in

Global species delimitation of smooth-shelled blue mussels in the Mytilus edulis complex


Abstract

The species is often described as the basic unit of biology, yet defining what constitutes a species has been a long-standing challenge. The advent of modern molecular techniques in conjunction with advanced analytical approaches now provide new opportunities for the robust and repeatable delineation of taxa from previously difficult to assess species complexes. Using marine mussels of the genus Mytilus (smooth-shelled blue mussels of the globally distributed Mytilus edulis species complex) we tested regionally differentiated putative taxa from the Northern and Southern hemispheres using a Bayesian species delimitation model that infers species trees. Using a multilocus panel of 54 single nucleotide polymorphic loci (SNPs) we tested four alternative hypotheses against the hypothesis of the currently recognised taxonomy to better understand the evolutionary history and the contemporary species of this complex. Only one model provided a better fit than the contemporary taxonomy model: this best fit model included the three reference Northern hemisphere taxa (M. edulis, M. galloprovincialis, M. trossulus) plus M. chilensis (Chile), M. platensis (Argentina), M. planulatus (Australia) and the newly recognised M. aoteanus (New Zealand). Phylogenetic reconstruction based on our nuclear DNA-based SNP data suggests that M. trossulus is the oldest of the modern smooth-shelled blue mussels, that a first migration event from the north to the south occurred that gave rise to M. platensis and M. chilensis in South America, subsequently that M. edulis and M. galloprovincialis diverged in the Northern hemisphere, and that subsequently again there was a second migration event from the north that gave rise to M. planulatus in Australia and M. aoteanus in New Zealand. Our findings provide very strong support for earlier mitochondrial DNA-based phylogenetic findings for globally distributed blue mussels and also help to clarify uncertainty about the number of north-to-south migration events that gave rise to important Mytilus speciation events in South America and in Australasia.

Similar content being viewed by others

Genetic homogeneity and weak signatures of local adaptation in the marine mussel Mytilus chilensis

Shedding light on variation in reproductive success through studies of population genetic structure in a Southeast Pacific Coast mussel

Boundaries and hybridization in a secondary contact zone between freshwater mussel species (Family:Unionidae)

Data availability

All data analysed during this study are included in this published article. Additionally, the DNA sequences are stored in GenBank (KT713378–82; HQ257471; KJ871039–57; KT713368–74).

References

  1. Sites, J. W. & Marshall, J. C. Delimiting species: A renaissance issue in systematic biology. Trends Ecol. Evol. 18 (9), 462–470 (2003).

    Google Scholar 

  2. Camargo, A. & Sites, J. W. Species delimitation: A decade after the renaissance. In The Species Problem –Ongoing Issues, (ed Pavlinov, I. Y.) Rijeka: InTech, 225–247 (2013).

    Google Scholar 

  3. Yang, Z. & Rannala, B. Unguided species delimitation using DNA sequence data from multiple loci. Mol. Biol. Evol. 31 (12), 3125–3135 (2014).

    Google Scholar 

  4. Gardner, J. P. A., Oyarzún, P. A., Toro, J. E., Wenne, R. & Zbawicka, M. Phylogeography of Southern hemisphere blue mussels of the genus Mytilus: evolution, biosecurity, aquaculture and food labelling. Oceanogr. Mar. Biol. Annu. Rev. 59, 139–232 (2021).

    Google Scholar 

  5. Oyarzún, P. A., Toro, J. E., Nuñez, J. J., Suarez-Villota, E. & Gardner, J. P. A. Blue mussels of the Mytilus Edulis species complex from South america: the application of species delimitation models to DNA sequence variation. PLoS ONE. 16 (9). https://doi.org/10.1371/journal.pone.0256961 (2021). e0256961.

  6. Koehn, R. K., Hall, J. G., Innes, D. J. & Zera, A. J. Genetic differentiation of Mytilus Edulis in Eastern North America. Mar. Biol. 79, 117–126 (1984).

    Google Scholar 

  7. McDonald, J. H., Seed, R. & Koehn, R. K. Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern hemispheres. Mar. Biol. 111, 323–333 (1991).

    Google Scholar 

  8. Gosling, E. M. Systematics and geographic distribution of Mytilus. In The Mussel Mytilus: Ecology, Physiology, Genetics and Culture; (ed Gosling, E. M.) Elsevier: Amsterdam, The Netherlands, 1–20 (1992).

    Google Scholar 

  9. Hilbish, T. J. et al. Origin of the Antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Mar. Biol. 136, 69–77 (2000).

    Google Scholar 

  10. Crooks, J. A. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97, 153–151 (2002).

    Google Scholar 

  11. Borthagaray, A. I. & Carranza, A. Mussels as ecosystem engineers: their contribution to species richness in a Rocky Littoral community. Acta Oecol. 31, 243–250 (2007).

    Google Scholar 

  12. FAO. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome. (2024).

  13. Michalek, K., Ventura, A. & Sanders, T. Mytilus hybridisation and impact on aquaculture: A minireview. Mar. Genomics. 27, 3–7 (2016).

    Google Scholar 

  14. González-Poblete, E., Hurtado, F. C., Rojo, C. & Norambuena, R. Blue mussel aquaculture in chile: small or large scale industry? Aquaculture 493, 113–122 (2018).

    Google Scholar 

  15. Larraín, M. A., Zbawicka, M., Araneda, C., Gardner, J. P. A. & Wenne, R. Native and invasive taxa on the Pacific Coast of South america: impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp). Evol. Appl. 11, 298–311 (2018).

    Google Scholar 

  16. Oyarzún, P. A., Toro, J. E., Cañete, J. I. & Gardner, J. P. A. Bioinvasion threatens the genetic integrity of native diversity and a natural hybrid zone: smooth-shelled blue mussels (Mytilus spp.) in the Strait of Magellan. Biol. J. Linn. Soc. 117, 574–585 (2016).

    Google Scholar 

  17. Zbawicka, M., Trucco, M. I. & Wenne, R. Single nucleotide polymorphisms in native South American Atlantic Coast populations of smooth shelled mussels: hybridization with invasive European Mytilus galloprovincialis. Genet. Sel. Evol. 50, 5 (2018).

    Google Scholar 

  18. Dias, P. J., Fotedar, S. & Snow, M. Characterisation of mussel (Mytilus sp.) populations in Western Australia and evaluation of potential genetic impacts of mussel Spat translocation from interstate. Mar. Freshw. Res. 65, 486–496 (2014).

    Google Scholar 

  19. Ab Rahim, E. S. et al. Species composition and hybridisation of mussel species (Bivalvia: Mytilidae) in Australia. Mar. Freshw. Res. 67, 1955–1963 (2016).

    Google Scholar 

  20. Zbawicka, M., Wenne, R., Dias, P. J. & Gardner, J. P. A. Combined threats to native smooth-shelled mussels (genus Mytilus) in australia: bioinvasions and hybridisation. Zoo J. Linn. Soc. 194, 1194–1211 (2022).

    Google Scholar 

  21. Gardner, J. P. A., Wenne, R., Westfall, K. R. & Zbawicka, M. Invasive mussels threaten regional scale genetic diversity in Mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern ocean. Glob Change Biol. 22, 3182–3195 (2016).

    Google Scholar 

  22. Zbawicka, M., Gardner, J. P. A. & Wenne, R. Cryptic diversity in smooth-shelled mussels on Southern ocean islands: Connectivity, hybridisation and a marine invasion. Front. Zool. 16, 32 (2019).

    Google Scholar 

  23. Fraïsse, C. et al. Fine-grained habitat associated genetic connectivity in an admixed population of mussels in the small isolated kerguelen Islands. Peer Community J. 1, e10 (2021).

    Google Scholar 

  24. Westfall, K. M. & Gardner, J. P. A. Genetic diversity of Southern hemisphere blue mussels of the genus Mytilus (Mytilidae; Bivalvia) and the identification of non-indigenous taxa. Biol. J. Linn. Soc. 101, 898–909 (2010).

    Google Scholar 

  25. Westfall, K. M. & Gardner, J. P. A. Interlineage Mytilus galloprovincialis Lmk. 1819 hybridisation yields inconsistent genetic outcomes in three Southern hemisphere regions. Biol. Invasions. 15, 1493–1506 (2013).

    Google Scholar 

  26. Popovic, I., Matias, A. M. A., Bierne, N. & Riginos, C. Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evol. Appl. 13, 515–532 (2020).

    Google Scholar 

  27. Shaffer, H. & Thomson, R. Delimiting species in recent radiations. Syst. Biol. 6 (56), 896–906 (2007).

    Google Scholar 

  28. Shin, J., Kwon, S., Lee, J., Min, H. & Kim, N. Genetic diversity of maize kernel starch-synthesis genes with snaps. Genome 10 (49), 1287–1296 (2006).

    Google Scholar 

  29. Wenne, R. Single nucleotide polymorphism markers with applications in conservation and exploitation of aquatic natural populations. Animals 13 (6), 1089 (2023).

    Google Scholar 

  30. Gabur, I. et al. Finding invisible quantitative trait loci with missing data. Plant. Biotechnol. J. 12 (16), 2102–2112 (2018).

    Google Scholar 

  31. Meudt, H., Lockhart, P. & Bryant, D. Species delimitation and phylogeny of a new Zealand plant species radiation. BMC Ecol. Evol. 1 (9), 111 (2009).

    Google Scholar 

  32. Wanghe, C. et al. Phylogenetic relationship and taxonomic status of Gymnocypris eckloni (Schizothoracinae) based on specific locus amplified fragments sequencing. Front. Ecol. Evol. 10, 933632 (2022).

    Google Scholar 

  33. Kelly, J. & Thacker, R. New shallow water species of Caribbean Ircinia Nardo, 1833 (Porifera: Irciniidae). Zootaxa 4 (5072), 301–323 (2021).

    Google Scholar 

  34. Campbell, E., Gage, E., Gage, R. & Sperling, F. Single nucleotide polymorphism-based species phylogeny of greater fritillary butterflies (Lepidoptera: nymphalidae: Speyeria) demonstrates widespread mitonuclear discordance. Syst. Entomol. 2 (45), 269–280 (2019).

    Google Scholar 

  35. Martínez-Borrego, D., Arellano, E., González-Cózatl, F. & Rogers, D. Species delimitation and integrative taxonomy of the Reithrodontomys Mexicanus (Rodentia: Cricetidae) cryptic complex. Ecol. Evol. 13(8), e10355 (2023).

  36. Yuan, Z. et al. Historical mitochondrial genome introgression confounds species delimitation: evidence from phylogenetic inference in the Odorrana Grahami species complex. Curr. Zool. 1 (69), 82–90 (2023).

    Google Scholar 

  37. Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27 (9), 480–488 (2012).

    Google Scholar 

  38. Mason, N. A., Fletcher, N. K., Gill, B. A., Funk, W. C. & Zamudio, K. R. Coalescent-based species delimitation is sensitive to geographic sampling and isolation by distance. Syst. Biodiv. 18 (3), 269–280 (2020).

    Google Scholar 

  39. Kornai, D., Jiao, X., Ji, J., Flouri, T. & Yang, Z. Hierarchical heuristic species delimitation under the multispecies coalescent model with migration. Syst. Biol. 73 (6), 1015–1037 (2024).

    Google Scholar 

  40. Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A. & RoyChoudhury, A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29, 1917–1932 (2012).

    Google Scholar 

  41. Leaché, A. D., Fujita, M. K., Minin, V. N. & Bouckaert, R. R. Species delimitation using Genome-Wide SNP data. Syst. Biol. 63 (4), 534–542 (2014).

    Google Scholar 

  42. Leaché, A. D. & Fujita, M. K. Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proc. R Soc. B Biol. Sci. 277, 3071–3077 (2010).

    Google Scholar 

  43. South, A. & rworldxtra Country boundaries at high resolution. R package version 1.01. (2023). https://CRAN.R-project.org/package=rworldxtra

  44. Gabriel, S., Ziaugra, L. & Tabbaa, D. SNP genotyping using the sequenom massarray iPLEX platform. Curr Protoc. Hum. Genet Chapter 2: (2009). Unit 2.12.

  45. Wenne, R., Bach, L., Zbawicka, M., Strand, J. & McDonald, J. H. A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biol. 39 (2), 343–355 (2016).

    Google Scholar 

  46. Zbawicka, M. et al. Genetic differentiation in Mytilus populations across climatic zones in Greenland. J Biogeogr. e70067 (2025).

  47. Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10 (4), e1003537 (2014).

    Google Scholar 

  48. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Google Scholar 

  49. Matschiner, M. Species tree inference with SNP data. In: (eds Pereira-Santana, A., Gamboa-Tuz, S. D. & Rodríguez-Zapata, L. C.) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York (2022).

    Google Scholar 

  50. Riginos, C. & Cunningham, C. W. Local adaptation and species segregation in two mussel (Mytilus Edulis × Mytilus trossulus) hybrid zones. Mol. Ecol. 14, 381–400 (2005).

    Google Scholar 

  51. Rambaut, A. & FigTree (Version 1.4.2) [Software]. Institute of Evolutionary Biology, University of Edinburgh. (2018). Retrieved from http://tree.bio.ed.ac.uk/software/figtree/

  52. Koehn, R. K. The genetics and taxonomy of species in the genus Mytilus. Aquaculture 94 (2–3), 125–145 (1991).

    Google Scholar 

  53. Gardner, J. P. A. Mytilus galloprovincialis (Lmk) (Bivalvia, Mollusca): the taxonomic status of the mediterranean mussel. Ophelia 35 (3), 219–243 (1992).

    Google Scholar 

  54. Seed, R. Systematics, evolution and distribution of mussels belonging to the genus Mytilus: an over-view. Am. Malacol Bull. 9, 123–137 (1992).

    Google Scholar 

  55. Illesca, A., Oyarzún, P. A., Toro, J. E. & Gardner, J. P. A. Morphometric variability of smooth-shelled blue mussels from the Pacific Coast of South America. Biol. J. Linn. Soc. 125, 194–209 (2018).

    Google Scholar 

  56. Powell, A. W. B. New Zealand molluscan systematics with descriptions of new species, part 3. Records Auckl. Inst. Museum. 5, 87–91 (1958).

    Google Scholar 

  57. Fleming, C. A. Notes on new Zealand recent and tertiary mussels (Mytilidae). Trans. R Soc. N Z. 87, 165–178 (1959).

    Google Scholar 

  58. Soot-Ryen, T. A report of the family mytilidae (Pelecypoda). Allan Hancock Pacifc Expedition. 20, 1–75 (1955).

    Google Scholar 

  59. Ravalo, L. G. O. Native and invasive smooth shelled blue mussels Mytilus spp in New Zealand: Evolutionary Biosecurity and Aquaculture Implications. PhD tesis, Victoria University of Wellington, New Zealand Available at – (2024). https://openaccess.wgtn.ac.nz/articles/thesis/Native_and_Invasive_Smooth_Shelled_Blue_Mussels_Mytilus_spp_in_New_Zealand_Evolutionary_Biosecurity_and_Aquaculture_Implications/25989046

  60. Gérard, K., Bierne, N., Borsa, P., Chenuil, A. & Feral, J. P. Pleistocene separation of mitochondrial lineages of Mytilus spp. Mussels from Northern and Southern hemispheres and strong genetic differentiation among Southern populations. Mol. Phylogenet Evol. 49, 84–91 (2008).

    Google Scholar 

  61. Kiel, S. & Nielsen, S. N. Quaternary origin of the inverse latitudinal diversity gradient among Southern Chilean mollusks. Geology 38, 955–958 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank the CIPRES Science Gateway for providing access to its platform, which facilitated several of our analyses.

Funding

This work was funded by the projects FONDECYT 1230212 (JT) and FONDECYT 1251077 (POC).

Author information

Authors and Affiliations

Authors

Contributions

P.A.O.: Conceptualisation, methodology, and writing—review and editing. J.E.T.: Investigation and validation. M.Z.: Investigation and validation. R.W.: Investigation and validation. J.P.A.G.: Conceptualisation, and writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to
Pablo A. Oyarzún.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Oyarzún, P.A., Toro, J.E., Zbawicka, M. et al. Global species delimitation of smooth-shelled blue mussels in the Mytilus edulis complex.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-29759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-29759-9

Keywords

  • Cryptic species
  • Molluscs
  • SNPs
  • Speciation
  • Taxonomy


Source: Ecology - nature.com

Egg mass gelatinous envelopes of yellow goosefish Lophius litulon protect the internal eggs and larvae from salinity stress and desiccation

Physiological responses of pak choi (Brassica Rapa subsp. Chinensis (L.) Hanelt) to cerium and yttrium in two acidic soils with contrasting textures

Back to Top