in

Foraging strategies and geographic factors jointly shape gut microbiota of spiders in the Sichuan and Guizhou regions of China


Abstract

Spiders, a keystone predatory group for terrestrial ecosystem balance, have underexplored gut microbiotas. We collected 1090 spiders from 34 families in southwestern China, performing 16S rRNA sequencing to investigate their gut microbiota. Wandering and ambushing spiders exhibited higher α-diversity, while web-building spiders showed the lowest α-diversity with the highest endosymbiont infection rates. Gut microbiota diversity was significantly higher in Guizhou-region spiders than in Sichuan-region spiders. All spiders showed high amount of endosymbiont ASVs, which varied with foraging strategies and regions. Additionally, closer geographic distances between spiders were associated with more similar gut microbiota diversity levels. Environmental factor analysis preliminary revealed a positive correlation between precipitation and gut microbiota diversity, though its generalizability is limited by geographic sampling. Random processes were the primary drivers of spiders’ gut microbial community assembly. Our findings highlight that spider gut microbiota assembly is predominantly driven by stochastic processes but regulated by foraging strategies and geographic factors, providing a framework for understanding predator-microbe interactions in spiders.

Data availability

The raw sequencing reads from this study have been submitted to the China National GeneBank Database (CNP0007324; CNGBdb, https://db.cngb.org/) and Genome Sequence Archive database (PRJCA051897: CRA034046; GSA, https://ngdc.cncb.ac.cn/gsa/).

Code availability

The analysis code has been submitted to GitHub (https://github.com/WJiao95/16S-spider) and Zenodo85 (DOI: 10.5281/zenodo.17640349).

References

  1. Gao, Y., Wu, P. F., Cui, S. Y., Ali, A. & Zheng, G. Divergence in gut bacterial community between females and males in the wolf spider Pardosa astrigera. Ecol. Evol. 12, https://doi.org/10.1002/ece3.8823 (2022).

  2. Zhang, L. H., Zhang, G. M., Yun, Y. L. & Peng, Y. Bacterial community of a spider, Marpiss magister (Salticidae). 3 Biotech 7, https://doi.org/10.1007/s13205-017-0994-0 (2017).

  3. Zhang, L. H., Yun, Y. L., Hu, G. W. & Peng, Y. Insights into the bacterial symbiont diversity in spiders. Ecol. Evol. 8, 4899–4906 (2018).

    Google Scholar 

  4. Kennedy, S. R., Tsau, S., Gillespie, R. & Krehenwinkel, H. Are you what you eat? A highly transient and prey-influenced gut microbiome in the grey house spider Badumna longinqua. Mol. Ecol. 29, 1001–1015 (2020).

    Google Scholar 

  5. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Google Scholar 

  6. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Google Scholar 

  7. Weng, M. & Walker, W. A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 4, 203–214 (2013).

    Google Scholar 

  8. Brown, E. M., Clardy, J. & Xavier, R. J. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe 31, 173–186 (2023).

    Google Scholar 

  9. Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).

    Google Scholar 

  10. Sun, J. A. et al. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. npj Biofilms Microbiomes 11, https://doi.org/10.1038/s41522-025-00678-x (2025).

  11. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

  12. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222 (2012).

    Google Scholar 

  13. Yao, R. et al. Fly-over phylogeny across invertebrate to vertebrate: the giant panda and insects share a highly similar gut microbiota. Comput Struct. Biotechnol. 19, 4676–4683 (2021).

    Google Scholar 

  14. Chen, L. J., Li, Z. Z., Liu, W. & Lyu, B. Impact of high temperature and drought stress on the microbial community in wolf spiders. Ecotoxicol. Environ. Safe 283, https://doi.org/10.1016/j.ecoenv.2024.116801 (2024).

  15. Rezác, M., Rezácová, V. & Heneberg, P. Differences in the abundance and diversity of endosymbiotic bacteria drive host resistance of a dominant spider of central European orchards, to selected insecticides. J. Environ. Manag. 373, https://doi.org/10.1016/j.jenvman.2024.123486 (2025).

  16. Perez-Lamarque, B., Krehenwinkel, H., Gillespie, R. G. & Morlon, H. Limited evidence for microbial transmission in the phylosymbiosis between Hawaiian spiders and their microbiota. mSystems 7, e0110421 (2022).

    Google Scholar 

  17. Meehan, C. J., Olson, E. J., Reudink, M. W., Kyser, T. K. & Curry, R. L. Herbivory in a spider through exploitation of an ant-plant mutualism. Curr. Biol. 19, R892–R893 (2009).

    Google Scholar 

  18. Szymkowiak, P. & Grabowski, P. Morphological differentiation of ventral tarsal setae and surface sculpturing of theraphosids (araneae: theraphosidae) with different types of lifestyles. Ann. Entomol. Soc. Am. 115, 314–323 (2022).

    Google Scholar 

  19. Ramírez, D. S. et al. Deciphering the diet of a wandering spider (Phoneutria boliviensis; Araneae: Ctenidae) by DNA metabarcoding of gut contents. Ecol. Evol. 11, 5950–5965 (2021).

    Google Scholar 

  20. Uetz, G. W. Foraging strategies of spiders. Trends Ecol. Evol. 7, 155–159 (1992).

    Google Scholar 

  21. Schmitz, A. Respiration in spiders (Araneae). J. Comp. Physiol. B 186, 403–415 (2016).

    Google Scholar 

  22. Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, https://doi.org/10.1038/ncomms14319 (2017).

  23. Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 24, 1526 (2018).

    Google Scholar 

  24. Rocafort, M. et al. HIV-associated gut microbial alterations are dependent on host and geographic context. Nat. Commun. 15, https://doi.org/10.1038/s41467-023-44566-4 (2024).

  25. Weng, H. D. et al. Humid heat environment causes anxiety-like disorder via impairing gut microbiota and bile acid metabolism in mice. Nat. Commun. 15, https://doi.org/10.1038/s41467-024-49972-w (2024).

  26. Duron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A. & Engelstädter, J. High incidence of the maternally inherited bacterium in spiders. Mol. Ecol. 17, 1427–1437 (2008).

    Google Scholar 

  27. White, J. A. et al. Endosymbiotic bacteria are prevalent and diverse in agricultural spiders. Micro. Ecol. 79, 472–481 (2020).

    Google Scholar 

  28. Goodacre, S. L., Martin, O. Y., Thomas, C. F. G. & Hewitt, G. M. Wolbachia and other endosymbiont infections in spiders. Mol. Ecol. 15, 517–527 (2006).

    Google Scholar 

  29. Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).

    Google Scholar 

  30. Rosenwald, L. C., Sitvarin, M. I. & White, J. A. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc. Biol. Sci. 287, https://doi.org/10.1098/rspb.2020.1107 (2020).

  31. Wang, X. Y. et al. Age-, sex- and proximal-distal-resolved multi-omics identifies regulators of intestinal aging in non-human primates. Nat. Aging 4, https://doi.org/10.1038/s43587-024-00572-9 (2024).

  32. Zhang, X. Y. et al. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat. Aging 1, 87 (2021).

    Google Scholar 

  33. Kroon, S. et al. Sublethal systemic LPS in mice enables gut-luminal pathogens to bloom through oxygen species-mediated microbiota inhibition. Nat. Commun. 16, https://doi.org/10.1038/s41467-025-57979-0 (2025).

  34. Minich, J. J. et al. Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-34557-2 (2022).

  35. Schmiedová, L., Tomásek, O., Pinkasová, H., Albrecht, T. & Kreisinger, J. Variation in diet composition and its relation to gut microbiota in a passerine bird. Sci. Rep. 12, https://doi.org/10.1038/s41598-022-07672-9 (2022).

  36. Welch, K., Haynes, K. & Harwood, J. Prey-specific foraging tactics in a web-building spider. Agric. Forest Entomol. 15, https://doi.org/10.1111/afe.12023 (2013).

  37. Pyke, G. H. Optimal foraging theory – a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984).

    Google Scholar 

  38. Nyffeler, M. Prey selection of spiders in the field. J. Arachnol. 27, 317–324 (1999).

    Google Scholar 

  39. Ludy, C. Prey selection of orb-web spiders (Araneidae) on field margins. Agr. Ecosyst. Environ. 119, 368–372 (2007).

    Google Scholar 

  40. Mishra, A., Kumar, B. & Rastogi, N. Predation potential of hunting and web-building spiders on rice pests of Indian subcontinent. Int. J. Trop. Insect Sc. 41, 1027–1036 (2021).

    Google Scholar 

  41. Wright, S. & Goodacre, S. L. Evidence for antimicrobial activity associated with common house spider silk. Bmc Res. Notes 5, 326 (2012).

    Google Scholar 

  42. Tahir, H. M., Qamar, S., Sattar, A., Shaheen, N. & Samiullah, K. Evidence for the antimicrobial potential of silk of cyclosa confraga (Thorell, 1892) (Araneae: Araneidae). Acta Zool. Bulg. 69, 593–595 (2017).

    Google Scholar 

  43. Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).

    Google Scholar 

  44. Ramalho, M. O., Bueno, O. C. & Moreau, C. S. Microbial composition of spiny ants (Hymenoptera:Formicidae:Polyrhachis) across their geographic range. BMC Evol. Biol. 17, https://doi.org/10.1186/s12862-017-0945-8 (2017).

  45. Armstrong, E. E. et al. A holobiont view of island biogeography: Unravelling patterns driving the nascent diversification of a Hawaiian spider and its microbial associates. Mol. Ecol. 31, 1299–1316 (2022).

    Google Scholar 

  46. Tyagi, K., Tyagi, I. & Kumar, V. Interspecific variation and functional traits of the gut microbiome in spiders from the wild: the largest effort so far. Plos ONE 16, e0251790 (2021).

    Google Scholar 

  47. Qiu, Y. P. et al. Climate warming suppresses abundant soil fungal taxa and reduces soil carbon efflux in a semi-arid grassland. Mlife 2, 389–400 (2023).

    Google Scholar 

  48. Jactel, H. et al. Positive biodiversity-productivity relationships in forests: climate matters. Biol. Lett. 14, https://doi.org/10.1098/rsbl.2017.0747 (2018).

  49. Niu, B. & Fu, G. Response of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau – A review. Sci. Total Environ. 912, https://doi.org/10.1016/j.scitotenv.2023.168878 (2024).

  50. Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots.in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Frank E. Zachos & Jan Christian Habel) 3–22 (Springer Berlin Heidelberg, 2011).

  51. Wang, C. Y. et al. Extreme drought shapes the gut microbiota composition and function of common cranes wintering in Poyang Lake. Front. Microbiol. 15, https://doi.org/10.3389/fmicb.2024.1489906 (2024).

  52. Williams, C. E. et al. Sustained drought, but not short-term warming, alters the gut microbiomes of wild anolis lizards. Appl. Environ. Microbiol. 88, e0053022 (2022).

    Google Scholar 

  53. Du, X. Y. et al. Proximity-based defensive mutualism between Streptomyces and Mesorhizobium by sharing and sequestering iron. ISME J. 18, https://doi.org/10.1093/ismejo/wrad041 (2024).

  54. Shah, V. & Subramaniam, S. Bradyrhizobium japonicum USDA110: a representative model organism for studying the impact of pollutants on soil microbiota. Sci. Total Environ. 624, 963–967 (2018).

    Google Scholar 

  55. Riahi, H. S., Heidarieh, P. & Fatahi-Bafghi, M. Genus Pseudonocardia: what we know about its biological properties, abilities and current application in biotechnology. J. Appl. Microbiol. 132, 890–906 (2022).

    Google Scholar 

  56. Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).

    Google Scholar 

  57. Gurung, K., Wertheim, B. & Salles, J. F. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).

    Google Scholar 

  58. Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

    Google Scholar 

  59. Vanthournout, B. & Hendrickx, F. Endosymbiont dominated bacterial communities in a dwarf spider. Plos ONE 10, https://doi.org/10.1371/journal.pone.0117297 (2015).

  60. Jing, X. F. et al. The bacterial communities in plant phloem-sap-feeding insects. Mol. Ecol. 23, 1433–1444 (2014).

    Google Scholar 

  61. Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).

    Google Scholar 

  62. Weiss, B. L. et al. Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. Appl. Environ. Microbiol. 72, 7013–7021 (2006).

    Google Scholar 

  63. Wang, S., Hua, X. G. & Cui, L. Characterization of microbiota diversity of engorged ticks collected from dogs in China. J. Vet. Sci. 22, https://doi.org/10.4142/jvs.2021.22.e37 (2021).

  64. Baumann, P. et al. Genetics, physiology, and evolutionary relationships of the Genus Buchnera – intracellular symbionts of aphids. Annu. Rev. Microbiol. 49, 55–94 (1995).

    Google Scholar 

  65. Li, C. F., He, M., Yun, Y. L. & Peng, Y. Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. J. Invertebr. Pathol. 169, https://doi.org/10.1016/j.jip.2019.107307 (2020).

  66. Zhou, J. Z. & Ning, D. L. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. R. 81, https://doi.org/10.1128/MMBR.00002-17 (2017).

  67. Huang, G. P. et al. Global landscape of gut microbiome diversity and antibiotic resistomes across vertebrates. Sci. Total Environ. 838, https://doi.org/10.1016/j.scitotenv.2022.156178 (2022).

  68. Pan, B. Z. et al. Geographical distance, host evolutionary history and diet drive gut microbiome diversity of fish across the Yellow River. Mol. Ecol. 32, 1183–1196 (2023).

    Google Scholar 

  69. Sheffer, M. M. et al. Tissue- and population-level microbiome analysis of the wasp spider argiope bruennichi identified a novel dominant bacterial symbiont. Microorganisms 8, https://doi.org/10.3390/microorganisms8010008 (2020).

  70. Millar, E. N., Surette, M. G. & Kidd, K. A. Altered microbiomes of aquatic macroinvertebrates and riparian spiders downstream of municipal wastewater effluents. Sci. Total Environ. 809, https://doi.org/10.1016/j.scitotenv.2021.151156 (2022).

  71. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Google Scholar 

  72. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Google Scholar 

  73. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    Google Scholar 

  74. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Google Scholar 

  75. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Google Scholar 

  76. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  77. Liu, C., Cui, Y. M., Li, X. Z. & Yao, M. J. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, https://doi.org/10.1093/femsec/fiaa255 (2021).

  78. Wickham, H. ggplot2: elegant graphics for data analysis. Springer, https://doi.org/10.1007/978-3-319-24277-4. (2016).

  79. Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 00, https://rpkgs.datanovia.com/ggpubr/ (2023).

  80. Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. Jvenn: an interactive Venn diagram viewer. BMC Bioinform. 15, https://doi.org/10.1186/1471-2105-15-293 (2014).

  81. Hijmans, R. J. Geosphere: spherical trigonometry. R Package Version 1, 5–20 (2024).

    Google Scholar 

  82. Taiyun Wei, V. S. R package ‘corrplot’: visualization of a correlation matrix. R Package Version 0.95, (2024).

  83. Ning, D. L. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, https://doi.org/10.1038/s41467-020-18560-z (2020).

  84. Gao, Y., Zhang, G., Jiang, S. & Liu, Y. X. Wekemo Bioincloud: a user-friendly platform for meta-omics data analyses. Imeta 3, e175 (2024).

    Google Scholar 

  85. WJiao95/16S-spider: Spider16S-v1.0 v. v1.0 (Zenodo, 2025).

Download references

Acknowledgements

We especially thank Professor Hao Yu at the College of Life Sciences, Guizhou Normal University for the sample collection in Guizhou. We also express our gratitude to the members of our research group for their hard work in the field of sample collection in Sichuan. They are Mian Wei, Qiuqiu Zhang, Qian Chen, Xuewei Geng, Yiting He, Xuelian Weng, Hanlin Wang, and Yuanhao Du.

Author information

Authors and Affiliations

Authors

Contributions

Jiao Wang and Shuqiao Wang performed the bioinformatics analyses; Jiao Wang wrote the manuscript; Shuqiao Wang, Chuang Zhou, and Qian Chen collected the samples; Zhenxin Fan and Yuchen Lin revised the manuscript, designed, and supervised the study.

Corresponding authors

Correspondence to
Zhenxin Fan or Yucheng lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Marc Domènech, Evgeniia Propistsova, Hirokazu Toju, Jordan Cuff and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Hannes Schuler and Tobias Goris.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1–11

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, S., Chen, Q. et al. Foraging strategies and geographic factors jointly shape gut microbiota of spiders in the Sichuan and Guizhou regions of China.
Commun Biol (2025). https://doi.org/10.1038/s42003-025-09358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42003-025-09358-0


Source: Ecology - nature.com

Pomerania Fish: A dataset for fishes across Pomerania freshwater waterbodies in-situ environments

Characterization of spatial and temporal variations of CO2 concentration on tropical Island and analysis of influencing factors

Back to Top