in

Elevational distribution patterns of bryophytes in Eastern China – A comprehensive species-trait dataset


Abstract

Climate change significantly affects the dynamics of mountain ecosystems, impacting not only species distributions but also their phenological characteristics. Nevertheless, our comprehension of the effects of climate change on biodiversity is still limited, primarily due to insufficient historical data. The dramatic temperature variations over short distances make permanent monitoring plots along elevational gradients an ideal natural laboratory for investigating species’ responses to climate change. Drawing on field survey information gathered from 2018 to 2022, we have developed a bryophyte species-trait dataset that encompasses 16,920 trait measurements across four categories: taxonomy, distribution, resistance traits, and reproductive traits, derived from 549 species in Eastern China. The compilation of this bryophyte species-trait dataset offers valuable opportunities to deepen our understanding of the factors, constraints, and effects associated with biodiversity variability, while also providing richer insights into predicting species distributions and implementing targeted in-situ conservation strategies.

Code availability

No specific code was employed for the generation and analysis of the data presented.

Data availability

Bryophyte species-trait dataset is available from the Figshare repository. The direct link is: https://doi.org/10.6084/m9.figshare.29826515.v5.

References

  1. Cahill, A. E. et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).

    Google Scholar 

  2. Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Google Scholar 

  3. Wolkovich, E. M. et al. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change. Am. J. Bot. 100, 1407–1421 (2013).

    Google Scholar 

  4. Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. P. Natl. Acad. Sci. USA. 115, 1004–1008 (2018).

    Google Scholar 

  5. Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

    Google Scholar 

  6. Messier, J. et al. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2017).

    Google Scholar 

  7. Vandvik, V. et al. Plant traits and vegetation data from climate warming experiments along an 1100 m elevation gradient in Gongga Mountains, China. Sci. Data 7, 189 (2020).

    Google Scholar 

  8. Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Global Ecol. Biogeogr. 10, 3–13 (2001).

    Google Scholar 

  9. Rahbek, C. et al. Humboldt’s Enigma: What Causes Global Patterns of Mountain Biodiversity? Science 365, 1108–1113 (2019).

    Google Scholar 

  10. La Sorte, F. A. & Jetz, W. Projected range contractions of montane biodiversity under global warming. P. Roy. Soc. B-Biol. Sci. 277, 3401–3410 (2010).

    Google Scholar 

  11. Song, Y. C. Evergreen broad-leaved forests in China. Classification-Ecology-Conservation (Science Press, 2013).

  12. Li, X. W. Floristic statistics and analyses of seed plants from China. Acta Bot. Yunnan. 18, 363–384 (1996).

    Google Scholar 

  13. Lu, L. M. et al. Evolutionary history of the angiosperm flora of China. Nature 554, 234–238 (2018).

    Google Scholar 

  14. Qiu, Y. X., Fu, C. X. & Comes, H. P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogenet. Evol. 59, 225–244 (2011).

    Google Scholar 

  15. Tang, C. Q. et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488 (2018).

    Google Scholar 

  16. Christenhusz, M. J. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).

    Google Scholar 

  17. Soudzilovskaia, N. A., Van Bodegom, P. M. & Cornelissen, J. H. C. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 27, 1442–1454 (2013).

    Google Scholar 

  18. Frego, K. A. Bryophytes as potential indicators of forest integrity. Forest Ecol. Manag. 242, 65–75 (2007).

    Google Scholar 

  19. Beringer, J. et al. The representation of arctic soils in the land surface model: the importance of mosses. J. Climate 14, 3324–3335 (2001).

    Google Scholar 

  20. Ah-Peng, C. et al. Bryophyte diversity and distribution along an altitudinal gradient on a lava flow in La Réunion. Divers. Distrib. 13, 654–662 (2007).

    Google Scholar 

  21. Patiño, J. & Vanderpoorten, A. Bryophyte biogeography. Crit. Rev. Plant Sci. 37, 175–209 (2018).

    Google Scholar 

  22. Ilić, M. et al. Field sampling methods for investigating forest-floor bryophytes: Microcoenose vs. random sampling. Arch. Biol. Sci. 70, 589–598 (2018).

    Google Scholar 

  23. Dai, Z. et al. Effects of microclimates on species richness of epiphytic and non-epiphytic bryophytes along a subtropical elevational gradient in China. J. Biogeogr. 52, e15134 (2025).

    Google Scholar 

  24. Tilman, D. Biodiversity: Population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Google Scholar 

  25. Vanderpoorten, A. et al. The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. Camb. Philos. Soc. 85, 471–487 (2010).

    Google Scholar 

  26. Newmaster, S. G. et al. The ones we left behind: Comparing plot sampling and floristic habitat sampling for estimating bryophyte diversity. Divers. Distrib. 11, 57–72 (2005).

    Google Scholar 

  27. Yao, X. et al. What determines the probability of discovering a species? A Study of the completeness of bryophyte inventories in Tianmushan National Nature Reserve (Zhejiang, China). Ecol. Evol. 14, e70593 (2024).

    Google Scholar 

  28. Gao, Q. & Cao, T. Flora of Yunnanica (Tomus 17) (Science Press, 2000).

  29. Zhu, R. L. & So, M. L. Epiphyllous Liverworts of China (J. Cramer, 2001).

  30. Li, X. J. Flora of Yunnan (Tomus 18) (Sicence Press, 2002).

  31. Li, X. J. Flora of Yunnan (Tomus 19) (Sicence Press, 2005).

  32. Zhao, J. C. & Liu, Y. Y. A Taxonomic Study of the Family Bryaceae (Sensu Lato, Bryopsida) in China (Hebei Science and Technology Press, 2021).

  33. Wang, Q. H. & Jia, Y. A Monograph of the Genus Ulota s.l. (Orthotrichaceae, Moss) (Science Press, 2023).

  34. Wang, J., Zhu, R. L. & Gradstein, S. R. Taxonomic revision of Lejeuneaceae subfamily Ptychanthoideae (Marchantiophyta) in China (J. Cramer, 2016).

  35. Gao, Q. Flora Bryophytarum Sinicorum Vol. 1 (Science Press, 1994).

  36. Gao, Q. Flora Bryophytarum Sinicorum Vol. 2 (Science Press, 1996).

  37. Gao, Q. Flora Bryophytarum Sinicorum Vol. 9 (Science Press, 2003).

  38. Gao, Q. & Wu, Y. H. Flora Bryophytarum Sinicorum Vol. 10 (Science Press, 2008).

  39. Hu, R. L. & Wang, Y. F. Flora Bryophytarum Sinicorum Vol. 7 (Science Press, 2005).

  40. Li, X. J. Flora Bryophytarum Sinicorum Vol. 3 (Science Press, 2000).

  41. Li, X. J. Flora Bryophytarum Sinicorum Vol. 4 (Science Press, 2006).

  42. Wu, P. C. Flora Bryophytarum Sinicorum Vol. 6 (Science Press, 2002).

  43. Wu, P. C. & Jia, Y. Flora Bryophytarum Sinicorum Vol. 8 (Science Press, 2004).

  44. Wu, P. C. & Jia, Y. Flora Bryophytarum Sinicorum Vol. 5 (Science Press, 2011).

  45. Wei, Y. M. Bryophytes of Yachang-Liverworts and Hornworts (Shandong Science and Technology Press, 2024).

  46. van Zuijlen, K. et al. Bryophytes of Europe Traits (BET) data set: A fundamental tool for ecological studies. J. Veg. Sci. 34, e13179 (2023).

    Google Scholar 

  47. Gradstein, S. R., Churchill, S. P. & Salazar-Allen, N. Guide to the Bryophytes of Tropical America (The New York Botanical Garden Press, 2001).

  48. Wang, Y. R. et al. Bryophyte species-trait dataset in Eastern China. figshare https://doi.org/10.6084/m9.figshare.29826515.v5 (2025).

  49. Ah-Peng, C. et al. Functional diversity of subalpine bryophyte communities in an oceanic island (La Runion). Arct. Antarct. Alp. Res. 46, 841–851 (2014).

    Google Scholar 

  50. Vanderpoorten, A. & Goffinet, B. Introduction to Bryophytes (Cambridge University Press, 2010).

  51. Henriques, D. S. G. et al. Functional diversity and composition of bryophyte water-related traits in Azorean native vegetation. Plant Ecol. Divers. 10, 127–137 (2017).

    Google Scholar 

  52. Guerra, J., Martínez-Sánchez, J. J. & Ros, R. M. On the degree of adaptation of the moss flora and vegetation in gypsiferous zones of the south-east Iberian Peninsula. J. Bryol. 17, 133–142 (1992).

    Google Scholar 

  53. Vitt, D. H., Crandall-Stotler, B. & Wood, A. J. in Plant Ecology and Evolution in Harsh Environments (eds. Rajakaruna, N., Boyd, R. S. & Harris, T. B.) 267–295 (Nova Science, 2012).

  54. Waite, M. & Sack, L. How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol. 185, 156–172 (2010).

    Google Scholar 

  55. Zhang, Y. C., He, L. & Guo, S. L. Research on plant functional diversity and its application in bryophytes. J. Shanghai Norm. Univ. (Nat. Sci.) 49, 9–17 (2020).

    Google Scholar 

  56. Proctor, M. C. F. in Bryophyte Biology 2nd edn (eds. Goffinet, B. & Shaw, J.) Ch. 6 (Cambridge University Press, 2008).

  57. Zhang, Y. M. & Wang, X. Q. Study on the Microbiotic Crusts in Junggar Desert (Science Press, 2008).

  58. Zheng, Y. P. et al. Advances on ecological studies of algae and mosses in biological soil crust. Chin. Bull. Bot. 44, 371–378 (2009a).

    Google Scholar 

  59. Zheng, Y. P. et al. Morphological and structural adaptation and characteristics of protonemal development of Syntrichia caninervis in the mosses crust layer. J. Desert Res. 29, 878–884 (2009b).

    Google Scholar 

  60. Watson, W. Xerophytic adaptations of bryophytes in relation to habitat. New Phytol. 13, 149–169 (1914).

    Google Scholar 

  61. Sierra, A. M. et al. Reproductive traits as predictors of assembly chronosequence patterns in epiphyllous bryophyte metacommunities. J. Ecol. 107, 875–886 (2019).

    Google Scholar 

  62. Patiño, J. et al. Baker’s law and the island syndromes in bryophytes. J. Ecol. 101, 1245–1255 (2013).

    Google Scholar 

  63. Chen, X. et al. Bryophytes diversity of Tianmushan National Nature Reserve, Zhejiang Province. Biodiversity Science 31, 22649 (2023).

    Google Scholar 

  64. Hill, M. O. et al. BRYOATT: attributes of British and Irish mosses, liverworts and hornworts. (Centre for Ecology and Hydrology, Saxon Print Group, 2007).

  65. Bernhardt‐Römermann, M., Poschlod, P. & Hentschel, J. BryForTrait – a life‐history trait database of forest bryophytes. J. Veg. Sci. 29, 798–800 (2018).

    Google Scholar 

  66. Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait‐based ecology. Ecol. Lett. 13, 838–848 (2010).

    Google Scholar 

  67. Fajardo, A. & Siefert, A. Intraspecifific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99, 1024–1030 (2018).

    Google Scholar 

  68. Anderegg, L. D. L. et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees. New Phytol. 229, 1375–1387 (2021).

    Google Scholar 

  69. Reynolds, L. A. & McLetchie, D. N. Short distances between extreme microhabitats do not result in ecotypes in Syntrichia caninervis. J. Bryol. 33, 148–153 (2011).

    Google Scholar 

  70. Beltrán‐Sanz, N. et al. Physiological plasticity as a strategy to cope with harsh climatic conditions: ecophysiological meta‐analysis of the cosmopolitan moss Ceratodon purpureus in the Southern Hemisphere. Plants 12, 499 (2023).

    Google Scholar 

  71. Wang, J., Zhang, J. & Ma, W. Z. Tracking the range shifts of bryophytes to climate and land-use changes in mountains. Bryol. Times 159, 65–68 (2024).

    Google Scholar 

Download references

Acknowledgements

We are grateful to the BEST (Biodiversity along Elevational gradients: Shifts and Transitions) Network, the Tianmushan National Nature Reserve of Zhejiang, the Tianma National Nature Reserve of Anhui, the Guanshan National Nature Reserve of Jiangxi and Daiyunshan National Nature Reserve of Fujian, China. We would like to thank Luyan Tang, Shichen Xing, Xing Chen, and Xuan Lü for field assistance. We specially thank Xiaorui Wang from Shijiazhuang University (Hebei Province), Yongying Liu from Jiaozuo Normal College (Henan Province), and Dongping Zhao from Inner Mongolia University (Inner Mongolia) for their assistance in bryophyte species identification. This work was supported by the National Natural Science Foundation of China (nos. 32070228), and the Innovation Program of Shanghai Municipal Education Commission (2023ZKZD36).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and J.W. secured funding and organized the fieldwork. J.W., Y.R.W. and X.Y. drafted the paper; X.Y., P.Z., R.P.S., Z.D., X.C., S.W.T., K.S., Z.S.H., Z.C.Z., Q.W., J.Z. and J.W. engaged in field investigation; Y.F.W., M.L., X.Y., S.W.T. and J.W. participate in species identification; Y.R.W., Y.T.Y., E.D.W., H.Y.Z., Y.L.X. and E.Q.L. compiled dataset information; Y.R.W. and X.Y. made the figures and tables; all authors contributed to the final version of the paper.

Corresponding authors

Correspondence to
Jian Zhang or Jian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Wang, Yr., Yao, X., Zheng, P. et al. Elevational distribution patterns of bryophytes in Eastern China – A comprehensive species-trait dataset.
Sci Data (2025). https://doi.org/10.1038/s41597-025-06247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41597-025-06247-3


Source: Ecology - nature.com

Working to eliminate barriers to adopting nuclear energy

The expression of father-daughter bond behaviors influences adult partner attachment in titi monkeys

Back to Top