in

Episodic-like memory in a simulation of cuttlefish behavior


Abstract

Episodic memory involves remembering the what, when, and where components of an event. It has been observed in humans, other vertebrates, and the invertebrate cuttlefish. In clever behavioral experiments, cuttlefish have been shown to have episodic-like memory, where they demonstrate the ability to remember when and where a preferred food source will appear. The present work replicates this behavior with a parsimonious model of episodic memory. To further test this model and explore episodic-like memory, we introduce a predator-prey scenario in which the agent must remember what creatures (e.g. predator, desirable prey, or less desirable prey) appear at a given time and region of the model environment. This simulates similar situations that cuttlefish face in the wild. They will typically hide when predators are in the area, and hunt for prey when available. When the memory model is queried for an action (e.g., hunt or hide), the cuttlefish agent hunts for preferred food, like shrimp, when available, and hides at other times when a predator appears. When the memory model is queried for a place, the cuttlefish agent acts opportunistically, seeking less-preferred food (e.g., crabs) if it is located farther from a predator. These differences show how behavior can be altered depending on how memory is accessed. Querying the model over time might mimic mental time travel, a hallmark of episodic memory. Although developed with cuttlefish in mind, the model shares similarities with the hippocampal indexing theory and captures aspects of vertebrate episodic memory. This suggests that the underlying mechanisms supporting episodic-like behavior in the present model may be an example of convergent cognitive evolution.

Data availability

The source code for these simulations is written in Python and publicly available at: https://github.com/jkrichma/EpisodicLikeMemoryModel.git

References

  1. Tulving, E. Episodic memory: From mind to brain. Annual Rev. Psychol. 53, 1–25 (2002).

    Google Scholar 

  2. Davies, J. R. & Clayton, N. S. Is episodic-like memory like episodic memory?. Philosophical Trans. R. Soc. B: Biol. Sci. 379, 20230397. https://doi.org/10.1098/rstb.2023.0397 (2024).

    Google Scholar 

  3. Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).

    Google Scholar 

  4. Jozet-Alves, C., Bertin, M. & Clayton, N. S. Evidence of episodic-like memory in cuttlefish. Curr. Biol. 23, R1033-5 (2013).

    Google Scholar 

  5. Schnell, A. K., Clayton, N. S., Hanlon, R. T. & Jozet-Alves, C. Episodic-like memory is preserved with age in cuttlefish. Proc. R. Soc. B: Biol. Sci. 288, 20211052. https://doi.org/10.1098/rspb.2021.1052 (2021).

    Google Scholar 

  6. Poncet, L., Desnous, C., Bellanger, C. & Jozet-Alves, C. Unruly octopuses are the rule: Octopus vulgaris use multiple and individually variable strategies in an episodic-like memory task. J. Exp. Biol. 225, jeb244234 (2022).

  7. Schnell, A. K., Boeckle, M., Rivera, M., Clayton, N. S. & Hanlon, R. T. Cuttlefish exert self-control in a delay of gratification task. Proc. Ro. Soc. B: Biol. Sci. 288, 20203161 (2021).

    Google Scholar 

  8. Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour (Cambridge University Press, 2018), second edn.

  9. Nixon, M. & Young, J. Z. The Brains and Lives of Cephalopods (Oxford University Press, 2003).

  10. Shomrat, T., Turchetti-Maia, A. L., Stern-Mentch, N., Basil, J. A. & Hochner, B. The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201, 947–56 (2015).

    Google Scholar 

  11. Young, J. Z. Computation in the learning system of cephalopods. Biol. Bull. 180, 200–208 (1991).

    Google Scholar 

  12. Shomrat, T. et al. Alternative sites of synaptic plasticity in two homologous “fan-out fan-in’’ learning and memory networks. Curr. Biol. 21, 1773–82 (2011).

    Google Scholar 

  13. Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behavioral Neurosci. 100, 147–154 (1986).

    Google Scholar 

  14. Teyler, T. J. & Rudy, J. W. The hippocampal indexing theory and episodic memory: Updating the index. Hippocampus 17, 1158–1169 (2007).

    Google Scholar 

  15. Kolibius, L. D. et al. Hippocampal neurons code individual episodic memories in humans. Nat. Hum. Behaviour 7, 1968–1979 (2023).

    Google Scholar 

  16. Hopfield, J. J. & Tank, D. W. “neural’’ computation of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985).

    Google Scholar 

  17. Krotov, D. & Hopfield, J. J. Dense associative memory for pattern recognition. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I. & Garnett, R. (eds.) Advances in Neural Information Processing Systems, 29 (Curran Associates, Inc., 2016).

  18. Pfeiffer, M. A. et al. Cuttlebot: Emulating cuttlefish behavior and intelligence in a novel robot design. In Brock, O. & Krichmar, J. (eds.) From Animals to Animats 17, 93–105 (Springer Nature Switzerland, 2025).

  19. Birch, J., Schnell, A. K. & Clayton, N. S. Dimensions of animal consciousness. Trends Cognit. Sci. 24, 789–801 (2020).

    Google Scholar 

  20. Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018).

    Google Scholar 

  21. Espino, H., Bain, R. & Krichmar, J. L. A rapid adapting and continual learning spiking neural network path planning algorithm for mobile robots. IEEE Robot. Autom. Lett. 9, 9542–9549 (2024).

    Google Scholar 

  22. Foster, D. J., Morris, R. G. & Dayan, P. A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2000).

    Google Scholar 

  23. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Google Scholar 

  24. Eichenbaum, H. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15, 732–744. (2014).https://doi.org/10.1038/nrn3827https://www.nature.com/453 articles/nrn3827.pdf.

  25. Umbach, G. et al. Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proc. Nat. Acad. Sci. 117, 28463–28474 (2020).

  26. Matell, M. S. & Meck, W. H. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognit. Brain Res. 21, 139–170 (2004).

    Google Scholar 

  27. Aimone, J. B. Computational modeling of adult neurogenesis. Cold Spring Harb. Perspect Biol. 8, a018960 (2016).

    Google Scholar 

  28. Aimone, J. B., Deng, W. & Gage, F. H. Adult neurogenesis: integrating theories and separating functions. Trends Cogn. Sci. 14, 325–37 (2010).

    Google Scholar 

  29. Chung, W.-S., López-Galán, A., Kurniawan, N. D. & Marshall, N. J. The brain structure and the neural network features of the diurnal cuttlefish sepia plangon. iScience 26, 105846 (2023).

  30. Park, J. S. et al. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23 (Association for Computing Machinery, New York, NY, USA, 2023). https://doi.org/10.1145/3586183.3606763.

  31. Rolls, E. T. & Treves, A. A theory of hippocampal function: New developments. Prog. Neurobiol. 238, 102636 (2024).

    Google Scholar 

  32. Sanchez-Aguilera, A. et al. An update to hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLoS Biol. 19, e3001213 (2021).

  33. Treves, A. & Rolls, E. T. Computational constraints suggest the need for two distinct input systems to the hippocampal ca3 network. Hippocampus 2, 189–99 (1992).

    Google Scholar 

  34. Kolibius, L. D., Josselyn, S. A. & Hanslmayr, S. And yet, the hippocampus codes conjunctively. Trends Cognit. Sci. 29, 689–690. https://doi.org/10.1016/j.tics.2025.06.013 (2025).

    Google Scholar 

  35. Kolibius, L. D., Josselyn, S. A. & Hanslmayr, S. On the origin of memory neurons in the human hippocampus. Trends Cognit. Sci. 29, 421–433 (2025).

    Google Scholar 

  36. Quian Quiroga, R. Conjunctive or context-invariant coding in the human hippocampus?. Trends in Cognitive Sciences 29, 687–688. https://doi.org/10.1016/j.tics.2025.05.006 (2025).

    Google Scholar 

  37. George, D. et al. Clone-structured graph representations enable flexible learning and vicarious evaluation of cognitive maps. Nat. Commun. 12, 2392 (2021).

    Google Scholar 

  38. Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340 (2007).

    Google Scholar 

  39. Whittington, J. C. et al. The tolman-eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263 (2020).

    Google Scholar 

  40. Brea, J., Clayton, N. S. & Gerstner, W. Computational models of episodic-like memory in food-caching birds. Nat. Commun. 14, 2979 (2023).

    Google Scholar 

  41. Alonso, N. & Krichmar, J. L. A sparse quantized hopfield network for online-continual memory. Nat. Commun. 15, 3722 (2024).

    Google Scholar 

  42. Molom-Ochir, T., Taylor, B., Li, H. & Chen, Y. R. Advancements in content-addressable memory (cam) circuits: State-of-the-art, applications, and future directions in the ai domain. Ieee Trans. Circuits Syst. I-Regular Papers 72, 3971–3982 (2025).

    Google Scholar 

  43. Hwu, T. & Krichmar, J. Neurorobotics: Connecting the Brain, Body and Environment (MIT Press, Cambridge, MA, 2022).

    Google Scholar 

  44. Krichmar, J. L. & Hwu, T. J. Design principles for neurorobotics. Front. Neurorobot. 16 (2022).

  45. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W.H. Freeman, San Francisco, CA, 1982).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the CuttleBot team for many valuable discussions. The authors would also like to thank Professor Nicola Clayton for valuable comments on an earlier version of the manuscript.

Funding

The CuttleBot team was supported by the UC Irvine California Institute for Telecommunications and Information Technology (CALIT2) in collaboration with the UC Irvine Undergraduate Research Opportunities Program (UROP). J.K. was supported in part by National Institute of Neurological Disorders and Stroke award R01 NS135850-02.

Author information

Authors and Affiliations

Authors

Contributions

S.K., Q.W., and J.K. designed the experiment. Q.W., K.Z. and J.K. implemented the model. All authors analyzed the results. All authors wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to
Jeffrey L. Krichmar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Kandimalla, S., Wong, Q.Y., Zheng, K. et al. Episodic-like memory in a simulation of cuttlefish behavior.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-31950-x


Source: Ecology - nature.com

Pollen morphology of three invasive Impatiens species in Europe under varying habitat conditions—a case study from Poland

Short-chain fatty acids mediate interactions between immune responses and commensal bacteria in high altitude yaks

Back to Top