in

Assessment of soybean cultivars’responses to diverse climatic conditions in Northern Poland in terms of yield and seed composition


Abstract

Soybean (Glycine max) is an important source of plant-based protein and oil, but its cultivation is highly sensitive to climate conditions. In Poland, interest in soybean is growing due to climate change and increasing demand for protein-rich crops. However, cultivation of photophilic crops is still limited. This study presents results from field trials conducted in Northern Poland from 2017 to 2019, involving 13 registered soybean cultivars tested at 10 locations. The aim of the study was to evaluate seed yield, protein and fat content and protein yield under varying environmental conditions. Weather variability, particularly temperature and rainfall, had a greater influence on results than the cultivar tested. Advanced statistical analyses showed that, of all 13 tested cultivars, Moravians (mid-late) had the most favorable WAAS and GSI values in terms of protein yield. According to WTOP3 score, the Kofu (late) cultivar had the highest adaptability for seeds yield and protein yield. Protein yield is the most important indicator of the profitablility of soybean cultivation in countries with a deficit of feed plant protein. The study supports targeted cultivar selection to improve soybean production under changing climate conditions in countries located at higher latitudes, such as Poland.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bebeley, J. F. et al. Modelling the potential impact of climate change on the productivity of soybean in the Nigeria Savannas. PLoS ONE 20, e0313786 (2025).

    Google Scholar 

  2. Folberth, C. et al. Increase of simultaneous soybean failures due to climate change. Earth Future. 11(4), e2022EF003106 (2023).

    Google Scholar 

  3. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529(7584), 84–87 (2016).

    Google Scholar 

  4. Zampieri, M. et al. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12(6), 064008. https://doi.org/10.1088/1748-9326/aa723b (2017).

    Google Scholar 

  5. van der Wiel K, Bintanja R. Contribution of climatic changes in means and variability to temperature and precipitation extremes. InEGU General Assembly Conference Abstracts 2020 May (p. 7852).

  6. Knight, C., Khouakhi, A. & Waine, T. W. The impact of weather patterns on inter-annual crop yield variability. Sci. Total Environ. 10(955), 177181. https://doi.org/10.1016/j.scitotenv.2024.177181 (2024).

    Google Scholar 

  7. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–147 (2015).

    Google Scholar 

  8. Li, Y. et al. A case study on the impacts of future climate change on soybean yield and countermeasures in Fujin city of Heilongjiang province, China. Front. Agron. 25(6), 1257830. https://doi.org/10.3389/fagro.2024.1257830 (2024).

    Google Scholar 

  9. Łabędzki L. Susze rolnicze: zarys problematyki oraz metody monitorowania i klasyfikacji. Wydawnictwo Instytut Melioracji i Użytków Zielonych; 2006.

  10. Polska Soja 2021, https://www.sps.com.pl/aktualnosci.htm

  11. Florek, J., Czerwińska-Kayzer, D. & Jerzak, M. A. Aktualny stan i wykorzystanie produkcji upraw roślin strączkowych. Frag. Agronom 29, 45–55 (2012).

    Google Scholar 

  12. Jerzak, M., Czerwińska-Kayzer, D., Florek, J. & Śmiglak-Krajewska, M. Determinanty produkcji roślin strączkowych jako alternatywnego źródła białka-w ramach nowego obszaru polityki rolnej w Polsce. Roczniki Naukowe Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich. 99(1), 113–120 (2012).

    Google Scholar 

  13. COBORU, Wyniki plonowania odmian roślin rolniczych w doświadczeniach porejestrowych w województwie łódzkim, Soja 2020, Centralny Ośrodek Badania Odmian Roślin Uprawnych SDOO (2021).

  14. Dorszewski, P., Sobczyński, T. & Wenda-Piesik, A. Soja w województwach kujawsko-pomorskim i wielkopolskim – innowacyjne rozwiązania w uprawie i skarmianiu dla gospodarstw rolnych, Raport z badań dla Konsorcjum „Moja Soja” (2019).

  15. Gawęda, D., Cierpiała, R., Bujak, K. & Wesołowski, K. Soybean yield under different tillage systems. Acta Sci. Pol. Hortorum Cultus 13, 43–54 (2014).

    Google Scholar 

  16. Kurasiak-Popowska, D. et al. Stability of early maturing soybean genotypes in Poland. Agriculture 14(12), 2202 (2024).

    Google Scholar 

  17. Banaś, K. et al. Assessment of early, mid-early, and mid-late soybean (Glycine max) varieties in Northern Poland. Agronom 13, 2879 (2023).

    Google Scholar 

  18. Bednarczyk, M., Helios, W., Kotecki, A., Kozak, M., Lewandowska, S.,Malarz, W., Markowicz, M., Serafin-Andrzejewska, M., Włodarczyk, M. Studia Nad Uprawą Soi Zwyczajnej (Glycine max (L.) Merrill) w Południowo-Zachodniej Polsce; Kotecki, A.; Lewandowska, S., Eds.; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2020; p. 33 (In Polish).

  19. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 (2007).

    Google Scholar 

  20. Polska. Warunki Naturalne. Klimat (Poland. Environmental Conditions. Climate). Available online: https://encyklopedia.pwn.pl/haslo/;4575156 (Accessed on 3 Nov 2025). (In Polish)

  21. Charakterystyka Wybranych Elementów Klimatu w Polsce w 2023 Roku–Podsumowanie (Characteristics of Selected Climate Elements in Poland in 2023-Summary). Available online: https://www.imgw.pl/wydarzenia/charakterystyka-wybranych-elementow-klimatu-w-polsce-w-2023-roku-podsumowanie (accessed on 3 November 2025). (In Polish)

  22. COBORU- Methodology for Testing the Value of Cultivars for Cultivation and Use, COBORU (1998).

  23. Polish Soil Classification, Systematyka Gleb Polski, Polskie Towarzystwo Glebo znawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze: Wrocław/Warszawa, Poland, 29, (2019).

  24. IUSS Working Group WRB World Reference Base for Soil Resources, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed,; International Union of Soil Sciences (IUSS): Vienna, Austria (2022).

  25. AOAC, Official Methods of Analysis, 18th ed, (Association of Official Analytical Chemists (2012).

  26. Gauch, H. G. Jr. A simple protocol for AMMI analysis of yield trials. Crop Sci. 53(5), 1860–1869 (2013).

    Google Scholar 

  27. Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845( (1963).

    Google Scholar 

  28. Olivoto, T. et al. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron, J. 111(6), 2949–2960. https://doi.org/10.2134/agronj2019.03.0220 (2019).

    Google Scholar 

  29. Mohammadi, R. & Amri, A. Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica 192, 227–249 (2013).

    Google Scholar 

  30. Fox, P. N. et al. Yield and adaptation of hexaploid spring triticale. Euphytica 47, 57–64 (1990).

    Google Scholar 

  31. Serafin-Andrzejewska, M., Helios, W., Białkowska, M., Kotecki, A. & Kozak, M. Sowing date as a factor affecting soybean yield—A case study in Poland. Agriculture 14(7), 970. https://doi.org/10.3390/agriculture14070970 (2024).

    Google Scholar 

  32. Assefa, Y. et al. Spatial characterization of soybean yield and quality (amino acids, oil, and protein) for United States. Sci, Rep 8, 14653 (2018).

    Google Scholar 

  33. Assefa, Y. et al. Assessing variation in US soybean seed composition (protein and oil). Front. Plant Sci. 11, 10 (2019).

    Google Scholar 

  34. Haegele, J, W, & Below, F, E, The six secrets of soybean success: improving management practices for high yield soybean production, Available at: http://cropphysiol-ogy,cropsci,illinois,edu/documents/2012%20Six%20Secrets%20of%20Soybean%20Success%20report,pdf, Accessed on: 8 Nov 2015

  35. Anderson, W. K. Closing the gap between actual and potential yield of rainfed wheat: The impacts of environment, management, and cultivar. Field Crops Res 116, 14–22 (2010).

    Google Scholar 

  36. Annicchiarico, P., Chiapparino, E. & Perenzin, M. Response of common wheat varieties to organic and conventional production systems across Italian locations and implications for selection. Field. Crops Res. 116, 230–238 (2010).

    Google Scholar 

  37. Pecetti, L. et al. Response of mediterranean tall fescue cultivars to contrasting agricultural environments and implications for selection. J. Agronom. Crop Sci. 197, 12–20 (2011).

    Google Scholar 

  38. Paderewski, J. & Mądry, W. Zastosowania modelu AMMI do analizy reakcji odmian na środowiska. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin. 29(263), 161–188 (2012).

    Google Scholar 

  39. Popovic, V. et al. Effect of agroecological factors on variations in yield, protein and oil contents in soybean grain. Romanian Agric. Res. 30, 241–247 (2013).

    Google Scholar 

  40. Bujak, K. & Frant, M. Wpływ mieszanek herbicydów na plonowanie i zachwaszczenie pięciu odmian soi. Acta Agrophys. 13, 601–613 (2009).

    Google Scholar 

  41. Bury, M. & Nawaracała, J. Wstępna ocena potencjału plonowania odmian soi (Glycine max (L.) Merrill) uprawianych w rejonie Szczecina. Rośliny Oleiste 25, 415–422 (2004).

    Google Scholar 

  42. Michałek, S. & Borowski, E. Plonowanie oraz zawartość tłuszczu, kwasów tłuszczowych i białka w nasionach krajowych odmian soi w warunkach suszy. Acta Agrophys 8, 459–471 (2006).

    Google Scholar 

  43. Fogelberg, F. & Recknagel, J. Developing soy production in central and northern Europe, In Legumes in Cropping Systems (Murphy-Bokern, D,, Stoddard, F, L, & Watson, C, A,, Eds,), pp, 109–124, CAB International, Wallingford, UK (2017).

  44. Döttinger, C. A., Hahn, V., Leiser, W. L. & Würschum, T. Do we need to breed for regional adaptation in soybean?—Evaluation of genotype-by-location interaction and trait stability of soybean in Germany. Plants. 12(4), 756 (2023).

    Google Scholar 

  45. Brumm, T. J. & Hurburgh, C. R. Changes in long-term soybean compositional patterns. J. Am. Oil Chem. Soc 83, 981–983 (2006).

    Google Scholar 

  46. Yaklich, R. W. & Vinyard, B. T. A method to estimate soybean seed protein and oil concentration before harvest. J. Am. Oil Chem. Soc. 81(11), 1021–1027 (2004).

    Google Scholar 

  47. Szwejkowska, B. Effect of cultivation intensity on protein content and yields in field pea. Acta Sci. Pol. Agric 4, 153–161 (2005).

    Google Scholar 

  48. Michałek, S. Plonowanie oraz zawartość białka i tłuszczu w nasionach soi w warunkach okresowej suszy. Zesz. Nauk. Akad. Rol. H. Kołłątaja w Krakowie 364, 139–142 (2000).

    Google Scholar 

  49. Rotundo, J. L., Miller-Garvin, J. E. & Naeve, S. L. Regional and temporal variation in soybean seed protein and oil across the United States. Crop Sci. 56, 797–808 (2016).

    Google Scholar 

  50. Šarčević, H. et al. Stability of protein and oil content in soybean across dry and normal environments—A case study in Croatia. Agronom. 12(4), 915. https://doi.org/10.3390/agronomy12040915 (2022).

    Google Scholar 

  51. Piper, E. L. & Boote, K. J. Temperature and cultivar effects on soybean seed oil and protein concentrations. J. Am. Oil Chem. Soc. 76, 1233–1241 (1999).

    Google Scholar 

  52. Balesevic-Tubic, S., Djordjevic, V., Miladinovic, J., Djukic, V. & Tatic, M. Stability of soybean seed composition. Genetika 43, 217–227 (2011).

    Google Scholar 

Download references

Funding

The APC/BPC is financed/co-financed by Wrocław University of Environmental and Life Sciences and Research Centre for Cultivar Testing (COBORU) in Słupia Wielka, Poland.

Author information

Authors and Affiliations

Authors

Contributions

B.K., H.B.- Conceptualization; B.K., A.K., B.G.- Investigation; M.S.A., A.J.R., B.K.-wrote the main manucript; M.S.A, A.J.R.-literature and visualisation; A.K.,B.G. and H.B.-Supervising.

Corresponding authors

Correspondence to
Magdalena Serafin-Andrzejewska or Anna Jama-Rodzeńska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Kaliska, B., Kotecki, A., Gałka, B. et al. Assessment of soybean cultivars’responses to diverse climatic conditions in Northern Poland in terms of yield and seed composition.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-31124-9

Keywords

  • Climate change
  • Cultivars
  • Seed yield
  • Protein content
  • Fat content
  • AMMI analysis
  • GSI
  • WAAS


Source: Ecology - nature.com

Widespread land surface cooling from paddy rice cultivation revealed by global satellite mapping

Integrating biochar, compost, and chemical fertilizer improves maize yield and soil health in the guinea savannah: evidence from two cropping seasons in Northern Ghana

Back to Top