in

Morph-specific selection drives phenotypic divergence in color polymorphic tawny owls (Strix aluco) in Northern Europe


Abstract

There is a long tradition in using genetically based color polymorphisms in natural populations to study evolutionary processes. Despite growing evidence for continuous phenotypic variation within discrete morphs, we still know little about how this shapes selective dynamics. Here, using 43 years of plumage color data from a Finnish tawny owl population (Strix aluco), we show that gray and brown morphs exhibit substantial intra-morph variation, which has diverged over time. Plumage in the brown morph became increasingly pigmented, while the gray morph showed an abrupt shift toward lighter coloration. By examining both adult and offspring plumage, we identified morph-specific drivers of these trends: in gray owls, reduced pigmentation appears linked to extreme winters that eroded standing genetic variation, likely constraining their evolutionary response. In contrast, brown morph dynamics were shaped by an interaction between plumage coloration, reproductive success, and breeding timing, along with stronger temperature effects during the pre-fledging period. These findings suggest that intra-morph variation determines each morph’s response to selection pressures, potentially influencing their ability to track shifting phenotypic optima. Our work highlights the relevance of phenotypic variation within genetically discrete morphs for evolutionary processes, including how populations respond to environmental change.

Data availability

We have archived all data necessary to reproduce the results and figures in an online data repository: https://doi.org/10.5281/zenodo.1539270371.

References

  1. Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

    Google Scholar 

  2. Roulin, A. The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol. Rev. 79, 815–848 (2004).

    Google Scholar 

  3. White, T. E. & Kemp, D. J. Colour polymorphism. Curr. Biol. 26, R517–R518 (2016).

    Google Scholar 

  4. Corl, A., Davis, A. R., Kuchta, S. R. & Sinervo, B. Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proc. Natl. Acad. Sci. USA. 107, 4254–4259 (2010).

    Google Scholar 

  5. McKinnon, J. S. & Pierotti, M. E. R. Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).

    Google Scholar 

  6. Svensson, E. I. Back to basics: using colour polymorphisms to study evolutionary processes. Mol. Ecol. 26, 2204–2211 (2017).

    Google Scholar 

  7. Rankin, K. J., McLean, C. A., Kemp, D. J. & Stuart-Fox, D. The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii. BMC Evol. Biol. 16, 179 (2016).

    Google Scholar 

  8. Paterson, J. E. & Blouin-Demers, G. Distinguishing discrete polymorphism from continuous variation in throat colour of tree lizards, Urosaurus ornatus. Biol. J. Linn. Soc. Lond. 121, 72–81 (2017).

    Google Scholar 

  9. Davison, A., Jackson, H. J., Murphy, E. W. & Reader, T. Discrete or indiscrete? Redefining the colour polymorphism of the land snail Cepaea nemoralis. Heredity 123, 162–175 (2019).

    Google Scholar 

  10. Mould, M. C. et al. Beyond morphs: inter-individual colour variation despite strong genetic determinism of colour morphs in a wild bird. J. Evol. Biol. 36, 82–94 (2023).

    Google Scholar 

  11. San-Jose, L. M. & Roulin, A. Genomics of coloration in natural animal populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160337 (2017).

    Google Scholar 

  12. Kunte, K. et al. doublesex is a mimicry supergene. Nature 507, 229–232 (2014).

    Google Scholar 

  13. López-Rull, I., Salaberría, C. & Fargallo, J. A. Plastic plumage colouration in response to experimental humidity supports Gloger’s rule. Sci. Rep. 13, 858 (2023).

    Google Scholar 

  14. Corl, A. et al. The genetic basis of adaptation following plastic changes in coloration in a novel environment. Curr. Biol. 28, 2970–2977.e7 (2018).

    Google Scholar 

  15. Roff, D. A. The evolution of threshold traits in animals. Q. Rev. Biol. 71, 3–35 (1996).

    Google Scholar 

  16. Gilby, A. J., Pryke, S. R. & Griffith, S. C. The historical frequency of head-colour morphs in the Gouldian Finch (Erythrura gouldiae). Emu 109, 222–229 (2009).

    Google Scholar 

  17. Madsen, T., Stille, B., Ujvari, B., Bauwens, D. & Endler, J. A. Negative frequency-dependent selection on polymorphic color morphs in adders. Curr. Biol. 32, 3385–3388.e3 (2022).

    Google Scholar 

  18. Le Rouzic, A., Hansen, T. F., Gosden, T. P. & Svensson, E. I. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am. Nat. 185, E182–E196 (2015).

    Google Scholar 

  19. Dudaniec, R. Y., Yong, C. J., Lancaster, L. T., Svensson, E. I. & Hansson, B. Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans). Mol. Ecol. 27, 2576–2593 (2018).

    Google Scholar 

  20. Wellenreuther, M., Svensson, E. I. & Hansson, B. Sexual selection and genetic colour polymorphisms in animals. Mol. Ecol. 23, 5398–5414 (2014).

    Google Scholar 

  21. Forsman, A., Ahnesjö, J., Caesar, S. & Karlsson, M. A model of ecological and evolutionary consequences of color polymorphism. Ecology 89, 34–40 (2008).

    Google Scholar 

  22. Mundy, N. I. A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc. Biol. Sci. 272, 1633–1640 (2005).

    Google Scholar 

  23. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104 (2006).

    Google Scholar 

  24. Ducrest, A.-L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).

    Google Scholar 

  25. Karell, P., Ahola, K., Karstinen, T., Valkama, J. & Brommer, J. E. Climate change drives microevolution in a wild bird. Nat. Commun. 2, 208 (2011).

    Google Scholar 

  26. Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619 (2020).

    Google Scholar 

  27. Baltazar-Soares, M., Karell, P., Wright, D., Nilsson, J. -Å & Brommer, J. E. Genomic basis of melanin-associated phenotypes suggests colour-specific environmental adaptations in tawny owls. Mol. Ecol. 33, e17247 (2024).

    Google Scholar 

  28. Koskenpato, K., Ahola, K., Karstinen, T. & Karell, P. Is the denser contour feather structure in pale grey than in pheomelanic brown tawny owls Strix aluco an adaptation to cold environments?. J. Avian Biol. 47, 1–6 (2016).

    Google Scholar 

  29. Koskenpato, K., Lehikoinen, A., Lindstedt, C. & Karell, P. Gray plumage color is more cryptic than brown in snowy landscapes in a resident color polymorphic bird. Ecol. Evol. 10, 1751–1761 (2020).

    Google Scholar 

  30. Perrault, C., Morosinotto, C., Brommer, J. E. & Karell, P. Camouflage efficiency in a colour-polymorphic predator is dependent on environmental variation and snow presence in the wild. Ecol. Evol. 13, e10824 (2023).

    Google Scholar 

  31. Passarotto, A., Rodríguez-Caballero, E., Cruz-Miralles, Á & Avilés, J. M. Ecogeographical patterns in owl plumage colouration: climate and vegetation cover predict global colour variation. Glob. Ecol. Biogeogr. 31, 515–530 (2022).

    Google Scholar 

  32. Tian, L. & Benton, M. J. Predicting biotic responses to future climate warming with classic ecogeographic rules. Curr. Biol. 30, R744–R749 (2020).

    Google Scholar 

  33. Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).

    Google Scholar 

  34. Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).

    Google Scholar 

  35. Luquet, E., Léna, J.-P., Miaud, C. & Plénet, S. Phenotypic divergence of the common toad (Bufo bufo) along an altitudinal gradient: evidence for local adaptation. Heredity 114, 69–79 (2015).

    Google Scholar 

  36. Brommer, J. E., Ahola, K. & Karstinen, T. The colour of fitness: plumage coloration and lifetime reproductive success in the tawny owl. Proc. Biol. Sci. 272, 935–940 (2005).

    Google Scholar 

  37. Roulin, A., Ducret, B., Ravussin, P. A. & Altwegg, R. Female colour polymorphism covaries with reproductive strategies in the tawny owl Strix aluco. J. Avian Biol. 34, 393–401 (2003).

    Google Scholar 

  38. Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976).

    Google Scholar 

  39. Karell, P., Ahola, K., Karstinen, T., Zolei, A. & Brommer, J. E. Population dynamics in a cyclic environment: consequences of cyclic food abundance on tawny owl reproduction and survival. J. Anim. Ecol. 78, 1050–1062 (2009).

    Google Scholar 

  40. Briggs, C. W., Wommack, E. A., Sawtelle, S. E., Reynolds, C. & Amar, A. A population bottleneck did not affect polymorphism rates in California Swainson’s hawks. J. Raptor Res. 57, 61–68 (2023).

    Google Scholar 

  41. Voje, K. L. et al. Does lack of evolvability constrain adaptation? If so, on what timescales? In Evolvability: A unifying concept in evolutionary biology? (eds Hansen, T. F., Houle, D., M. Pavličev, M., Pélabon, C.) (MIT Press, 2023).

  42. Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).

    Google Scholar 

  43. Passarotto, A. et al. Cold winters have morph-specific effects on natal dispersal distance in a wild raptor. Behav. Ecol. 33, 419–427 (2022).

    Google Scholar 

  44. Gasparini, J. et al. Strength and cost of an induced immune response are associated with a heritable melanin-based colour trait in female tawny owls. J. Anim. Ecol. 78, 608–616 (2009).

    Google Scholar 

  45. Järvistö et al. Carry-over effects of conditions at the wintering grounds on breeding plumage signals in a migratory bird: roles of phenotypic plasticity and selection. J. Evol. Biol. 29, 1569–1584 (2016).

    Google Scholar 

  46. Piault, R., Gasparini, J., Bize, P., Jenni-Eiermann, S. & Roulin, A. Pheomelanin-based coloration and the ability to cope with variation in food supply and parasitism. Am. Nat. 174, 548–556 (2009).

    Google Scholar 

  47. Emaresi, G. et al. Melanin-specific life-history strategies. Am. Nat. 183, 269–280 (2014).

    Google Scholar 

  48. Lürig, M. D. & Matthews, B. Dietary-based developmental plasticity affects juvenile survival in an aquatic detritivore. Proc. Biol. Sci. 288, 20203136 (2021).

    Google Scholar 

  49. Stevens, M. Color change, phenotypic plasticity, and camouflage. Front. Ecol. Evol. 4, 51 (2016).

    Google Scholar 

  50. Tollrian, R. & Heibl, C. Phenotypic plasticity in pigmentation in Daphnia induced by UV radiation and fish kairomones. Funct. Ecol. 18, 497–502 (2004).

    Google Scholar 

  51. Roulin, A. & Ducrest, A.-L. Genetics of colouration in birds. Semin. Cell Dev. Biol. 24, 594–608 (2013).

    Google Scholar 

  52. Kemp, D. & Jones, R. Phenotypic plasticity in field populations of the tropical butterfly Hypolimnas bolina (L.) (Nymphalidae). Biol. J. Linn. Soc. Lond. 72, 33–45 (2001).

    Google Scholar 

  53. Perry, B. W., Schield, D. R. & Castoe, T. A. Evolution: plasticity versus selection, or plasticity and selection?. Curr. Biol. 28, R1104–R1106 (2018).

    Google Scholar 

  54. Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234 (2006).

    Google Scholar 

  55. Takahashi, Y., Kagawa, K., Svensson, E. I. & Kawata, M. Evolution increased phenotypic diversity enhances population performance reducing sexual harassment damselflies. Nat. Commun. 5, 4468 (2014).

    Google Scholar 

  56. Gray, S. M. & McKinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007).

    Google Scholar 

  57. Jamie, G. A. & Meier, J. I. The persistence of polymorphisms across species radiations. Trends Ecol. Evol. 35, 795–808 (2020).

    Google Scholar 

  58. Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. Biol. Sci. 286, 20190943 (2019).

    Google Scholar 

  59. Roulin, A. Melanin-based colour polymorphism responding to climate change. Glob. Chang. Biol. 20, 3344–3350 (2014).

    Google Scholar 

  60. Koskenpato, K., Lehikoinen, A., Morosinotto, C., Gunko, R. & Karell, P. Regional variation in climate change alters the range-wide distribution of colour polymorphism in a wild bird. Ecol. Evol. 13, e10311 (2023).

    Google Scholar 

  61. Hegyi, G., Laczi, M., Kötél, D. & Csörgő, T. Melanin-based ornament darkness positively correlates with across-season nutritional condition. Ecol. Evol. 10, e10311 (2020).

    Google Scholar 

  62. R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  63. Wood, S. N. Generalized Additive Models: An Introduction with R, 2nd edn (CRC Press, 2017).

  64. Covarrubias-Pazaran, G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11, e0156744 (2016).

    Google Scholar 

  65. Kruuk, L. E. B. & Hadfield, J. D. How to separate genetic and environmental causes of similarity between relatives. J. Evo. Biol. 20, 1890–1903 (2007).

    Google Scholar 

  66. Passarotto, A. et al. Dear territory or dear partner? Causes and consequences of breeding dispersal in a highly territorial bird of prey with a strong pair bond. Behav. Ecol. Sociobiol. 77, 108 (2023).

    Google Scholar 

  67. Saladin, V., Ritschard, M., Roulin, A., Bize, P. & Richner, H. Analysis of genetic parentage in the tawny owl (Strix aluco) reveals extra-pair paternity is low. J. Ornithol. 148, 113–116 (2007).

    Google Scholar 

  68. Class, B., Dingemanse, N. J., Araya-Ajoy, Y. G. & Brommer, J. E. A statistical methodology for estimating assortative mating for phenotypic traits that are labile or measured with error. Methods Ecol. Evol. 8, 1910–1919 (2017).

    Google Scholar 

  69. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (R Core Team, 2017).

  70. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Google Scholar 

  71. Passarotto, A., Lürig, M. D., Aaltonen, E. & Karell, P. Data supporting the paper “Morph-specific selection pressures drive phenotypic divergence in a color polymorphic bird”. Zenodo. Dataset and codes https://doi.org/10.5281/zenodo.15392703 (2025).

Download references

Acknowledgements

This paper is dedicated to the memory of Kari Ahola, who passed away during the writing of the manuscript. Without him, this and many other projects would not have been possible. We greatly thank Teuvo Karstinen and the other members of KBP for the many hours spent conducting fieldwork and data sharing. We also thank Glaucia Del-Rio, Arthur Porto, and Edward Iwimey-Cook for commenting on a draft of the manuscript and advice on animal models. The work was supported by the Swedish Cultural Foundation (grant numbers 168034 and 188919 to P.K.). A.P. was supported by a Margarita Salas fellowship from the University of Seville (MSALAS-2022-22312). M.D.L. was supported by a Marie Sklodowska Curie Individual fellowship awarded by the European Commission (PhenoDim; Grant No. 898932). This is paper number 25 from Kimpari Bird Projects (KBP).

Funding

Open access funding provided by Lund University.

Author information

Authors and Affiliations

Authors

Contributions

A.P., M.D.L., and P.K. conceived the study. E.A. and P.K. collected the data in the field. A.P. and M.D.L. analyzed the data. A.P. and M.D.L. wrote the first draft with inputs from P.K. All authors (A.P., M.D.L., E.A., and P.K.) revised and commented on the manuscript and approved the final version.

Corresponding author

Correspondence to
Arianna Passarotto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Katja Räsänen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Michele Repetto and George Inglis. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Passarotto, A., Lürig, M.D., Aaltonen, E. et al. Morph-specific selection drives phenotypic divergence in color polymorphic tawny owls (Strix aluco) in Northern Europe.
Commun Biol (2025). https://doi.org/10.1038/s42003-025-09365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42003-025-09365-1


Source: Ecology - nature.com

Optimizing crop clustering to minimize pathogen invasion in agriculture

Pollen morphology of three invasive Impatiens species in Europe under varying habitat conditions—a case study from Poland

Back to Top