in

High-frequency observations during Adriatic mucilage event reveal unique phytoplankton traits and diversity response

Abstract

Mucilage aggregation is a striking phenomenon in the northern Adriatic Sea, reappearing massively in surface waters on the Istrian coast in 2024 after 20 years. Formed through polymerization of exuded sugars during microphytoplankton blooms, mucilage events are hard to capture with traditional monitoring. Here, we used real-time in situ sensors, satellite data and daily pulse-shape flow cytometry to analyze phytoplankton dynamics during this event. Mucilage formation was linked to rising temperatures and Po River-induced salinity drops. Microphytoplankton species like Cerataulina pelagica, Cylindrotheca closterium, Thalassionema spp., and Gonyaulax fragilis showed as important taxa in each different phase of the phenomenon. Aggregates consisted mainly of single cells. Mucilage periods featured low diversity and thicker, more complex cells, unlike autumn blooms which showed higher diversity, chain-forming colonies, and more pigments. Our findings highlight the key role of microphytoplankton and single cells in mucilage dynamics and the influence of environmental factors like temperature, wind and freshwater inputs on phytoplankton structure and biomass in coastal ecosystems.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ivančić, I. et al. Survival mechanisms of phytoplankton in conditions of stratification-induced deprivation of orthophosphate: Northern Adriatic case study. Limnol. Oceanogr. 57, 1721–1731 (2012).

    Google Scholar 

  2. Mozetič, P. et al. Recent trends towards oligotrophication of the Northern Adriatic: evidence from chlorophyll a time series. Estuaries Coasts. 33, 362–375 (2010).

    Google Scholar 

  3. Cozzi, S. & Giani, M. River water and nutrient discharges in the Northern Adriatic sea: current importance and long term changes. Cont. Shelf Res. 31, 1881–1893 (2011).

    Google Scholar 

  4. Ivančić, I. et al. Seasonal variations in extracellular enzymatic activity in marine snow-associated microbial communities and their impact on the surrounding water. FEMS Microbiol. Ecol 94, (2018).

  5. Kaltenböck, E. & Herndl, G. J. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. IV. Dissolved nutrients and the autotrophic community associated with marine snow. Mar. Ecol. Prog Ser. 87, 147–147 (1992).

    Google Scholar 

  6. Trudnowska, E. et al. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12, 1–13 (2021).

    Google Scholar 

  7. Syrski Sulle Masse Glutinose: Osservate Nei Mesi Di Giugno E Luglio 1872 Nella Parte Settentrionale dell’Adriatico. (1872).

  8. Umani, S. F., Ghirardelli, E. & Specchi, M. Gli Episodi Di‘ Mare Sporco’ nell’Adriatico Dal 1729 Ai Giorni Nostri (Ufficio stampa e pubbliche relazioni della Regione Friuli-Venezia Giulia, 1989).

  9. ARPAE. (Agenzia regionale per la prevenzione, l’ambiente e l’energia dell’Emilia-Romagna), Qualità ambientale delle acque marine in Emilia-Romagna Rapporto annuale 2014, 152 pp.

  10. ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2002, Centro Stampa della Giunta Regionale, 50 pp. (2003).

  11. ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2003, Centro Stampa della Giunta Regionale, 48 pp. (2004).

  12. ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). 2005 EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2004, Centro Stampa della Giunta Regionale, 60 pp.

  13. ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2006, Centro Stampa della Giunta Regionale,170 pp. (2007).

  14. ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). 2009 EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2007, Centro Stampa della Giunta Regionale, 171 pp.

  15. Castracane, F. Sopra la straordinaria apparenza presentata dal mare Adriatico nella seconda metà del luglio 1872. Atti Accademia Pontificia De’ Nuovi Lincei 3–8 (XXVI, 1873). Roma.

  16. Castracane, F. Straordinario Fenomeno Della vita Del mare osservato nell’adriatico Nella estate Del 1880. Atti Accad. Pontificia De’ Nuovi Lincei. XXXIV, 9–19 (1881). Roma.

    Google Scholar 

  17. Castracane, F. Una raccolta Di diatomee Alla imboccatura Del Porto Canale Di Fano. (Nota). Roma LI, 67–72 (1898).

    Google Scholar 

  18. Cori, D. J. & Steuer, A. Beobachtungen U¨ber Das Plankton Des Triester Golfes in Den Jahren 1899 Und 1900. Zoologischer Anzeiger N. 637. De Toni G.B., 1891. Il Curioso Fenomeno Della Poltiglia in Mare – Il Mare Sporco. 17–18La Venezia, (1901).

  19. Toni, D. Il curioso Fenomeno Della poltiglia in mare – il mare sporco. «La Venezia. «La Venezia» 17–18 (1891).

  20. Forti, A. Alcune osservazioni Sul mare Sporco ed in particolare Sul Fenomeno Avvenuto nel 1905. Nuovo Giornale Botanico Italiano N S XIII, (1906).

  21. Hadjal, M. et al. Those floating materials in the Northern Adriatic sea: observations from satellites. Sci. Total Environ. 984, 179662 (2025).

    Google Scholar 

  22. Le Mucillagini nell’Adriatico e nel Tirreno. ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale https://www.isprambiente.gov.it/it/pubblicazioni/quaderni/ricerca-marina/le-mucillaggini-nelladriatico-e-nel-tirreno

  23. Morenos, L. Le diverse Ipotesi Sul Fenomeno Del mare Sporco Nell. «Notarisia» Di D Levi VIII, (1892).

  24. Morenos, L. Risposta Ad Uno Scritto Critico Del Sig. (1883).

  25. Renier, D. A. La Materia Che Infestò Il Nostro Golfo Nel 1872, Ricomparsa Nel 1891 (Tipografia L. Duse, 1891).

  26. Rinaldi, A. Aggregati mucillaginosi Nei Mari italiani. I casi Dell’adriatico e Del Tirreno nel quadriennio 1988–1991. La Crisi Del mediterraneo in Seguito Alla fioritura Di masse algali. Accad. Internazionale Di Scienze E Tecniche Subacquee. 9, 47–60 (1992).

    Google Scholar 

  27. Schreiber, B. Osservazioni Su Di Un principio Di ‘Mar sporco’ in Una Valle Lagunare Veneta. 123–131 (1928).

  28. Stachowitsch, M. Mass mortality in the Gulf of trieste: the course of community destruction. Mar. Ecol. 5, 243–264 (1984).

    Google Scholar 

  29. Stachowitsch, M., Fanuko, N. & Richter, M. Mucous aggregates in the Adriatic sea: an overview of stages and occurrences. Mar. Ecol. (P S Z. N I). 11, 327–350 (1990).

    Google Scholar 

  30. Zanardini, G. & Zanon, V. Atti dell’Ist. Venez. X serie IV, pag. 1885. Esame di un campione di ‘Mare sporco’ del golfo di Fiume. Memorie della Pontificia Accademia delle Scienze dei Nuovi Lincei 15, 449–473 (1872). (1931).

  31. Zavodnik, D. Benthic communities in the Adriatic sea: reflects of pollution. Thalassia Jugoslavica. 13, 413–422 (1977).

    Google Scholar 

  32. Rinaldi, A., Vollenweider, R. A., Montanari, G., Ferrari, C. R. & Ghetti, A. Mucilages in Italian seas: the Adriatic and Tyrrhenian Seas, 1988–1991. Sci. Total Environ. 165, 165–183 (1995).

    Google Scholar 

  33. Giani, M. et al. The organic matrix of pelagic mucilaginous aggregates in the Tyrrhenian sea (Mediterranean sea). Mar. Chem. 132–133, 83–94 (2012).

    Google Scholar 

  34. Yardımcı, F., Esi, Ç. & Ertürk., A. A Shap-Based Analysis of Remote Sensing Indices for Marine Mucilage Detection and Mapping. (2024).

  35. Savun-hekimoğlu, B. & Gazioğlu, C. Mucilage problem in the Semi-Enclosed seas: recent outbreak in the sea of Marmara. Int. J. Environ. Geoinformatics. 8, 402–413 (2021).

    Google Scholar 

  36. MacKenzie, L., Sims, I., Beuzenberg, V. & Gillespie, P. Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, new Zealand. Harmful Algae. 1, 69–83 (2002).

    Google Scholar 

  37. Taylor, F. J., Taylor, N. J. & Walsby, J. R. A bloom of the planktonic diatom, Cerataulina pelagica, off the Coast of Northeastern New Zealand in 1983, and its contribution to an associated mortality of fish and benthic fauna. Int. Rev. Gesamt Hydrobiol. 70, 773–795 (1985).

    Google Scholar 

  38. Vilibić, I. et al. Extraordinary mucilage event in the Northern Adriatic in 2024—a glimpse into the future climate? Estuar. Coast Shelf Sci. 317, 109222 (2025).

    Google Scholar 

  39. Stachowitsch, M., Fanuko, N. & Richter, M. Mucus aggregates in the Adriatic sea: an overview of stages and occurrences. Mar. Ecol. 11, 327–350 (1990).

    Google Scholar 

  40. Precali, R. et al. Mucilaginous aggregates in the Northern Adriatic in the period 1999–2002: typology and distribution. Sci. Total Environ. 353, 10–23 (2005).

    Google Scholar 

  41. Mecozzi, M., Pietrantonio, E., Di Noto, V. & Pápai, Z. The Humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation. Mar. Chem. 95, 255–269 (2005).

    Google Scholar 

  42. Kovac, N. et al. Chemical composition of macroaggregates in the Northern Adriatic sea. Org. Geochem. 35, 1095–1104 (2004).

    Google Scholar 

  43. Kovač, N., Viers, J., Faganeli, J., Bajt, O. & Pokrovsky, O. S. Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components. Metabolites 13, (2023).

  44. Najdek, M., Debobbis, D., Mioković, D. & Ivančić, I. Fatty acid and phytoplankton compositions of different types of mucilaginous aggregates in the Northern Adriatic. J. Plankton Res. 24, 429–441 (2002).

    Google Scholar 

  45. Totti, C. et al. Phytoplankton size-distribution and community structure in relation to mucilage occurrence in the Northern Adriatic sea. Mucilages Adriatic Tyrrhenian Seas. 353, 204–217 (2005).

    Google Scholar 

  46. Revelante, N. & Gilmartin, M. The phytoplankton composition and population enrichment in gelatinous ‘macroaggregates’ in the Northern Adriatic during the summer of 1989. J. Exp. Mar. Bio Ecol. 146, 217–233 (1991).

    Google Scholar 

  47. Najdek, M., Blažina, M., Djakovac, T. & Kraus, R. The role of the diatom Cylindrotheca closterium in a mucilage event in the Northern Adriatic sea: coupling with high salinity water intrusions. J. Plankton Res. 27, 851–862 (2005).

    Google Scholar 

  48. Pistocchi, R. et al. Relevance of the dinoflagellate Gonyaulax fragilis in mucilage formations of the Adriatic sea. Sci. Total Environ. 353, 307–316 (2005).

    Google Scholar 

  49. Pompei, M. et al. Correlation between the presence of Gonyaulax fragilis (Dinophyceae) and the mucilage phenomena of the Emilia-Romagna Coast (northern Adriatic Sea). Harmful Algae. 2, 301–316 (2003).

    Google Scholar 

  50. Uta Passow. Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar. Ecol. Prog Ser. 236, 1–12 (2002).

    Google Scholar 

  51. Fukao, T., Kimoto, K. & Kotani, Y. Production of transparent exopolymer particles by four diatom species. Fish. Sci. 76, 755–760 (2010).

    Google Scholar 

  52. Degobbis, D., Malej, A. & Umani, S. F. The mucilage phenomenon in the Northern Adriatic Sea. A critical review of the present scientific hypotheses. Ann. Ist Super Sanita. 35, 373–381 (1999).

    Google Scholar 

  53. Russo, A. et al. Meteorological and oceanographic conditions in the Northern Adriatic sea during the period June 1999–July 2002: influence on the mucilage phenomenon. Mucilages Adriatic Tyrrhenian Seas. 353, 24–38 (2005).

    Google Scholar 

  54. Urbani, R., Magaletti, E., Sist, P. & Cicero, A. M. Extracellular carbohydrates released by the marine diatoms Cylindrotheca closterium, Thalassiosira pseudonana and Skeletonema costatum: effect of P-depletion and growth status. Sci. Total Environ. 353, 300–306 (2005).

    Google Scholar 

  55. Dubelaar, G. B., Gerritzen, P. L., Beeker, A. E., Jonker, R. R. & Tangen, K. Design and first results of cytobuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 37, 247–254 (1999).

    Google Scholar 

  56. Dubelaar, G. B. J. & Gerritzen, P. L. CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci. Mar. 64, 255–265 (2000).

    Google Scholar 

  57. Thyssen, M. et al. Interoperable vocabulary for marine microbial flow cytometry. Frontiers Mar. Science 9, (2022).

  58. Fragoso, G. M., Poulton, A. J., Pratt, N. J., Johnsen, G. & Purdie, D. A. Trait-based analysis of subpolar North Atlantic phytoplankton and plastidic ciliate communities using automated flow cytometer. Limnol. Oceanogr. 64, 1763–1778 (2019).

    Google Scholar 

  59. Pomati, F. et al. Individual cell based traits obtained by scanning Flow-Cytometry show selection by biotic and abiotic environmental factors during a phytoplankton spring bloom. PLoS One. 8, e71677 (2013).

    Google Scholar 

  60. Margalef, R., Estrada, M. & Blasco, D. Functional Morphology of Organisms Involved in Red Tides, as Adapted to Decaying Turbulence. (1979).

  61. Glibert, P. M. Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae. 55, 25–30 (2016).

    Google Scholar 

  62. Winkler, L. W. Die bestimmung des Im Wasser gelösten sauerstoffes. Ber Dtsch. Chem. Ges. 21, 2843–2854 (1888).

    Google Scholar 

  63. Sòria-Perpinyà, X. et al. Assessment of Sentinel-2-MSI atmospheric correction processors and in situ spectrometry waters quality algorithms. Remote Sens. (Basel) 14, (2022).

  64. Ivanda, A., Šerić, L., Bugarić, M. & Braović, M. Mapping Chlorophyll-a concentrations in the Kaštela Bay and Brač channel using ridge regression and Sentinel-2 satellite images. Electronics (Basel) 10, (2021).

  65. Ansper, A. & Alikas, K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European union water framework directive reporting purposes. Remote Sens. (Basel) 11, (2019).

  66. Li, J., Carlson, R. R., Knapp, D. E. & Asner, G. P. Shallow coastal water turbidity monitoring using planet Dove satellites. Remote Sens. Ecol. Conserv. 8, 521–535 (2022).

    Google Scholar 

  67. Mansaray, A. S. et al. Comparing planetscope to Landsat-8 and Sentinel-2 for sensing water quality in reservoirs in agricultural watersheds. Remote Sens. (Basel). 13, 1847 (2021).

    Google Scholar 

  68. Wasehun, E. T., Beni, L. H., Di Vittorio, C. A., Zarzar, C. M. & Young, K. R. L. Comparative analysis of Sentinel-2 and planetscope imagery for chlorophyll-a prediction using machine learning models. Ecol. Inf. 85, 102988 (2025).

    Google Scholar 

  69. R Core Team. R: A Language and Environment for Statistical Computing. Preprint at (2023). https://www.r-project.org/

  70. Oksanen, J. et al. vegan: Community Ecology Package. Preprint at (2022). https://cran.r-project.org/package=vegan

  71. Galili, T. Dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics Preprint at. https://doi.org/10.1093/bioinformatics/btv428 (2015).

    Google Scholar 

  72. Kolde, R. & pheatmap Pretty Heatmaps. Preprint at (2019). https://cran.r-project.org/package=pheatmap

  73. Tang, Y., Horikoshi, M. & Li, W. Ggfortify unified interface to visualize statistical result of popular R packages. The R Journal 8 Preprint at httpsjournal.r-project.org (2016).

  74. Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A. & Crise, A. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic sea. Ocean. Sci. 10, 771–797 (2014).

    Google Scholar 

  75. Mihanović, H. et al. Observation, preconditioning and recurrence of exceptionally high salinities in the Adriatic sea. Front. Mar. Sci. 8 (2021).

  76. Ricci, F. et al. Variability of hydrographic and biogeochemical properties in the North-western Adriatic coastal waters in relation to river discharge and climate changes. Chemosphere 361, 142486 (2024).

    Google Scholar 

  77. Vlašiček, I. et al. Cluster analysis of long-term phytoplankton data from the Northern Adriatic reveals environmental influences and disruptions in seasonal patterns. Front Ecol. Evol. 13 (2025).

  78. Marić, D. et al. Phytoplankton response to climatic and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar Coast Shelf Sci 115, (2012).

  79. Godrijan, J., Marić, D., Tomažić, I., Precali, R. & Pfannkuchen, M. Seasonal phytoplankton dynamics in the coastal waters of the north-eastern Adriatic sea. J. Sea Res. 77, 32–44 (2013).

    Google Scholar 

  80. Bernardi Aubry, F. & Acri, F. Phytoplankton seasonality and exchange at the inlets of the lagoon of Venice (July 2001–June 2002). Lagoon Venice Circulation Water Exch. Ecosyst. Functioning. 51, 65–76 (2004).

    Google Scholar 

  81. Cabrini, M., Umani, S. F. & Honsell, G. Mucilaginous aggregates in the Gulf of Trieste (Northern Adriatic Sea): analysis of the phytoplanktonic communities in the period June—August 1989. in Marine Coastal Eutrophication (eds Vollenweider, R. A., Marchetti, R. & Viviani, R.) 557–568 (Elsevier, Amsterdam, (1992).

    Google Scholar 

  82. Socal, G. et al. Hydrological and biogeochemical features of the Northern Adriatic sea in the period 2003–2006. Mar. Ecol. 29, 449–468 (2008).

    Google Scholar 

  83. Kumar, M. et al. Mixotrophic growth of a ubiquitous marine diatom. Sci. Adv. 10, eado2623 (2024).

    Google Scholar 

  84. Hasle, G. R. The marine, planktonic diatom family Thalassionemataceae: morphology, taxonomy and distribution. Diatom Res. 16, 1–82 (2001).

    Google Scholar 

  85. Kraus, R. & Supić, N. Sea dynamics impacts on the macroaggregates: A case study of the 1997 mucilage event in the Northern Adriatic. Prog Oceanogr. 138, 249–267 (2015).

    Google Scholar 

  86. Neri, F., Romagnoli, T., Accoroni, S., Huang, B. & Totti, C. Phytoplankton and environmental drivers at a long-term offshore station in the Northern Adriatic sea (1988–2018). Cont. Shelf Res. 242, 104746 (2022).

    Google Scholar 

  87. Flander-Putrle, V. & Malej, A. The evolution and phytoplankton composition of mucilaginous aggregates in the Northern Adriatic sea. Harmful Algae. 7, 752–761 (2008).

    Google Scholar 

  88. Bernardi Aubry, F., Acri, F., Bastianini, M., Finotto, S. & Pugnetti, A. Differences and similarities in the phytoplankton communities of two coupled transitional and marine ecosystems (the lagoon of Venice and the Gulf of Venice – Northern Adriatic Sea). Front Mar. Sci 9, (2022).

  89. Litchman, E., de Tezanos Pinto, P., Klausmeier, C. A., Thomas, M. K. & Yoshiyama, K. Linking traits to species diversity and community structure in phytoplankton. in Fifty Years after the ‘Homage To Santa Rosalia’: Old and New Paradigms on Biodiversity in Aquatic Ecosystems (eds Naselli-Flores, L. & Rossetti, G.) 15–28 (Springer Netherlands, Dordrecht, (2010).

    Google Scholar 

  90. Hillebrand, H. et al. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 36, 276–293 (2022).

    Google Scholar 

  91. Cai, S. et al. Salinity threshold for phosphorus limitation in an estuary-coast continuum. Front Mar. Sci. 11, (2024).

  92. Sommer, U., Charalampous, E., Genitsaris, S. & Moustaka-Gouni, M. Benefits, costs and taxonomic distribution of marine phytoplankton body size. J. Plankton Res. 39, 494–508 (2017).

    Google Scholar 

  93. Riegman, R., Kuipers, B. R., Noordeloos, A. A. M. & Witte, H. J. Size-differential control of phytoplankton and the structure of plankton communities. Neth. J. Sea Res. 31, 255–265 (1993).

    Google Scholar 

  94. Acevedo-Trejos, E., Brandt, G., Bruggeman, J. & Merico, A. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Sci. Rep. 5, 8918 (2015).

    Google Scholar 

  95. Cantarero, S. et al. Lipid remodeling in phytoplankton exposed to multi-environmental drivers in a mesocosm experiment. Biogeosciences 21, 3927–3958 (2024).

    Google Scholar 

  96. Abida, H. et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant. Physiol. 167, 118–136 (2015).

    Google Scholar 

  97. Napoléon, C., Raimbault, V. & Claquin, P. Influence of nutrient stress on the relationships between PAM measurements and carbon incorporation in four phytoplankton species. PLoS One. 8, e66423 (2013).

    Google Scholar 

  98. Key, T. et al. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ. Microbiol. 12, 95–104 (2010).

    Google Scholar 

  99. Bagby, S. C. & Chisholm, S. W. Response of Prochlorococcus to varying CO2:O2 ratios. ISME J. 9, 2232–2245 (2015).

    Google Scholar 

  100. Basterretxea, G., Font-Muñoz, J. S. & Tuval, I. Phytoplankton orientation in a turbulent ocean: A microscale perspective. Front Mar. Sci 7, (2020).

  101. McFarland, M., Nayak, A. R., Stockley, N., Twardowski, M. & Sullivan, J. Enhanced light absorption by horizontally oriented diatom colonies. Front Mar. Sci 7, (2020).

  102. Luigi Naselli-Flores & Rossella Barone. Invited Review – Fight on Plankton! or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogam Algol. 32, 157–204 (2011).

    Google Scholar 

  103. Finkel, Z. V. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol. Oceanogr. 46, 86–94 (2001).

    Google Scholar 

  104. Pahlow, M., Riebesell, U. & Wolf-Gladrow, D. A. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol. Oceanogr. 42, 1660–1672 (1997).

    Google Scholar 

  105. Fisher, N. L. & Halsey, K. H. Mechanisms that increase the growth efficiency of diatoms in low light. Photosynth Res. 129, 183–197 (2016).

    Google Scholar 

  106. Vanucci, S. Do mucilage events influence pico- and nanoplankton size and structure in the Adriatic sea? Chem. Ecol. 19, 299–320 (2003).

    Google Scholar 

  107. Wikner, J., Vikström, K. & Verma, A. Regulation of marine plankton respiration: A test of models. Front Mar. Sci 10–2023, (2023).

Download references

Acknowledgements

This work was funded by the Croatian Science Foundation (HRZZ) Projects: Life Strategies of Phytoplankton in the Northern Adriatic (UIP-2014-09-6563) and Molecular Life Strategies of Phytoplankton in the Northern Adriatic ADRILife (UIP-2020-02-7868). Lana Grižančić is supported by the HRZZ project DOK-2021-02-5104.The study was also supported by the H2020 program project JERICO-S3 and the Interreg Italy-Croatia projects AdriaClim, Cascade, ALIENA, Marless and BRIGANTINE from the European Union regional development funds. We thank the crew of R/V Vila Velebita and R/V Burin for help during sampling.We are grateful to Denis Škalic and Victor Stinga Perusco for their assistance with data acquisition and sensor maintenance, and to Marija Fornažar for her expert advice on flow cytometry.

Author information

Authors and Affiliations

Authors

Contributions

I.V. designed the research, analysed samples and *in situ* data and discussed results. D.M.P. contributed to the research design, discussion and approved the manuscript. (M.S.T, A.B., T.K., N.K., M.K., L.G., I.P., and A.T.) contributed to the discussion and approved the manuscript. (R.Š., M.Š. and R.K.) contributed with analysis of satellite derived data and approved the manuscript. M.P. led the research team and helped in designing of the study and discussion of results.

Corresponding author

Correspondence to
Daniela Marić Pfannkuchen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Vlašiček, I., Pfannkuchen, D.M., Tanković, M.S. et al. High-frequency observations during Adriatic mucilage event reveal unique phytoplankton traits and diversity response.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-31369-4


Source: Ecology - nature.com

Conventional approaches to indicators and metrics undermine urban climate adaptation

Identification of a deep-branching lineage of algae using environmental plastid genomes

Back to Top