in

Ocean acidification modulates material flux linked with coral calcification and photosynthesis


Abstract

Coral reefs are essential for the foundation of marine ecosystems. However, ocean acidification (OA), driven by rising atmospheric carbon dioxide (CO2) threatens coral growth and biological homeostasis. This study examines two Hawaiian coral species—Montipora capitata and Pocillopora acuta to elevated pCO2 simulating OA. Utilizing pH and O2 microsensors under controlled light and dark conditions, this work characterized interspecific concentration boundary layer (CBL) traits and quantified material fluxes under ambient and elevated pCO2. The results of this study revealed that under increased pCO2, P. acuta showed a significant reduction in dark proton efflux, followed by an increase in light O2 flux, suggesting reduced calcification and enhanced photosynthesis. In contrast, M. capitata did not show any robust evidence of changes in either flux parameters under similar increased pCO2 conditions. Statistical analyses using linear models revealed several significant interactions among species, treatment, and light conditions, identifying physical, chemical, and biological drivers of species responses to increased pCO2. This study also presents several conceptual models that correlate the CBL dynamics measured here with calcification and metabolic processes, thereby justifying our findings. We indicate that elevated pCO2 exacerbates microchemical gradients in the CBL and may threaten calcification in vulnerable species such as P. acuta, while highlighting the resistance of M. capitata. Therefore, this study advances our understanding of how interspecific microenvironmental processes could influence coral responses to changing ocean chemistry.

Similar content being viewed by others

Effects of water flow and ocean acidification on oxygen and pH gradients in coral boundary layer

Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient

Data availability

All raw data and source code used in the analysis are publicly available and found here at https://github.com/CROH-Lab/Proton_and_oxygen_flux_concentration_boundary_layer.git.

References

  1. Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).

    Google Scholar 

  2. Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999).

    Google Scholar 

  3. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

    Google Scholar 

  4. Changing & Ocean Marine Ecosystems, and Dependent Communities. in The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change (ed. Intergovernmental Panel on Climate Change (IPCC)) 447–588Cambridge University Press, Cambridge, (2022). https://doi.org/10.1017/9781009157964.007

  5. Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

    Google Scholar 

  6. Gattuso, J. P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at Cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).

    Google Scholar 

  7. Comeau, S., Carpenter, R. C., Lantz, C. A. & Edmunds, P. J. Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12, 365–372 (2015).

    Google Scholar 

  8. DeCarlo, T. M. et al. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification. J. Geophys. Res. Oceans. 122, 745–761 (2017).

    Google Scholar 

  9. Jokiel, P. L., Jury, C. P. & Rodgers, K. S. Coral-algae metabolism and diurnal changes in the CO2-carbonate system of bulk sea water. PeerJ 2, e378 (2014).

    Google Scholar 

  10. Andersson, A. J. & Gledhill, D. Ocean acidification and coral reefs: effects on Breakdown, Dissolution, and net ecosystem calcification. Annu. Rev. Mar. Sci. 5, 321–348 (2013).

    Google Scholar 

  11. Jokiel, P. L. et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs. 27, 473–483 (2008).

    Google Scholar 

  12. Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs. 35, 729–738 (2016).

    Google Scholar 

  13. Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Seasonal and annual calcification rates of the Hawaiian reef coral, Montipora capitata, under present and future climate change scenarios. ICES J. Mar. Sci. 74, 1083–1091 (2017).

    Google Scholar 

  14. Bove, C. B. et al. Common Caribbean corals exhibit highly variable responses to future acidification and warming. Proc. R. Soc. B Biol. Sci. 286, 20182840 (2019).

    Google Scholar 

  15. Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Change. 9, 477–483 (2019).

    Google Scholar 

  16. Comeau, S., Edmunds, P. J., Spindel, N. B. & Carpenter, R. C. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol. Oceanogr. 58, 388–398 (2013).

    Google Scholar 

  17. Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses. Mar. Biol. Res. 14, 924–935 (2018).

    Google Scholar 

  18. Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 9, 12829 (2019).

    Google Scholar 

  19. Chan, N. C. S., Wangpraseurt, D., Kühl, M. & Connolly, S. R. Flow and coral morphology control coral surface pH: implications for the effects of ocean acidification. Front Mar. Sci 3, 10 (2016).

  20. Chan, N. C. S. & Connolly, S. R. Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Change Biol. 19, 282–290 (2013).

    Google Scholar 

  21. Reynaud, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol. 9, 1660–1668 (2003).

    Google Scholar 

  22. Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys. Res. Oceans 110, C09S07 (2005).

  23. Jokiel, P. L., Jury, C. P. & Kuffner, I. B. Coral calcification and ocean acidification. In Coral Reefs at the Crossroads Vol. 6 (eds Hubbard, D. K. et al.) 7–45 (Springer Netherlands, 2016).

    Google Scholar 

  24. Kaandorp, J. A., Filatov, M. & Chindapol, N. Simulating and quantifying the environmental influence on coral colony growth and form. In Coral Reefs: an Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 177–185 (Springer Netherlands, 2011). https://doi.org/10.1007/978-94-007-0114-4_11.

    Google Scholar 

  25. Martins, C. P. P., Ziegler, M., Schubert, P., Wilke, T. & Wall, M. Effects of water flow and ocean acidification on oxygen and pH gradients in coral boundary layer. Sci. Rep. 14, 12757 (2024).

    Google Scholar 

  26. Jokiel, P. L. Ocean acidification and control of reef coral calcification by boundary layer limitation of proton flux. Bull. Mar. Sci. 87, 639–657 (2011).

    Google Scholar 

  27. Shashar, N., Kinane, S., Jokiel, P. L. & Patterson, M. R. Hydromechanical boundary layers over a coral reef. J. Exp. Mar. Biol. Ecol. 199, 17–28 (1996).

    Google Scholar 

  28. Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga arthrocardia corymbosa. PLOS ONE. 9, e97235 (2014).

    Google Scholar 

  29. Crovetto, L., Venn, A. A., Sevilgen, D., Tambutté, S. & Tambutté, E. Spatial variability of and effect of light on the cœlenteron pH of a reef coral. Commun. Biol. 7, 1–10 (2024).

    Google Scholar 

  30. Jimenez, I. M., Kühl, M., Larkum, A. W. D. & Ralph, P. J. Effects of flow and colony morphology on the thermal boundary layer of corals. J. R Soc. Interface. 8, 1785–1795 (2011).

    Google Scholar 

  31. Martins, C. P. P., Wall, M., Schubert, P., Wilke, T. & Ziegler, M. Variability of the surface boundary layer of reef-building coral species. Coral Reefs. https://doi.org/10.1007/s00338-024-02531-7 (2024).

    Google Scholar 

  32. Pacherres, C. O., Ahmerkamp, S., Koren, K., Richter, C. & Holtappels, M. Ciliary flows in corals ventilate target areas of high photosynthetic oxygen production. Curr. Biol. 32, 4150–4158e3 (2022).

    Google Scholar 

  33. Pacherres, C. O., Ahmerkamp, S., Schmidt-Grieb, G. M., Holtappels, M. & Richter, C. Ciliary vortex flows and oxygen dynamics in the coral boundary layer. Sci. Rep. 10, 7541 (2020).

    Google Scholar 

  34. Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525 (2021).

    Google Scholar 

  35. Saper, J., Høj, L., Humphrey, C. & Bourne, D. G. Quantifying capture and ingestion of live feeds across three coral species. Coral Reefs. 42, 931–943 (2023).

    Google Scholar 

  36. Han, T. et al. Comparative transcriptome analysis reveals deep molecular landscapes in stony coral Montipora clade. Front. Genet. 14, 1297483 (2023).

    Google Scholar 

  37. Bhattacharya, D., Stephens, T. G., Tinoco, A. I., Richmond, R. H. & Cleves, P. A. Life on the edge: Hawaiian model for coral evolution. Limnol. Oceanogr. 67, 1976–1985 (2022).

    Google Scholar 

  38. Schoepf, V. et al. Impacts of coral bleaching on pH and oxygen gradients across the coral concentration boundary layer: a microsensor study. Coral Reefs. 37, 1169–1180 (2018).

    Google Scholar 

  39. Gattuso, J. Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet. Change. 18, 37–46 (1998).

    Google Scholar 

  40. Langdon, C. et al. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem. Cycles. 14, 639–654 (2000).

    Google Scholar 

  41. Jokiel, P. L. The reef coral two compartment proton flux model: A new approach relating tissue-level physiological processes to gross corallum morphology. J. Exp. Mar. Biol. Ecol. 409, 1–12 (2011).

    Google Scholar 

  42. Radice, V. Z., Martinez, A., Paytan, A., Potts, D. C. & Barshis, D. J. Complex dynamics of coral gene expression responses to low pH across species. Mol. Ecol. 33, e17186 (2024).

    Google Scholar 

  43. Yuan, X. et al. Gene expression profiles of two coral species with varied resistance to ocean acidification. Mar. Biotechnol. 21, 151–160 (2019).

    Google Scholar 

  44. Jury, C. P., Whitehead, R. F. & Szmant, A. M. Effects of variations in carbonate chemistry on the calcification rates of Madracis Auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Glob Change Biol. 16, 1632–1644 (2010).

    Google Scholar 

  45. Bach, L. T. Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Preprint at. https://doi.org/10.5194/bgd-12-6689-2015 (2015).

    Google Scholar 

  46. Hohn, S. & Merico, A. Quantifying the relative importance of transcellular and paracellular ion transports to coral polyp calcification. Front. Earth Sci. 2, 37 (2015).

  47. Venn, A. A., Tambutté, E., Comeau, S. & Tambutté, S. Proton gradients across the coral calcifying cell layer: effects of light, ocean acidification and carbonate chemistry. Front Mar. Sci 9, 973908 (2022).

  48. Venn, A. A., Tambutté, E., Comeau, S. & Tambutté, S. Proton gradients across the coral calcifying cell layer: effects of light, ocean acidification and carbonate chemistry. Front. Mar. Sci. 9, 973908 (2022).

    Google Scholar 

  49. Venn, A. A. et al. Impact of seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals. Proc. Natl. Acad. Sci. 110, 1634–1639 (2013).

    Google Scholar 

  50. Reymond, C. E. & Hohn, S. An experimental approach to assessing the roles of Magnesium, Calcium, and carbonate ratios in marine carbonates. Oceans 2, 193–214 (2021).

    Google Scholar 

  51. Comeau, S., Carpenter, R. C. & Edmunds, P. J. Effects of pCO2 on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES J. Mar. Sci. 74, 1092–1102 (2017).

    Google Scholar 

  52. Kaniewska, P. et al. Major cellular and physiological impacts of ocean acidification on a reef Building coral. PLoS ONE. 7, e34659 (2012).

    Google Scholar 

  53. Strahl, J. et al. Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep. Comp. Biochem. Physiol. Mol. Integr. Physiol. 184, 179–186 (2015).

    Google Scholar 

  54. Comeau, S., Edmunds, P. J., Lantz, C. A. & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Sci. Rep. 4, 6681 (2014).

    Google Scholar 

  55. Comeau, S., Cornwall, C. E. & McCulloch, M. T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification. Sci. Rep. 7, 7573 (2017).

    Google Scholar 

  56. Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. R. Soc. B Biol. Sci. 285, 20181168 (2018).

    Google Scholar 

  57. Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E. & McCulloch, M. T. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Glob Change Biol. 24, 4857–4868 (2018).

    Google Scholar 

  58. Allemand, D. et al. Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C.R. Palevol. 3, 453–467 (2004).

    Google Scholar 

  59. McConnaughey, T. A. & Whelan, J. F. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Sci. Rev. 42, 95–117 (1997).

    Google Scholar 

  60. Bertucci, A. et al. Carbonic anhydrases in anthozoan corals—A review. Bioorg. Med. Chem. 21, 1437–1450 (2013).

    Google Scholar 

  61. Allemand, D., Tambutté, É., Zoccola, D. & Tambutté, S. Coral Calcification, cells to reefs. In Coral Reefs: an Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 119–150 (Springer Netherlands, 2011). https://doi.org/10.1007/978-94-007-0114-4_9.

    Google Scholar 

  62. Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).

    Google Scholar 

  63. Allemand, D., Furla, P. & Bénazet-Tambutté, S. Mechanisms of carbon acquisition for endosymbiont photosynthesis in anthozoa. Can. J. Bot. 76, 925–941 (1998).

    Google Scholar 

  64. Cameron, L. P. et al. Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH. J. Mar. Sci. Eng. 10, 1106 (2022).

    Google Scholar 

  65. Barott, K. L, Venn, A. A, Perez, S. O., TambuttéS S. & Tresguerres M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. 112, 607–612 (2015).

    Google Scholar 

  66. Rivest, E. B., Comeau, S. & Cornwall, C. E. The role of natural variability in shaping the response of coral reef organisms to climate change. Curr. Clim. Change Rep. 3, 271–281 (2017).

    Google Scholar 

  67. Shaw, E. C., McNeil, B. I., Tilbrook, B., Matear, R. & Bates, M. L. Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions. Glob Change Biol. 19, 1632–1641 (2013).

    Google Scholar 

  68. Enochs, I. C. et al. The influence of diel carbonate chemistry fluctuations on the calcification rate of Acropora cervicornis under present day and future acidification conditions. J. Exp. Mar. Biol. Ecol. 506, 135–143 (2018).

    Google Scholar 

  69. Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs. 8, 155–162 (1990).

    Google Scholar 

  70. Shamberger, K. E. F. et al. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys. Res. Lett. 41, 499–504 (2014).

    Google Scholar 

  71. Comeau, S., Edmunds, P. J., Spindel, N. B. & Carpenter, R. C. Diel pCO2 oscillations modulate the response of the coral acropora hyacinthus to ocean acidification. Mar. Ecol. Prog Ser. 501, 99–111 (2014).

    Google Scholar 

  72. Kealoha, A. K. et al. Heterotrophy of oceanic particulate organic matter elevates net ecosystem calcification. Geophys. Res. Lett. 46, 9851–9860 (2019).

    Google Scholar 

  73. Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950 (2015).

    Google Scholar 

  74. Schmidt-Roach, S., Miller, K. J., Lundgren, P. & Andreakis, N. With eyes wide open: a revision of species within and closely related to the ocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool. J. Linn. Soc. 170, 1–33 (2014).

    Google Scholar 

  75. Yost, D. M. et al. Diversity in skeletal architecture influences biological heterogeneity and Symbiodinium habitat in corals. Zoology 116, 262–269 (2013).

    Google Scholar 

  76. Cohen, A. L., McCorkle, D. C., de Putron, S., Gaetani, G. A. & Rose, K. A. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem Geophys. Geosystems 10, Q07005 (2009).

  77. Shapiro, O. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl. Acad. Sci. 111, (2014).

  78. Shashar, N., Cohen, Y. & Loya, Y. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185, 455–461 (1993).

    Google Scholar 

  79. Kühl, M., Cohen, Y., Dalsgaard, T., Jørgensen, B. B. & Revsbech, N. P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O₂, pH and light. Mar. Ecol. Prog Ser. 117, 159–172 (1995).

    Google Scholar 

  80. Jokiel, P. Coral growth: buoyant weight technique. Coral Reefs: Research Methods 529–541 (1978).

  81. Jokiel, P. L., Bahr, K. D. & Rodgers, K. S. Low-cost, high-flow mesocosm system for simulating ocean acidification with CO2 gas. Limnol. Oceanogr. Methods. 12, 313–322 (2014).

    Google Scholar 

  82. Guide to Best Practices for Ocean CO2 Measurements (North Pacific Marine Science Organization, 2007).

  83. Hurd, C. L. & Pilditch, C. A. Flow-Induced morphological variations affect diffusion Boundary-Layer thickness of macrocystis pyrifera (heterokontophyta, Laminariales)1. J. Phycol. 47, 341–351 (2011).

    Google Scholar 

  84. R Core Team. The R Project for Statistical Computing. https://www.r-project.org/

Download references

Acknowledgements

All corals in this study were collected under special activities permit (SAP) 2022-2023. This work was conducted at the Coral Reef Ecology Lab under Dr. Ku‘ulei Rodgers, located at the Hawaiʻi Institute of Marine Biology, a place that has long been home to pioneering research in coral reef ecology. We stand on the shoulders of the many scientists whose foundational work in this lab has shaped our understanding of coral reefs, and we are especially grateful for the mentorship, resources, and knowledge that continue to be shared so generously by this community. Also, those associated with this work respect and recognize the connection shared between the Hawaiian culture with coral reefs surrounding the islands, and hope that findings here contribute to the preservation of these ecosystems in malama ʻāina for those who depend on them. We would also like to thank Tim Woolston and Raj Shingadia, at My Reef Creations® for custom design and development of the flume aquaria that made this study possible.

Funding

This work was funded by the National Science Foundation award #OCE-2049406.

Author information

Authors and Affiliations

Authors

Contributions

Author David A. Armstrong conducted experiments, data analysis, writing, interpretation, and figure design. Author Conall McNicholl assisted in the experimental design, data collection, intellectual guidance, and manuscript editing. Author Keisha D. Bahr assisted in experimental design, funding acquisition, and manuscript editing.

Corresponding authors

Correspondence to
David A. Armstrong or Keisha D. Bahr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Armstrong, D.A., McNicholl, C. & Bahr, K.D. Ocean acidification modulates material flux linked with coral calcification and photosynthesis.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-30818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-30818-4

Keywords

  • pCO2
  • Aragonite saturation state (Ω)

  • Montipora capitata

  • Pocillopora acuta
  • Carbonate chemistry
  • Concentration boundary layer
  • Microsensors


Source: Ecology - nature.com

Unlocking global rainwater harvesting potential for safe drinking water access

Mechanisms of light harvesting complex proteins in photoprotection of the brown tide alga

Back to Top