Abstract
Maize production by smallholder farmers in sub-Saharan Africa is constrained by declining soil fertility due to low input use and poor nutrient management. This study evaluated the individual and combined effects of biochar, compost, and chemical fertilizer on maize growth, yield, and soil chemical properties during the 2023 and 2024 cropping seasons in Northern Ghana. A randomized complete block design was used with six treatments: control, biochar alone (B), compost alone (C), chemical fertilizer (CF), biochar + compost (½ B + ½ C), and biochar + compost + chemical fertilizer (½ B + ½ C + ½ CF). Data were analyzed using analysis of variance (ANOVA), and treatment means were separated using the least significant difference (LSD) test at a 5% probability level. The biochar + compost + chemical fertilizer (½ B + ½ C + ½ CF) treatment significantly increased maize grain yield by 105.7% in 2023 and 127.4% in 2024 compared to the control. Soil organic carbon, nitrogen, and phosphorus improved by 115.8%, 685%, and 40.2%, respectively, under this integrated treatment. The SPAD chlorophyll index, cob number, seed weight, and harvest index also increased significantly. Grain yield correlated strongly with soil pH (r = 0.88***), electrical conductivity (r = 0.94***), organic carbon (r = 0.84***), and phosphorus (r = 0.86***). The results demonstrate that integrating biochar, compost, and mineral fertilizer enhances maize productivity and soil fertility, while biochar addition contributes to increased soil carbon storage in semi-arid, low-input systems of West Africa.
Data availability
The datasets generated and/or analysed during the current study are available upon request.
References
FAO. FAOSTAT statistical database. Food and agriculture organization of the united nations. http://www.fao.org/faostat/ (2021)
Shiferaw, B., Prasanna, B. M., Hellin, J. & Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3, 307–327 (2011).
Badu-Apraku, B., Fakorede, M. A. B., Menkir, A., Kamara, A. Y. & Melaku, G. Breeding for drought and nitrogen stress tolerance in maize in sub-Saharan Africa (Springer, 2012).
Agyeman, P. C., Tetteh, F. M. & Abunyewa, A. A. Soil fertility decline and maize production in Ghana: a review. West Afr. J. Appl. Ecol. 28(1), 63–75 (2020).
Vanlauwe, B. et al. Integrated soil fertility management operational definition: agricultural systems approach. Outlook Agric. 39(1), 17–24 (2010).
Saaka, M., Abunyewa, A. A. & Denkyirah, E. K. Soil degradation in the Guinea Savanna: Implications for food security in Ghana. Sustainability 13(5), 2512 (2021).
Ministry of Food and Agriculture (MoFA). Agriculture in Ghana: Facts and figures (2018). statistics, research and information directorate (SRID) Accra. (2019)
Adjei-Nsiah, S. & Bagamsah, T. T. Comparative study of different soil fertility management practices in the Guinea Savanna zone of Ghana. Agric. Sci. 3(6), 768–775 (2012).
Abdulai, H., Alhassan, Y. B. & Mohammed, A. Integrated soil fertility management options for maize production in northern Ghana: lessons for sustainable intensification. J. Soil Sci. Environ. Manag. 14(2), 45–57 (2023).
Chivenge, P., Vanlauwe, B. & Six, J. Integrated soil fertility management: contributions of organic inputs and mineral fertilizers to soil productivity. Nutr. Cycl. Agroecosyst. 119, 1–15 (2021).
Vanlauwe, B. et al. Integrated soil fertility management in sub-Saharan Africa: From concept to practice. Nutr. Cycl. Agroecosyst. 109, 1–18 (2015).
Jeffery, S., Verheijen, F. G. A., Van der Velde, M. & Bastos, A. C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144, 175–187 (2017).
Lehmann, J., & Joseph, S. Biochar for environmental management: science, technology and implementation (2nd ed.) Routledge. (2015)
Glaser, B., Lehmann, J. & Zech, W. Ameliorating the nutrient availability in highly weathered soils through charcoal application. Biol. Fertil. Soils 35(4), 219–230 (2002).
Agegnehu, G., Bass, A. M., Nelson, P. N. & Bird, M. I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in tropical agricultural soils. Sci. Total Environ. 543, 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054 (2016).
Agegnehu, G., Bass, A. M., Nelson, P. N. & Bird, M. I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 543, 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054 (2016).
Laird, D. A. et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3–4), 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012 (2010).
Woolf, D. et al. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56. https://doi.org/10.1038/ncomms1053 (2010).
Liu, X., Ye, Y. & Ding, W. Biochar’s effect on nutrient leaching and soil fertility in maize systems: a meta-analysis. Field Crops Res. 221, 230–242 (2018).
Sohi, S. P., Krull, E., Lopez-Capel, E. & Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 105, 47–82 (2010).
Adekiya, A. O. et al. Biochar and poultry manure effects on soil properties and radish yield. Commun. Soil Sci. Plant Anal. 51(1), 1–16. https://doi.org/10.1080/00103624.2019.1694468 (2020).
Yawson, D. O., Tetteh, F. M. & Frimpong, K. A. Application of organic amendments and fertilizer in the Guinea Savanna: effects on soil fertility and maize yield. Arch. Agron. Soil Sci. 62(11), 1549–1562 (2016).
Yawson, D. O., Tetteh, F. M. & Ofori, C. S. Effects of compost and inorganic fertilizer on maize yield and soil properties in the Guinea Savanna Zone of Ghana. Ghana J. Agric. Sci. 51(1), 45–54 (2016).
Asare-Bediako, E. et al. Effects of organic and inorganic amendments on maize yield in the Guinea Savanna of Ghana. Agron. J. 112(5), 4075–4085 (2020).
Asare-Bediako, E., Kwakye, P. K. & Biney, J. Effect of biochar application on soil chemical properties and maize yield in the semi-deciduous forest zone of Ghana. West Afr. J. Appl. Ecol. 28(1), 28–39 (2020).
Edwards, C. A., Arancon, N. Q. & Sherman, R. Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management (CRC Press, 2011).
Lazcano, C. & Domínguez, J. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. In Vermiculture Technology (eds Edwards, C. A. et al.) 401–424 (CRC Press, 2011).
Mensah, A. K., Frimpong, K. A. & Yeboah, S. Combined application of biochar and inorganic fertilizer improves maize yield in the Guinea Savanna. J. Plant Nutr. Soil Sci. 181(6), 871–878 (2018).
Abukari, I., Tetteh, F. M. & Yakubu, I. Biochar application improves maize yield and soil properties in the Guinea Savanna of Ghana. Agric. Food Secur. 8, 12. https://doi.org/10.1186/s40066-019-0253-6 (2019).
Fianko, A. K. et al. Integrating organics with mineral fertilizers enhances maize yield in the Guinea Savanna. Soil Tillage Res. 230, 105631 (2023).
Onawumi, O. et al. Integrating biochar and fertilizer for maize production in West Africa: evidence from multi-season field trials. Agronomy 14(1), 155 (2024).
McLean, E. O. Soil pH and lime requirement. In Methods of Soil Analysis: Part 2 (ed. Page, A. L.) 199–224 (ASA, 1982).
Rhoades, J. D. Salinity: electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3, Chemical Methods (ed. Sparks, D. L.) 417–435 (ASA, 1996).
Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining organic carbon in soils. Soil Science 37(1), 29–38 (1934).
Bremner, J. M. & Mulvaney, C. S. Nitrogen–total. In Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties (ed. Page, A. L.) 595–624 (ASA, 1982).
Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59(1), 39–46 (1945).
Knudsen, D., Peterson, G. A. & Pratt, P. F. Lithium, sodium, and potassium. In Methods of Soil Analysis: Part 2 (ed. Page, A. L.) 225–246 (ASA, 1982).
Brady, N. C. & Weil, R. R. The nature and properties of soils 15th edn. (Pearson, 2016).
Chen, J. H., Xu, J. M. & He, P. Soil organic carbon and nitrogen dynamics in degraded tropical soils. Soil Biol. Biochem. 42(2), 233–239 (2010).
Sainju, U. M. et al. Phosphorus thresholds for maize productivity in tropical soils. Nutr. Cycl. Agroecosyst. 100, 125–137 (2014).
Ministry of Food and Agriculture (MoFA). Maize production guide for extension and farmers in ghana. MoFA, Accra. (2010)
Ezike, K. N., Oti, N. N. & Okpara, S. C. Comparative effects of organic and inorganic fertilizers on maize performance in Nigeria. J. Agric. Ecol. Res. Int. 7(3), 1–9 (2016).
Rukundo, P. et al. Chlorophyll content and yield components as predictors of maize productivity. Field Crops Res. 265, 108108 (2021).
Zhang, H. et al. Correlation of chlorophyll content and grain yield in maize under different nutrient management practices. Agron. J. 112(3), 1855–1867 (2020).
Lehmann, J. et al. Biochar effects on soil biota – a review. Soil Biol. Biochem. 43(9), 1812–1836 (2011).
Liu, Z. et al. Biochar and nitrogen fertilizer co-application improves maize yield and nitrogen use efficiency. J. Soils Sediments 20, 3027–3039 (2020).
Ye, L. et al. Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies. Soil Use Manag. 36(1), 2–18 (2020).
Chimdi, A., Yli-Halla, M. & Gebrekidan, H. Soil acidity and liming potential of biochar in acid soils of Ethiopia. Afr. J. Agric. Res. 7(47), 6741–6746 (2012).
Nguyen, T. T. N. et al. Effects of biochar on soil carbon and nutrient dynamics: a global meta-analysis. GCB Bioenergy 14, 25–43 (2022).
Amarasinghe, U. A. et al. Biochar and compost interactions improve soil fertility and crop performance in degraded soils: a review. Environ. Adv. 7, 100159. https://doi.org/10.1016/j.envadv.2021.100159 (2022).
Funding
No funding was received for this study. Declarations Competing interests T he authors declare no competing interests.
Author information
Authors and Affiliations
Contributions
All authors reviewed and approved the final manuscript. **ALAA** conceived and designed the study, conducted the investigation, and prepared the original manuscript draft. **ALAA, AH, and AYB** contributed to methodology refinement, supervised data collection and analysis, and participated in manuscript review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Consent for publication
All authors have granted their permission for publication.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Abdul-Aziz, AL., Haruna, A. & Baako, A.Y. Integrating biochar, compost, and chemical fertilizer improves maize yield and soil health in the guinea savannah: evidence from two cropping seasons in Northern Ghana.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31886-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-31886-2
Keywords
- Biochar
- Compost
- Guinea savanna
- Integrated nutrient management
- Maize productivity
- Soil chemical properties
Source: Ecology - nature.com
