Abstract
Bite force is a simple trait indicating an animal’s performance related to foraging, social dominance, and defence, all of which influence individual reproductive success. We examine the effect of breeding status on bite force in four social species of Fukomys, a genus of subterranean African rodents (Bathyergidae). These species are cooperative breeders, where reproduction is limited typically to a breeding pair. We collected in vivo bite force data, head width, and upper incisors width from 404 individuals from 75 families and tested whether breeders exhibit stronger bite force. We reveal that breeding males of all four species outperform non-breeders, with bite force in non-breeding males and females being 12% and 22% lower, respectively. In contrast, breeding females underperform relative to other categories, with bite force approximately 31% lower than in breeding males, and many are reluctant to bite. Head width and upper incisors width corroborate these findings. We propose that breeding males require a stronger bite force because of repeated competition with non-related males that may try to enter the family. In contrast, there is much less competition for the breeding position among females, as females rarely intrude into established families.
Data availability
The raw data (Supplementary Data 1 and Supplementary Data 2) used to calculate the results and generate the figures presented in this study are available in the Figshare repository, as part of this record: https://doi.org/10.6084/m9.figshare.2942328898.
Code availability
The R code (Supplementary Data 3) used to calculate the results and generate the figures presented in this study is available in the Figshare repository, as part of this record: https://doi.org/10.6084/m9.figshare.2942328898.
References
Palanza, P., Mainardi, D., Brain, P. F. & Parmigiani, S. Male and female competitive strategies of wild house mice pairs (Mus musculus domesticus) confronted with intruders of different sex and age in artificial territories. Behaviour 133, 863–882 (1996).
Packer, C. & Pusey, A. E. Adaptations of female lions to infanticide by incoming males. Am. Nat. 121, 716–728 (1983).
Clutton-Brock, T. H. et al. Intrasexual competition and sexual selection in cooperative mammals. Nature 444, 1065–1068 (2006).
Emlen, S. T. Predicting family dynamics in social vertebrates. in Behavioural Ecology: an Evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 228–253 (Blackwell Scientific, 1997).
Sharp, S. P. & Clutton-Brock, T. H. Competition, breeding success and ageing rates in female meerkats: competition and senescence in meerkats. J. Evol. Biol. 24, 1756–1762 (2011).
Krebs, J. R. & Davies, N. B. Fighting and assessment. in An Introduction to Behavioural Ecology (eds Krebs, J. R. & Davies, N. B.) 147–174 (Blackwell Scientific Publication, 1993).
Husak, J. F., Kristopher Lappin, A., Fox, S. F. & Lemos-Espinal, J. A. Bite-force performance predicts dominance in male venerable collared lizards (Crotaphytus antiquus). Copeia 2006, 301–306 (2006).
Lailvaux, S. P., Herrel, A., VanHooydonck, B., Meyers, J. J. & Irschick, D. J. Performance capacity, fighting tactics and the evolution of life–stage male morphs in the green anole lizard (Anolis carolinensis). Proc. R. Soc. Lond. B Biol. Sci. 271, 2501–2508 (2004).
Anderson, R. A., Mcbrayer, L. D. & Herrel, A. Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biol. J. Linn. Soc. 93, 709–720 (2008).
Herrel, A., De Smet, A., Aguirre, L. F. & Aerts, P. Morphological and mechanical determinants of bite force in bats: Do muscles matter?. J. Exp. Biol. 211, 86–91 (2008).
van der Meijden, A., González-Gómez, J. C., Pulido-Osorio, M. D. & Herrel, A. Measurement of voluntary bite forces in large carnivores using a semi-automated reward-driven system. J. Exp. Biol. 226, jeb245255 (2023).
Aguirre, L. F., Herrel, A., Van Damme, R. & MatThysen, E. The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–212 (2003).
Christiansen, P. & Wroe, S. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology 88, 347–358 (2007).
Maestri, R., Patterson, B. D., Fornel, R., Monteiro, L. R. & De Freitas, T. R. O. Diet, bite force and skull morphology in the generalist rodent morphotype. J. Evol. Biol. 29, 2191–2204 (2016).
Santana, S. E., Dumont, E. R. & Davis, J. L. Mechanics of bite force production and its relationship to diet in bats. Funct. Ecol. 24, 776–784 (2010).
Verwaijen, D., Van Damme, R. & Herrel, A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–850 (2002).
Gowan, T. A., Mcbrayer, L. D. & Rostal, D. C. Seasonal variation in testosterone and performance in males of a non-territorial lizard species. Physiol. Behav. 100, 357–363 (2010).
Husak, J. F., Lappin, A. K. & Van Den Bussche, R. A. The fitness advantage of a high-performance weapon. Biol. J. Linn. Soc. 96, 840–845 (2009).
Lappin, A. K. & Husak, J. F. Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris). Am. Nat. 166, 426–436 (2005).
Zablocki-Thomas, P., Lailvaux, S., Aujard, F., Pouydebat, E. & Herrel, A. Maternal and genetic correlations between morphology and physical performance traits in a small captive primate, Microcebus murinus. Biol. J. Linn. Soc. 134, 28–39 (2021).
Herrel, A. et al. Do adult phenotypes reflect selection on juvenile performance? A comparative study on performance and morphology in lizards. Integr. Comp. Biol. 56, 469–478 (2016).
Begall, S., Burda, H. & Šumbera, R. Graumulle: Cryptomys und Fukomys (VerlagsKG Wolf, 2018).
Bennett, N. C. & Faulkes, C. G. African Mole-Rats—Ecology and Eusociality (Cambridge University Press, 2000).
Rodrigues, H. G., Šumbera, R., Hautier, L. & Herrel, A. Digging up convergence in fossorial rodents: insights into burrowing activity and morpho-functional specializations of the masticatory apparatus. in Convergent Evolution: Animal Form and Function (eds Bels, V. L. & Russell, A. P.) 37–63. https://doi.org/10.1007/978-3-031-11441-0_3 (Springer International Publishing, 2023).
Kraus, A. et al. Bite force in the strictly subterranean rodent family of African mole-rats (Bathyergidae): the role of digging mode, social organization and ecology. Funct. Ecol. 36, 2344–2355 (2022).
Hite, N. J. et al. The better to eat you with: bite force in the naked mole-rat (Heterocephalus glaber) is stronger than predicted based on body size. Front. Integr. Neurosci. 13, 70 (2019).
van Daele, P. A. A. G., Herrel, A. & Adriaens, D. Biting performance in teeth-digging African mole-rats (Fukomys, Bathyergidae, Rodentia). Physiol. Biochem. Zool. 82, 40–50 (2009).
Gomes Rodrigues, H. & Damette, M. Incipient morphological specializations associated with fossorial life in the skull of ground squirrels (Sciuridae, Rodentia). J. Morphol. 284, e21540 (2023).
Hildebrand, M. Digging of Quadrupeds. in Functional Vertebrate Morphology (eds Hildebrand, M., Bramble, D. M., Liem, K. F. & Wake, D. B.) 89–109 (Harvard University Press, 1985).
Burda, H., Honeycutt, R. L., Begall, S., Locker-Grutjen, O. & Scharff, A. Are naked and common mole-rats eusocial and if so, why?. Behav. Ecol. Sociobiol. 47, 293–303 (2000).
Bishop, J. M., Jarvis, J. U. M., Spinks, A. C., Bennett, N. C. & O’Ryan, C. Molecular insight into patterns of colony composition and paternity in the common mole-rat Cryptomys hottentotus hottentotus. Mol. Ecol. 13, 1217–1229 (2004).
Braude, S. Dispersal and new colony formation in wild naked mole-rats: evidence against inbreeding as the system of mating. Behav. Ecol. 11, 7–12 (2000).
Braude, S., Hess, J. & Ingram, C. Inter-colony invasion between wild naked mole-rat colonies. J. Zool. 313, 37–42 (2021).
Burland, T. M., Bennett, N. C., Jarvis, J. U. M. & Faulkes, C. G. Colony structure and parentage in wild colonies of co-operatively breeding Damaraland mole-rats suggest incest avoidance alone may not maintain reproductive skew. Mol. Ecol. 13, 2371–2379 (2004).
Mynhardt, S., Harris-Barnes, L., Bloomer, P. & Bennett, N. C. Spatial population genetic structure and colony dynamics in Damaraland mole-rats (Fukomys damarensis) from the southern Kalahari. BMC Ecol. Evol. 21, 221 (2021).
Patzenhauerová, H., Šklíba, J., Bryja, J. & Šumbera, R. Parentage analysis of Ansell’s mole-rat family groups indicates a high reproductive skew despite relatively relaxed ecological constraints on dispersal. Mol. Ecol. 22, 4988–5000 (2013).
Monadjem, A., Taylor, P. J., Denys, C. & Cotterill, F. P. D. Rodents of Sub-Saharan Africa: a Biogeographic and Taxonomic Synthesis. (De Gruyter, 2015).
Thorley, J., Bensch, H. M., Finn, K., Clutton-Brock, T. & Zöttl, M. Damaraland mole-rats do not rely on helpers for reproduction or survival. Evol. Lett. 7, 203–215 (2023).
Young, A. J. & Bennett, N. C. Intra-sexual selection in cooperative mammals and birds: why are females not bigger and better armed? Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130075 (2013).
Zöttl, M., Thorley, J., Gaynor, D., Bennett, N. C. & Clutton-Brock, T. Variation in growth of Damaraland mole-rats is explained by competition rather than by functional specialization for different tasks. Biol. Lett. 12, 20160820 (2016).
Caspar, K. R., Müller, J. & Begall, S. Effects of sex and breeding status on skull morphology in cooperatively breeding Ansell’s mole-rats and an appraisal of sexual dimorphism in the Bathyergidae. Front. Ecol. Evol. 9, 638754 (2021).
Thorley, J., Katlein, N., Goddard, K., Zöttl, M. & Clutton-Brock, T. Reproduction triggers adaptive increases in body size in female mole-rats. Proc. R. Soc. B Biol. Sci. 285, 20180897 (2018).
Young, A. J. & Bennett, N. C. Morphological divergence of breeders and helpers in wild Damaraland mole-rat societies. Evolution 64, 3190–3197 (2010).
Freeman, P. W. & Lemen, C. A. A simple morphological predictor of bite force in rodents. J. Zool. 275, 418–422 (2008).
McIntosh, A. F. & Cox, P. G. Functional implications of craniomandibular morphology in African mole-rats (Rodentia: Bathyergidae). Biol. J. Linn. Soc. 117, 447–462 (2016).
Bennett, N. C. Behaviour and social organization in a colony of the Damaraland mole-rat Cryptomys damarensis. J. Zool. 220, 225–247 (1990).
Francioli, Y., Thorley, J., Finn, K., Clutton-Brock, T. & Zöttl, M. Breeders are less active foragers than non-breeders in wild Damaraland mole-rats. Biol. Lett. 16, 20200475 (2020).
Houslay, T. M., Vullioud, P., Zöttl, M. & Clutton-Brock, T. H. Benefits of cooperation in captive Damaraland mole-rats. Behav. Ecol. 31, 711–718 (2020).
Lövy, M., Šklíba, J. & Šumbera, R. Spatial and temporal activity patterns of the free-living giant mole-rat (Fukomys mechowii), the largest social Bathyergid. PLoS ONE 8, e55357 (2013).
Šklíba, J., Lövy, M., Burda, H. & Šumbera, R. Variability of space-use patterns in a free living eusocial rodent, Ansell’s mole-rat indicates age-based rather than caste polyethism. Sci. Rep. 6, 37497 (2016).
Wroe, S., McHenry, C. & Thomason, J. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proc. R. Soc. B Biol. Sci. 272, 619–625 (2005).
Deeming, D. C., Harrison, S. L. & Sutton, G. P. Inter-relationships among body mass, jaw musculature and bite force in birds. J. Zool. 317, 129–137 (2022).
Herrel, A., Mcbrayer, L. D. & Larson, P. M. Functional basis for sexual differences in bite force in the lizard Anolis carolinensis. Biol. J. Linn. Soc. 91, 111–119 (2007).
Rebol, E. J. & Anderson, D. J. Sex-specific aging in bite force in a wild vertebrate. Exp. Gerontol. 159, 111661 (2022).
Thomas, P. et al. Sexual dimorphism in bite force in the grey mouse lemur. J. Zool. 296, 133–138 (2015).
Becerra, F., Echeverría, A., Vassallo, A. I. & Casinos, A. Bite force and jaw biomechanics in the subterranean rodent Talas tuco-tuco (Ctenomys talarum) (Caviomorpha: Octodontoidea). Can. J. Zool. 89, 334–342 (2011).
Herrel, A., Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
Kay, R. F., Plavcan, J. M., Glander, K. E. & Wright, P. C. Sexual selection and canine dimorphism in new world monkeys. Am. J. Phys. Anthropol. 77, 385–397 (1988).
Morris, J. S. & Brandt, E. K. Specialization for aggression in sexually dimorphic skeletal morphology in grey wolves (Canis lupus). J. Anat. 225, 1–11 (2014).
Russell, A. F., Carlson, A. A., McIlrath, G. M., Jordan, N. R. & Clutton-Brock, T. Adaptive size modification by dominant female meerkats. Evolution 58, 1600–1607 (2004).
Magalhães, A. R., Damasceno, E. M. & Astúa, D. Bite force sexual dimorphism in Canidae (Mammalia: Carnivora): Relations between diet, sociality and bite force intersexual differences. Hystrix 31, 1–6 (2020).
Jarvis, J. U. M. & Bennett, N. C. Eusociality has evolved independently in two genera of bathyergid mole-rats—but occurs in no other subterranean mammal. Behav. Ecol. Sociobiol. 33, 253–260 (1993).
Šumbera, R. et al. Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: The giant mole-rat constructs really giant burrow systems. Acta Theriol. 57, 121–130 (2012).
Torrents-Ticó, M., Bennett, N. C., Jarvis, J. U. M. & Zöttl, M. Sex differences in timing and context of dispersal in Damaraland mole-rats (Fukomys damarensis). J. Zool. 306, 252–257 (2018).
van Daele, P. A. A. G., Desmet, N., Šumbera, R. & Adriaens, D. Work behaviour and biting performance in the cooperative breeding Micklem’s mole-rat Fukomys micklemi (Bathyergidae, Rodentia). Mamm. Biol. 95, 69–76 (2019).
Rotics, S., Bensch, H. M., Resheff, Y. S., Clutton-Brock, T. & Zöttl, M. Workload distribution in wild Damaraland mole-rat groups. Philos. Trans. R. Soc. Lond. B Biol. Sci. 380, 20230276 (2025).
Johnston, R. A. et al. Morphological and genomic shifts in mole-rat ‘queens’ increase fecundity but reduce skeletal integrity. eLife 10, e65760 (2021).
Jarvis, J. U. M., O’Riain, M. J. & McDaid, E. Growth and factors affecting body size in naked mole-rats. in The Biology of the Naked Mole-Rat (eds Sherman, P. W., Jarvis, J. U. M. & Alexander, R. D.) 358–383. https://doi.org/10.1515/9781400887132-015 (Princeton University Press, 1991).
Lacey, E. A. & Sherman, P. W. Social organization of naked mole-rat colonies: Evidence for divisions of labor. in The Biology of the Naked Mole-rat (eds Sherman, P. W., Jarvis, J. U. M. & Alexander, R. D.) 275–336. https://doi.org/10.1515/9781400887132-013 (Princeton University Press, 1991).
Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 375–398 (2008).
Dammann, P., Šumbera, R., Massmann, C., Scherag, A. & Burda, H. Extended longevity of reproductives appears to be common in Fukomys mole-rats (Rodentia, Bathyergidae). PloS ONE 6, e18757 (2011).
Wallace, E. D. & Bennett, N. C. The colony structure and social organization of the giant Zambian mole-rat, Cryptomys mechowi. J. Zool. 244, 51–61 (1998).
Dammann, P. & Burda, H. Sexual activity and reproduction delay ageing in a mammal. Curr. Biol. 16, R117–R118 (2006).
Begall, S., Bottermann, L. & Caspar, K. R. Self-domestication underground? Testing for social and morphological correlates of animal personality in cooperatively-breeding Ansell’s mole-rats (Fukomys anselli). Front. Ecol. Evol. 10, 862082 (2022).
Burda, H. Individual recognition and incest avoidance in eusocial common mole-rats rather than reproductive suppression by parents. Experientia 51, 411–413 (1995).
Sharp, S. P. & Clutton-Brock, T. H. Reluctant challengers: why do subordinate female meerkats rarely displace their dominant mothers? Behav. Ecol. 22, 1337–1343 (2011).
Cooney, R. Colony defense in Damaraland mole-rats, Cryptomys damarensis. Behav. Ecol. 13, 160–162 (2002).
Jacobs, D. S., Reid, S. & Kuiper, S. Out-breeding behaviour and xenophobia in the damaraland mole-rat, Cryptomys damarensis. South Afr. J. Zool. 33, 189–194 (1998).
Hazell, R. W. A., Bennett, N. C., Jarvis, J. U. M. & Griffin, M. Adult dispersal in the co-operatively breeding Damaraland mole-rat (Cryptomys damarensis): a case study from the Waterberg region of Namibia. J. Zool. 252, 19–25 (2000).
Griffin, A. S. et al. A genetic analysis of breeding success in the cooperative meerkat (Suricata suricatta). Behav. Ecol. 14, 472–480 (2003).
Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C. & Ridley, A. R. Inbreeding avoidance mechanisms: Dispersal dynamics in cooperatively breeding southern pied babblers. J. Anim. Ecol. 81, 876–883 (2012).
Šumbera, R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review. J. Therm. Biol. 79, 166–189 (2019).
Patzenhauerová, H., Šklíba, J., Bryja, J. & Šumbera, R. Parentage analysis of A nsell’s mole-rat family groups indicates a high reproductive skew despite relatively relaxed ecological constraints on dispersal. Mol. Ecol. 22, 4988–5000 (2013).
Šumbera, R. et al. The biology of an isolated Mashona mole-rat population from southern Malawi, with implications for the diversity and biogeography of the genus Fukomys. Org. Divers. Evol. 23, 603–620 (2023).
van Daele, P. A. A. G., Verheyen, E., Brunain, M. & Adriaens, D. Cytochrome b sequence analysis reveals differential molecular evolution in African mole-rats of the chromosomally hyperdiverse genus Fukomys (Bathyergidae, Rodentia) from the Zambezian region. Mol. Phylogenet. Evol. 45, 142–157 (2007).
Borges, L. R. et al. The role of soil features in shaping the bite force and related skull and mandible morphology in the subterranean rodents of genus Ctenomys (Hystricognathi: Ctenomyidae). J. Zool. 301, 108–117 (2017).
Ginot, S., Herrel, A., Claude, J. & Hautier, L. Skull size and biomechanics are good estimators of in vivo bite force in murid rodents. Anat. Rec. 301, 256–266 (2018).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (Vienna, 2024).
Bürkner, P. Bayesian item response modeling in R with brms and Stan. J. Stat. Softw. 100, 1–54 (2021).
Neal, R. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo (eds Brooks, S., Gelman, A., Jones, G. L. & Meng, X.-L.) 116–62 (Chapman & Hall/CRC Press, 2011).
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. Rank-normalization, folding, and localization: an improved Rˆ for assessing convergence of MCMC (with discussion). Bayesian Anal. 16, 667–718 (2021).
Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).
Vehtari, A., Simpson, D., Gelman, A., Yao, Y. & Gabry, J. Pareto smoothed importance sampling. J. Mach. Learn. Res. 25, 1–58 (2024).
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretical Approach (Springer, 2002).
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).
Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package Version 1.10.4 https://CRAN.R-project.org/package=emmeans (2024).
Šumbera, R. et al. Breeding males, but not females, of Fukomys mole-rats use stronger bites to defend reproductive monopoly. [Data set]. Figshare https://doi.org/10.6084/m9.figshare.29423288 (2025).
Acknowledgements
We thank Helder Gomes Rodrigues, David Gaynor and Kyle Finn for help with data collection and logistics, and Radka Pešková for taking care of experimental animals. We are grateful to Tim H. Clutton-Brock for access to Damaraland mole-rats in the facility at the Kuruman River Reserve supported by European Research Council under the European Union’s 2020 research and innovation programme (Grants No. 742808 and 294494). This study was supported by the Czech Science Foundation project no. 20-10222S.
Author information
Authors and Affiliations
Contributions
R.Š., A.K. and M.L. conceptualized the study. R.Š., A.K., J.O. and M.L. carried out the investigation, and R.Š., A.K. and M.L. curated the data. O.M. performed the formal analyses and, together with M.L., developed the methodology and prepared the figures. R.Š., A.K., J.M., S.B., N.C.B., M.Z. and A.H. provided resources. R.Š. and M.L. wrote the original draft. All authors reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Biology thanks Frederik Püffel and Helder Gomes Rodrigues for their contribution to the peer review of this work. Primary Handling Editor: Michele Repetto. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Reporting Summary
Transparent Peer Review file
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Šumbera, R., Kraus, A., Mikula, O. et al. Breeding male mole-rats (Fukomys) use strong bites to defend reproductive monopoly.
Commun Biol (2025). https://doi.org/10.1038/s42003-025-09334-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42003-025-09334-8
Source: Ecology - nature.com
