in

Breeding male mole-rats (Fukomys) use strong bites to defend reproductive monopoly


Abstract

Bite force is a simple trait indicating an animal’s performance related to foraging, social dominance, and defence, all of which influence individual reproductive success. We examine the effect of breeding status on bite force in four social species of Fukomys, a genus of subterranean African rodents (Bathyergidae). These species are cooperative breeders, where reproduction is limited typically to a breeding pair. We collected in vivo bite force data, head width, and upper incisors width from 404 individuals from 75 families and tested whether breeders exhibit stronger bite force. We reveal that breeding males of all four species outperform non-breeders, with bite force in non-breeding males and females being 12% and 22% lower, respectively. In contrast, breeding females underperform relative to other categories, with bite force approximately 31% lower than in breeding males, and many are reluctant to bite. Head width and upper incisors width corroborate these findings. We propose that breeding males require a stronger bite force because of repeated competition with non-related males that may try to enter the family. In contrast, there is much less competition for the breeding position among females, as females rarely intrude into established families.

Data availability

The raw data (Supplementary Data 1 and Supplementary Data 2) used to calculate the results and generate the figures presented in this study are available in the Figshare repository, as part of this record: https://doi.org/10.6084/m9.figshare.2942328898.

Code availability

The R code (Supplementary Data 3) used to calculate the results and generate the figures presented in this study is available in the Figshare repository, as part of this record: https://doi.org/10.6084/m9.figshare.2942328898.

References

  1. Palanza, P., Mainardi, D., Brain, P. F. & Parmigiani, S. Male and female competitive strategies of wild house mice pairs (Mus musculus domesticus) confronted with intruders of different sex and age in artificial territories. Behaviour 133, 863–882 (1996).

    Google Scholar 

  2. Packer, C. & Pusey, A. E. Adaptations of female lions to infanticide by incoming males. Am. Nat. 121, 716–728 (1983).

  3. Clutton-Brock, T. H. et al. Intrasexual competition and sexual selection in cooperative mammals. Nature 444, 1065–1068 (2006).

    Google Scholar 

  4. Emlen, S. T. Predicting family dynamics in social vertebrates. in Behavioural Ecology: an Evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 228–253 (Blackwell Scientific, 1997).

  5. Sharp, S. P. & Clutton-Brock, T. H. Competition, breeding success and ageing rates in female meerkats: competition and senescence in meerkats. J. Evol. Biol. 24, 1756–1762 (2011).

    Google Scholar 

  6. Krebs, J. R. & Davies, N. B. Fighting and assessment. in An Introduction to Behavioural Ecology (eds Krebs, J. R. & Davies, N. B.) 147–174 (Blackwell Scientific Publication, 1993).

  7. Husak, J. F., Kristopher Lappin, A., Fox, S. F. & Lemos-Espinal, J. A. Bite-force performance predicts dominance in male venerable collared lizards (Crotaphytus antiquus). Copeia 2006, 301–306 (2006).

  8. Lailvaux, S. P., Herrel, A., VanHooydonck, B., Meyers, J. J. & Irschick, D. J. Performance capacity, fighting tactics and the evolution of life–stage male morphs in the green anole lizard (Anolis carolinensis). Proc. R. Soc. Lond. B Biol. Sci. 271, 2501–2508 (2004).

    Google Scholar 

  9. Anderson, R. A., Mcbrayer, L. D. & Herrel, A. Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biol. J. Linn. Soc. 93, 709–720 (2008).

    Google Scholar 

  10. Herrel, A., De Smet, A., Aguirre, L. F. & Aerts, P. Morphological and mechanical determinants of bite force in bats: Do muscles matter?. J. Exp. Biol. 211, 86–91 (2008).

    Google Scholar 

  11. van der Meijden, A., González-Gómez, J. C., Pulido-Osorio, M. D. & Herrel, A. Measurement of voluntary bite forces in large carnivores using a semi-automated reward-driven system. J. Exp. Biol. 226, jeb245255 (2023).

    Google Scholar 

  12. Aguirre, L. F., Herrel, A., Van Damme, R. & MatThysen, E. The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–212 (2003).

    Google Scholar 

  13. Christiansen, P. & Wroe, S. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology 88, 347–358 (2007).

    Google Scholar 

  14. Maestri, R., Patterson, B. D., Fornel, R., Monteiro, L. R. & De Freitas, T. R. O. Diet, bite force and skull morphology in the generalist rodent morphotype. J. Evol. Biol. 29, 2191–2204 (2016).

    Google Scholar 

  15. Santana, S. E., Dumont, E. R. & Davis, J. L. Mechanics of bite force production and its relationship to diet in bats. Funct. Ecol. 24, 776–784 (2010).

    Google Scholar 

  16. Verwaijen, D., Van Damme, R. & Herrel, A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–850 (2002).

    Google Scholar 

  17. Gowan, T. A., Mcbrayer, L. D. & Rostal, D. C. Seasonal variation in testosterone and performance in males of a non-territorial lizard species. Physiol. Behav. 100, 357–363 (2010).

    Google Scholar 

  18. Husak, J. F., Lappin, A. K. & Van Den Bussche, R. A. The fitness advantage of a high-performance weapon. Biol. J. Linn. Soc. 96, 840–845 (2009).

    Google Scholar 

  19. Lappin, A. K. & Husak, J. F. Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris). Am. Nat. 166, 426–436 (2005).

    Google Scholar 

  20. Zablocki-Thomas, P., Lailvaux, S., Aujard, F., Pouydebat, E. & Herrel, A. Maternal and genetic correlations between morphology and physical performance traits in a small captive primate, Microcebus murinus. Biol. J. Linn. Soc. 134, 28–39 (2021).

    Google Scholar 

  21. Herrel, A. et al. Do adult phenotypes reflect selection on juvenile performance? A comparative study on performance and morphology in lizards. Integr. Comp. Biol. 56, 469–478 (2016).

    Google Scholar 

  22. Begall, S., Burda, H. & Šumbera, R. Graumulle: Cryptomys und Fukomys (VerlagsKG Wolf, 2018).

  23. Bennett, N. C. & Faulkes, C. G. African Mole-Rats—Ecology and Eusociality (Cambridge University Press, 2000).

  24. Rodrigues, H. G., Šumbera, R., Hautier, L. & Herrel, A. Digging up convergence in fossorial rodents: insights into burrowing activity and morpho-functional specializations of the masticatory apparatus. in Convergent Evolution: Animal Form and Function (eds Bels, V. L. & Russell, A. P.) 37–63. https://doi.org/10.1007/978-3-031-11441-0_3 (Springer International Publishing, 2023).

  25. Kraus, A. et al. Bite force in the strictly subterranean rodent family of African mole-rats (Bathyergidae): the role of digging mode, social organization and ecology. Funct. Ecol. 36, 2344–2355 (2022).

    Google Scholar 

  26. Hite, N. J. et al. The better to eat you with: bite force in the naked mole-rat (Heterocephalus glaber) is stronger than predicted based on body size. Front. Integr. Neurosci. 13, 70 (2019).

    Google Scholar 

  27. van Daele, P. A. A. G., Herrel, A. & Adriaens, D. Biting performance in teeth-digging African mole-rats (Fukomys, Bathyergidae, Rodentia). Physiol. Biochem. Zool. 82, 40–50 (2009).

    Google Scholar 

  28. Gomes Rodrigues, H. & Damette, M. Incipient morphological specializations associated with fossorial life in the skull of ground squirrels (Sciuridae, Rodentia). J. Morphol. 284, e21540 (2023).

    Google Scholar 

  29. Hildebrand, M. Digging of Quadrupeds. in Functional Vertebrate Morphology (eds Hildebrand, M., Bramble, D. M., Liem, K. F. & Wake, D. B.) 89–109 (Harvard University Press, 1985).

  30. Burda, H., Honeycutt, R. L., Begall, S., Locker-Grutjen, O. & Scharff, A. Are naked and common mole-rats eusocial and if so, why?. Behav. Ecol. Sociobiol. 47, 293–303 (2000).

    Google Scholar 

  31. Bishop, J. M., Jarvis, J. U. M., Spinks, A. C., Bennett, N. C. & O’Ryan, C. Molecular insight into patterns of colony composition and paternity in the common mole-rat Cryptomys hottentotus hottentotus. Mol. Ecol. 13, 1217–1229 (2004).

    Google Scholar 

  32. Braude, S. Dispersal and new colony formation in wild naked mole-rats: evidence against inbreeding as the system of mating. Behav. Ecol. 11, 7–12 (2000).

    Google Scholar 

  33. Braude, S., Hess, J. & Ingram, C. Inter-colony invasion between wild naked mole-rat colonies. J. Zool. 313, 37–42 (2021).

    Google Scholar 

  34. Burland, T. M., Bennett, N. C., Jarvis, J. U. M. & Faulkes, C. G. Colony structure and parentage in wild colonies of co-operatively breeding Damaraland mole-rats suggest incest avoidance alone may not maintain reproductive skew. Mol. Ecol. 13, 2371–2379 (2004).

    Google Scholar 

  35. Mynhardt, S., Harris-Barnes, L., Bloomer, P. & Bennett, N. C. Spatial population genetic structure and colony dynamics in Damaraland mole-rats (Fukomys damarensis) from the southern Kalahari. BMC Ecol. Evol. 21, 221 (2021).

    Google Scholar 

  36. Patzenhauerová, H., Šklíba, J., Bryja, J. & Šumbera, R. Parentage analysis of Ansell’s mole-rat family groups indicates a high reproductive skew despite relatively relaxed ecological constraints on dispersal. Mol. Ecol. 22, 4988–5000 (2013).

    Google Scholar 

  37. Monadjem, A., Taylor, P. J., Denys, C. & Cotterill, F. P. D. Rodents of Sub-Saharan Africa: a Biogeographic and Taxonomic Synthesis. (De Gruyter, 2015).

  38. Thorley, J., Bensch, H. M., Finn, K., Clutton-Brock, T. & Zöttl, M. Damaraland mole-rats do not rely on helpers for reproduction or survival. Evol. Lett. 7, 203–215 (2023).

    Google Scholar 

  39. Young, A. J. & Bennett, N. C. Intra-sexual selection in cooperative mammals and birds: why are females not bigger and better armed? Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130075 (2013).

    Google Scholar 

  40. Zöttl, M., Thorley, J., Gaynor, D., Bennett, N. C. & Clutton-Brock, T. Variation in growth of Damaraland mole-rats is explained by competition rather than by functional specialization for different tasks. Biol. Lett. 12, 20160820 (2016).

    Google Scholar 

  41. Caspar, K. R., Müller, J. & Begall, S. Effects of sex and breeding status on skull morphology in cooperatively breeding Ansell’s mole-rats and an appraisal of sexual dimorphism in the Bathyergidae. Front. Ecol. Evol. 9, 638754 (2021).

    Google Scholar 

  42. Thorley, J., Katlein, N., Goddard, K., Zöttl, M. & Clutton-Brock, T. Reproduction triggers adaptive increases in body size in female mole-rats. Proc. R. Soc. B Biol. Sci. 285, 20180897 (2018).

    Google Scholar 

  43. Young, A. J. & Bennett, N. C. Morphological divergence of breeders and helpers in wild Damaraland mole-rat societies. Evolution 64, 3190–3197 (2010).

    Google Scholar 

  44. Freeman, P. W. & Lemen, C. A. A simple morphological predictor of bite force in rodents. J. Zool. 275, 418–422 (2008).

    Google Scholar 

  45. McIntosh, A. F. & Cox, P. G. Functional implications of craniomandibular morphology in African mole-rats (Rodentia: Bathyergidae). Biol. J. Linn. Soc. 117, 447–462 (2016).

    Google Scholar 

  46. Bennett, N. C. Behaviour and social organization in a colony of the Damaraland mole-rat Cryptomys damarensis. J. Zool. 220, 225–247 (1990).

    Google Scholar 

  47. Francioli, Y., Thorley, J., Finn, K., Clutton-Brock, T. & Zöttl, M. Breeders are less active foragers than non-breeders in wild Damaraland mole-rats. Biol. Lett. 16, 20200475 (2020).

    Google Scholar 

  48. Houslay, T. M., Vullioud, P., Zöttl, M. & Clutton-Brock, T. H. Benefits of cooperation in captive Damaraland mole-rats. Behav. Ecol. 31, 711–718 (2020).

    Google Scholar 

  49. Lövy, M., Šklíba, J. & Šumbera, R. Spatial and temporal activity patterns of the free-living giant mole-rat (Fukomys mechowii), the largest social Bathyergid. PLoS ONE 8, e55357 (2013).

    Google Scholar 

  50. Šklíba, J., Lövy, M., Burda, H. & Šumbera, R. Variability of space-use patterns in a free living eusocial rodent, Ansell’s mole-rat indicates age-based rather than caste polyethism. Sci. Rep. 6, 37497 (2016).

    Google Scholar 

  51. Wroe, S., McHenry, C. & Thomason, J. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proc. R. Soc. B Biol. Sci. 272, 619–625 (2005).

    Google Scholar 

  52. Deeming, D. C., Harrison, S. L. & Sutton, G. P. Inter-relationships among body mass, jaw musculature and bite force in birds. J. Zool. 317, 129–137 (2022).

    Google Scholar 

  53. Herrel, A., Mcbrayer, L. D. & Larson, P. M. Functional basis for sexual differences in bite force in the lizard Anolis carolinensis. Biol. J. Linn. Soc. 91, 111–119 (2007).

    Google Scholar 

  54. Rebol, E. J. & Anderson, D. J. Sex-specific aging in bite force in a wild vertebrate. Exp. Gerontol. 159, 111661 (2022).

    Google Scholar 

  55. Thomas, P. et al. Sexual dimorphism in bite force in the grey mouse lemur. J. Zool. 296, 133–138 (2015).

    Google Scholar 

  56. Becerra, F., Echeverría, A., Vassallo, A. I. & Casinos, A. Bite force and jaw biomechanics in the subterranean rodent Talas tuco-tuco (Ctenomys talarum) (Caviomorpha: Octodontoidea). Can. J. Zool. 89, 334–342 (2011).

    Google Scholar 

  57. Herrel, A., Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).

    Google Scholar 

  58. Kay, R. F., Plavcan, J. M., Glander, K. E. & Wright, P. C. Sexual selection and canine dimorphism in new world monkeys. Am. J. Phys. Anthropol. 77, 385–397 (1988).

    Google Scholar 

  59. Morris, J. S. & Brandt, E. K. Specialization for aggression in sexually dimorphic skeletal morphology in grey wolves (Canis lupus). J. Anat. 225, 1–11 (2014).

    Google Scholar 

  60. Russell, A. F., Carlson, A. A., McIlrath, G. M., Jordan, N. R. & Clutton-Brock, T. Adaptive size modification by dominant female meerkats. Evolution 58, 1600–1607 (2004).

    Google Scholar 

  61. Magalhães, A. R., Damasceno, E. M. & Astúa, D. Bite force sexual dimorphism in Canidae (Mammalia: Carnivora): Relations between diet, sociality and bite force intersexual differences. Hystrix 31, 1–6 (2020).

    Google Scholar 

  62. Jarvis, J. U. M. & Bennett, N. C. Eusociality has evolved independently in two genera of bathyergid mole-rats—but occurs in no other subterranean mammal. Behav. Ecol. Sociobiol. 33, 253–260 (1993).

    Google Scholar 

  63. Šumbera, R. et al. Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: The giant mole-rat constructs really giant burrow systems. Acta Theriol. 57, 121–130 (2012).

    Google Scholar 

  64. Torrents-Ticó, M., Bennett, N. C., Jarvis, J. U. M. & Zöttl, M. Sex differences in timing and context of dispersal in Damaraland mole-rats (Fukomys damarensis). J. Zool. 306, 252–257 (2018).

    Google Scholar 

  65. van Daele, P. A. A. G., Desmet, N., Šumbera, R. & Adriaens, D. Work behaviour and biting performance in the cooperative breeding Micklem’s mole-rat Fukomys micklemi (Bathyergidae, Rodentia). Mamm. Biol. 95, 69–76 (2019).

    Google Scholar 

  66. Rotics, S., Bensch, H. M., Resheff, Y. S., Clutton-Brock, T. & Zöttl, M. Workload distribution in wild Damaraland mole-rat groups. Philos. Trans. R. Soc. Lond. B Biol. Sci. 380, 20230276 (2025).

    Google Scholar 

  67. Johnston, R. A. et al. Morphological and genomic shifts in mole-rat ‘queens’ increase fecundity but reduce skeletal integrity. eLife 10, e65760 (2021).

    Google Scholar 

  68. Jarvis, J. U. M., O’Riain, M. J. & McDaid, E. Growth and factors affecting body size in naked mole-rats. in The Biology of the Naked Mole-Rat (eds Sherman, P. W., Jarvis, J. U. M. & Alexander, R. D.) 358–383. https://doi.org/10.1515/9781400887132-015 (Princeton University Press, 1991).

  69. Lacey, E. A. & Sherman, P. W. Social organization of naked mole-rat colonies: Evidence for divisions of labor. in The Biology of the Naked Mole-rat (eds Sherman, P. W., Jarvis, J. U. M. & Alexander, R. D.) 275–336. https://doi.org/10.1515/9781400887132-013 (Princeton University Press, 1991).

  70. Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 375–398 (2008).

    Google Scholar 

  71. Dammann, P., Šumbera, R., Massmann, C., Scherag, A. & Burda, H. Extended longevity of reproductives appears to be common in Fukomys mole-rats (Rodentia, Bathyergidae). PloS ONE 6, e18757 (2011).

    Google Scholar 

  72. Wallace, E. D. & Bennett, N. C. The colony structure and social organization of the giant Zambian mole-rat, Cryptomys mechowi. J. Zool. 244, 51–61 (1998).

    Google Scholar 

  73. Dammann, P. & Burda, H. Sexual activity and reproduction delay ageing in a mammal. Curr. Biol. 16, R117–R118 (2006).

    Google Scholar 

  74. Begall, S., Bottermann, L. & Caspar, K. R. Self-domestication underground? Testing for social and morphological correlates of animal personality in cooperatively-breeding Ansell’s mole-rats (Fukomys anselli). Front. Ecol. Evol. 10, 862082 (2022).

    Google Scholar 

  75. Burda, H. Individual recognition and incest avoidance in eusocial common mole-rats rather than reproductive suppression by parents. Experientia 51, 411–413 (1995).

    Google Scholar 

  76. Sharp, S. P. & Clutton-Brock, T. H. Reluctant challengers: why do subordinate female meerkats rarely displace their dominant mothers? Behav. Ecol. 22, 1337–1343 (2011).

    Google Scholar 

  77. Cooney, R. Colony defense in Damaraland mole-rats, Cryptomys damarensis. Behav. Ecol. 13, 160–162 (2002).

    Google Scholar 

  78. Jacobs, D. S., Reid, S. & Kuiper, S. Out-breeding behaviour and xenophobia in the damaraland mole-rat, Cryptomys damarensis. South Afr. J. Zool. 33, 189–194 (1998).

    Google Scholar 

  79. Hazell, R. W. A., Bennett, N. C., Jarvis, J. U. M. & Griffin, M. Adult dispersal in the co-operatively breeding Damaraland mole-rat (Cryptomys damarensis): a case study from the Waterberg region of Namibia. J. Zool. 252, 19–25 (2000).

    Google Scholar 

  80. Griffin, A. S. et al. A genetic analysis of breeding success in the cooperative meerkat (Suricata suricatta). Behav. Ecol. 14, 472–480 (2003).

    Google Scholar 

  81. Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C. & Ridley, A. R. Inbreeding avoidance mechanisms: Dispersal dynamics in cooperatively breeding southern pied babblers. J. Anim. Ecol. 81, 876–883 (2012).

    Google Scholar 

  82. Šumbera, R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review. J. Therm. Biol. 79, 166–189 (2019).

    Google Scholar 

  83. Patzenhauerová, H., Šklíba, J., Bryja, J. & Šumbera, R. Parentage analysis of A nsell’s mole-rat family groups indicates a high reproductive skew despite relatively relaxed ecological constraints on dispersal. Mol. Ecol. 22, 4988–5000 (2013).

    Google Scholar 

  84. Šumbera, R. et al. The biology of an isolated Mashona mole-rat population from southern Malawi, with implications for the diversity and biogeography of the genus Fukomys. Org. Divers. Evol. 23, 603–620 (2023).

    Google Scholar 

  85. van Daele, P. A. A. G., Verheyen, E., Brunain, M. & Adriaens, D. Cytochrome b sequence analysis reveals differential molecular evolution in African mole-rats of the chromosomally hyperdiverse genus Fukomys (Bathyergidae, Rodentia) from the Zambezian region. Mol. Phylogenet. Evol. 45, 142–157 (2007).

    Google Scholar 

  86. Borges, L. R. et al. The role of soil features in shaping the bite force and related skull and mandible morphology in the subterranean rodents of genus Ctenomys (Hystricognathi: Ctenomyidae). J. Zool. 301, 108–117 (2017).

    Google Scholar 

  87. Ginot, S., Herrel, A., Claude, J. & Hautier, L. Skull size and biomechanics are good estimators of in vivo bite force in murid rodents. Anat. Rec. 301, 256–266 (2018).

    Google Scholar 

  88. R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (Vienna, 2024).

  89. Bürkner, P. Bayesian item response modeling in R with brms and Stan. J. Stat. Softw. 100, 1–54 (2021).

    Google Scholar 

  90. Neal, R. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo (eds Brooks, S., Gelman, A., Jones, G. L. & Meng, X.-L.) 116–62 (Chapman & Hall/CRC Press, 2011).

  91. Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. Rank-normalization, folding, and localization: an improved Rˆ for assessing convergence of MCMC (with discussion). Bayesian Anal. 16, 667–718 (2021).

    Google Scholar 

  92. Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).

    Google Scholar 

  93. Vehtari, A., Simpson, D., Gelman, A., Yao, Y. & Gabry, J. Pareto smoothed importance sampling. J. Mach. Learn. Res. 25, 1–58 (2024).

    Google Scholar 

  94. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Google Scholar 

  95. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretical Approach (Springer, 2002).

  96. Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).

    Google Scholar 

  97. Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package Version 1.10.4 https://CRAN.R-project.org/package=emmeans (2024).

  98. Šumbera, R. et al. Breeding males, but not females, of Fukomys mole-rats use stronger bites to defend reproductive monopoly. [Data set]. Figshare https://doi.org/10.6084/m9.figshare.29423288 (2025).

Download references

Acknowledgements

We thank Helder Gomes Rodrigues, David Gaynor and Kyle Finn for help with data collection and logistics, and Radka Pešková for taking care of experimental animals. We are grateful to Tim H. Clutton-Brock for access to Damaraland mole-rats in the facility at the Kuruman River Reserve supported by European Research Council under the European Union’s 2020 research and innovation programme (Grants No. 742808 and 294494). This study was supported by the Czech Science Foundation project no. 20-10222S.

Author information

Authors and Affiliations

Authors

Contributions

R.Š., A.K. and M.L. conceptualized the study. R.Š., A.K., J.O. and M.L. carried out the investigation, and R.Š., A.K. and M.L. curated the data. O.M. performed the formal analyses and, together with M.L., developed the methodology and prepared the figures. R.Š., A.K., J.M., S.B., N.C.B., M.Z. and A.H. provided resources. R.Š. and M.L. wrote the original draft. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to
Radim Šumbera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Frederik Püffel and Helder Gomes Rodrigues for their contribution to the peer review of this work. Primary Handling Editor: Michele Repetto. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Šumbera, R., Kraus, A., Mikula, O. et al. Breeding male mole-rats (Fukomys) use strong bites to defend reproductive monopoly.
Commun Biol (2025). https://doi.org/10.1038/s42003-025-09334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42003-025-09334-8


Source: Ecology - nature.com

Short-chain fatty acids mediate interactions between immune responses and commensal bacteria in high altitude yaks

Green manure-induced shifts in nematode communities associated with soil bacterial and fungal biomes

Back to Top