholar 

  • Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol 15, 96 (2017).

    Article 

    Google Scholar 

  • Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).

    Article 

    Google Scholar 

  • Kershaw, F. et al. Informing conservation units: Barriers to dispersal for the yellow anaconda. Divers. Distrib. 19, 1164–1174 (2013).

    Article 

    Google Scholar 

  • Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article 

    Google Scholar 

  • Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).

    Google Scholar 

  • Yin, L., Fu, R., Shevliakova, E. & Dickinson, R. E. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America?. Clim. Dyn. 41, 3127–3143 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Half a century of rising extinction risk of coral reef sharks and rays

    Preparing to be prepared