in

Pollen morphology of three invasive Impatiens species in Europe under varying habitat conditions—a case study from Poland


Abstract

The effect of the habitat conditions on the pollen features of invasive species has not been studied so far, and may affect the quality of their generative reproduction and contribute to the development of more effective methods of their control. Three species invasive in Europe and Poland were selected for the study – Impatiens parviflora DC., Impatiens glandulifera Royle and Impatiens capensis Meerb. The morphology and intraspecific variability of pollen grains in three Impatiens species growing under different habitat conditions were examined. Specimens were sampled from 198 sites throughout Poland, covering 10 ecologically distinct habitat types. In total, 5940 pollen grains were analysed in respect to the length of the polar axis (P), equatorial diameter (E), exine thickness (Exp), P/E, Exp/P ratios, and exine ornamentation and ectocolpi arrangement. Our research showed that the three studied species can be distinguished based on their palynomorphology. The most important traits were: exine ornamentation and ectocolpi arrangement, pollen size (P, E) and exine thickness (Exp). A relationship between the habitat conditions prevailing in the analysed habitats and the pollen grain characteristics was found, especially in I. glandulifera. In this species pollen size (P, E) increases in the optimal habitat conditions such as edges of reservoirs and watercourses, and decreases in the suboptimal habitat conditions such as anthropogenic habitats. A similar pattern is observed in I. parviflora, where optimal habitats such as mesic mixed coniferous forest favour larger pollen grains, whereas suboptimal habitats like swamp forest are associated with reduced pollen size. In I. capensis, optimal conditions also correspond to edges of watercourses, while suboptimal conditions include swamp forest. Additionally, exine thickness (Exp) may represent an adaptive trait, reflecting plant response to growth and development in unfavorable environments.

Data availability

Data concerning pollen grain measurements will be made available by the corresponding author, whereas the remaining data are included in the manuscript and the supplementary materials.

References

  1. Janssens, S. B., Knox, E. B., Dessein, S. & Smets, E. F. Impatiens msisimwanensis (Balsaminaceae): Description, pollen morphology and phylogenetic position of a new East African species. S Afr. J. Bot. 75, 104–109. https://doi.org/10.1016/j.sajb.2008.08.003 (2009).

    Google Scholar 

  2. POWO. Plants of the World Online. http://www.plantsoftheworldonline.org (Facilitated by the Royal Botanic Gardens, 2024).

  3. Adamowski, W. Balsams on the offensive: the role of planting in the invasion of Impatiens species. In Plant Invasions: Human Perception, Ecological Impacts and Management (eds Tokarska-Guzik, B. et al.) (Backhuys, 2008).

  4. Trepl, L. Über Impatiens parviflora DC. Agriophyt in mitteleuropa. Diss Bot. 73, 1–400 (1984).

    Google Scholar 

  5. NOBANIS. European Network on Invasive Alien Species. http://www.NOBANIS.org (2024).

  6. Myśliwy, M. Habitat preferences of some neophytes, with a reference to habitat disturbances. Pol. J. Ecol. 63, 509–524. https://doi.org/10.3161/104.062.0311 (2014).

    Google Scholar 

  7. Reczyńska, K., Świerkosz, K. & Dajdok, Z. The spread of Impatiens parviflora DC. in central European oak forests – another stage of invasion? Acta Soc. Bot. Pol. 84, 401–411. https://doi.org/10.5586/asbp.2015.039 (2015).

    Google Scholar 

  8. Obidziński, T. & Symonides, E. The influence of the groundlayer structure on the invasion of small Balsam (Impatiens parviflora DC.) to natural and degraded forests. Acta Soc. Bot. Pol. 69, 1–8. https://doi.org/10.5586/asbp.2000.041 (2000).

    Google Scholar 

  9. Hejda, M. What is the impact of Impatiens parviflora on diversity and composition of herbal layer communities of temperate forests? PLoS One. 7, e39571. https://doi.org/10.1371/journal.pone.0039571 (2012).

    Google Scholar 

  10. Helsen, K. et al. Biological flora of central Europe: Impatiens glandulifera Royle. PPEES 50, 125609. https://doi.org/10.1016/j.ppees.2021.125609 (2021).

    Google Scholar 

  11. Lhotská, M. & Kopecký, K. Zur verbreitungsbiologie und Phytozönologie von Impatiens glandulifera royle an Den flussystemen der Svitava, Svratka und oberen Odra. Preslia 38, 376–385 (1966).

    Google Scholar 

  12. Beerling, D. J. & Perrins, J. M. Impatiens glandulifera Royle (Impatiens roylei Walp). J. Ecol. 81, 367–382. https://doi.org/10.2307/2261507 (1993).

    Google Scholar 

  13. Tokarska-Guzik, B. The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland (Wydawnictwo Uniwersytetu Śląskiego, 2005).

  14. Čuda, J., Skálová, H. & Pyšek, P. Spread of Impatiens glandulifera from riparian habitats to forests and Ist associated impacts: insights from a new invasion. Weed Res. 60, 8–15. https://doi.org/10.1111/wre.12400 (2020).

    Google Scholar 

  15. Commission Implementing Regulation (EU). 2017/1263 of 12 July 2017 updating the list of invasive alien species of Union concern established by Implementing Regulation (EU) 2016/1141 pursuant to Regulation (EU) No 1143/2014 of the European Parliament and of the Council (OJ L 182, 13.7.2017, p. 37). http://data.europa.eu/eli/reg_impl/2017/1263/oj (2017).

  16. Gaggini, L., Rusterholz, H-P. & Baur, B. The invasive plant Impatiens glandulifera affects soil fungal diversity and the bacterial community in forests. Appl. Soil. Ecol. 124, 335–343. https://doi.org/10.1016/j.apsoil.2017.11.021 (2017).

    Google Scholar 

  17. Tanner, R. A. An Ecological Assessment of Impatiens Glandulifera in its Introduced and Native Range and the Potential for its Classical Biological Control (PhD thesisUniversity of London, 2011).

  18. Ruckli, R., Rusterholz, H-P. & Baur, B. Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate. Acta Oecol. 47, 16–23. https://doi.org/10.1016/j.actao.2012.10.011 (2013).

    Google Scholar 

  19. Rusterholz, H. P., Salamon, J. A., Ruckli, R. & Baur, B. Effects of the annual invasive plant Impatiens glandulifera on the collembola and Acari communities in a deciduous forest. Pedobiologia 57, 285–291. https://doi.org/10.1016/j.pedobi.2014.07.001 (2014).

    Google Scholar 

  20. Ruckli, R., Hesse, K., Glauser, G., Rusterholz, H-P. & Baur, B. Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera. J. Chem. Ecol. 40, 371–378. https://doi.org/10.1007/s10886-014-0421-5 (2014).

    Google Scholar 

  21. Kiełtyk, P. & Delimat, A. Im pact of the alien plant Impatiens glandulifera on species diversity invaded vegetation in the Northern foothills of the Tatra Mountains, Central Europe. Plant. Ecol. 220, 1–12. https://doi.org/10.1007/s11258-018-0898-z (2019).

    Google Scholar 

  22. Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653. https://doi.org/10.1038/35079676 (2001).

    Google Scholar 

  23. Najberek, K., Solarz, W., Wysoczański, W., Węgrzyn, E. & Olejniczak, P. Flowers of impatiens glandulifera as hubs for both pollinators and pathogens. NeoBiota 87, 1–26. https://doi.org/10.3897/neobiota.87.102576 (2023).

    Google Scholar 

  24. Perring, F. M. & Walters, S. M. Atlas of the British Flora: 96 (Thomas Nalson and Sons Ltd, 1962).

  25. Fournier, P. Les quatre flores de France. In (ed. Chevalier, P.) (FFESSM, 1961).

  26. Akiyama, S. A new record of Impatiens (Balsaminaceae) in Honshu. Bull. Nation Sci. Mus. B (Tokyo). 26, 61–65 (2000).

    Google Scholar 

  27. Zika, P. F. Impatiens ×pacifica (Balsaminaceae), a new hybrid Jewelweed from the Pacific Northwest Coast of North America. Novon 16, 443–448 (2006). 10.3417/1055–3177(2006)16[443:IPBANH]2.0.CO;2.

    Google Scholar 

  28. Rewicz, A., Myśliwy, M., Rewicz, T., Adamowski, W. & Kolanowska, M. Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb. – is this herb a global threat? Sci. Total Environ. 850, 157959. https://doi.org/10.1016/j.scitotenv.2022.157959 (2022).

    Google Scholar 

  29. Tokarska-Guzik, B. et al. Alien plants in Poland with particular reference to invasive species (Generalna Dyrekcja ochrony Środowiska, [in Polish with English summary]. (2012).

  30. Regulation of the Council of Ministers of 9. December 2022 on the list of invasive alien species posing a threat to the Union and the list of invasive alien species posing a threat to Poland, remedial actions, and measures aimed at restoring the natural state of ecosystems (Journal of Laws of 16 December 2022, item 2649) https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220002649 [in Polish] (2022).

  31. Pawlaczyk, P. & Adamowski, W. Impatiens capensis (Balsaminaceae) – a new species in the flora of Poland. Fragm Flor. Geobot. 35, 225–232 (1991). [in Polish].

    Google Scholar 

  32. Matthews, J. et al. Risks and management of non-native Impatiens species in the Netherlands http://repository.ubn.ru.nl/handle/2066/149286 (Radboud University, FLORON, Naturalis Biodiversity Center, 2015).

  33. Rewicz, A., Myśliwy, M., Adamowski, W., Podlasiński, M. & Bomanowska, A. Seed morphology and sculpture of invasive Impatiens capensis Meerb. from different habitats. PeerJ 8, e10156. https://doi.org/10.7717/peerj.10156 (2020).

    Google Scholar 

  34. Jakubska-Busse, A., Czeluśniak, I., Hojniak, M., Myśliwy, M. & Najberek, K. Chemical insect attractants produced by flowers of Impatiens spp. (Balsaminaceae) and list of floral visitors. Int. J. Mol. Sci. 24, 17259. https://doi.org/10.3390/ijms242417259 (2023).

    Google Scholar 

  35. Yu, S. X. et al. Phylogeny of Impatiens (Balsaminaceae): integrating molecular and morphological evidence into a new classification. Cladistics 32, 179–197. https://doi.org/10.1111/cla.12119 (2016).

    Google Scholar 

  36. Soó, R. & Priszter, S. A. Systematic and Geobotanical Synopsis of the Flora and Vegetation of Hungary: Phytogeography of Hungary and the Systematic Treatment and Ecological–Phytogeographical Characterization of Its Higher Organized (Vascular) Plants (Akadémiai Kiadó, 1996) [in Hungarian].

  37. Botta-Dukát, Z. & Balogh, L. The Most Important Invasive Plants in Hungary (Institute of Ecology and Botany Hungarian Academy of Sciences, 2008).

  38. Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas Mit Den Alpen: in ökologischer, Dynamischer Und Historischer Sicht (Neografia, 2010). [in German].

  39. Myśliwy, M. et al. Could alien impatiens capensis invade habitats of native I. noli-tangere in Europe? – Contrasting effects of microhabitat conditions on species growth and reproduction. NeoBiota 99, 171–200. https://doi.org/10.3897/neobiota.99.142196 (2025).

    Google Scholar 

  40. Grey-Wilson, C. Impatiens of Africa (CRC, 1980).

  41. Grey-Wilson, C. Hybridisation in African Impatiens. Studies in balsaminaceae. Kew. Bull. 34, 689–722. https://doi.org/10.2307/4119063 (1980b).

    Google Scholar 

  42. Janssens, S. B. et al. A total evidence approach using palynological characters to infer the complex evolutionary history of the Asian Impatiens (Balsaminaceae). Taxon 61, 355–367. https://doi.org/10.1002/tax.612007 (2012).

    Google Scholar 

  43. Rahman, F. et al. Palynological characterization and taxonomic delimitation of the genus Impatiens L. in Pakistan: an LM and SEM study. Microsc Res. Tech. 88, 2512–2527. https://doi.org/10.1002/jemt.24843 (2025).

    Google Scholar 

  44. Song, Y. X., Hu, T., Peng, S., Cong, Y. Y. & Hu, G. W. Palynological and macroscopic characters evidence infer the evolutionary history and insight into pollination adaptation in Impatiens (Balsaminaceae). J. Syst. Evol. 62, 403–420. https://doi.org/10.1111/jse.12959 (2024).

    Google Scholar 

  45. Janssens, S. et al. Palynological variation in balsaminoid Ericales. II. Balsaminaceae, Tetrameristaceae, Pellicieraceae and general conclusions. Ann. Bot. 96, 1061–1073. https://doi.org/10.1093/aob/mci257 (2005).

    Google Scholar 

  46. Pechimuthu, M., Arumugam, R. & Ponnusamy, S. Pollen morphology of the genus Impatiens L. (Balsaminaceae) and its systematic implications. Acta Biol. Szeged. 64, 207–219. https://doi.org/10.14232/abs.2020.2.207-219 (2020).

    Google Scholar 

  47. Janssens, S. B., Vinckier, S., Bosselaers, K., Smets, E. F. & Huysmans, S. Palynology of African Impatiens (Balsaminaceae). Palynol 43, 621–630. https://doi.org/10.1080/01916122.2018.1509149 (2018).

    Google Scholar 

  48. Cai XiuZhenCai, X. Z. et al. SEM observation on the pollen grains of ten species in Impatiens L. (Balsaminaceae). Bull. Bot. Res. 3, 279–283 (2007).

    Google Scholar 

  49. Halbritter, H., Heigl, H. & Auer, W. Impatiens parviflora. In PalDat – A Palynological Database. https://www.paldat.org/pub/Impatiens_parviflora/306261 (2021).

  50. Halbritter, H., Heigl, H. & Auer, W. Impatiens glandulifera. In PalDat – A Palynological Database. https://www.paldat.org/pub/Impatiens_glandulifera/306259 (2021).

  51. Huynh, K. L. Morphologie du pollen des Tropaeolacées et des Balsaminacées. I. Morphologie du pollen des Tropaeolacées. Grana 8, 88–184. https://doi.org/10.1080/00173136809427463 (1968).

    Google Scholar 

  52. Erdtman, G. Pollen Morphology and Plant Taxonomy (Hafner, 1971).

  53. He, H. et al. Studies on the characteristics of Impatiens pollen and its taxonomic significance from Yunnan-Guizhou Plateau. Preprint at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4254836 (2022).

  54. Wrońska-Pilarek, D. et al. How do pollen grains of Convallaria majalis L. Respond. Different Habitat Conditions? Diversity. 15, 501. https://doi.org/10.3390/d15040501 (2023).

    Google Scholar 

  55. Wiatrowska, B. et al. Intra-and interspecific pollen morphology variation of invasive Reynoutria taxa (Polygonaceae) in their response to different habitat conditions. NeoBiota 98, 61–92. https://doi.org/10.3897/neobiota.98.138657 (2025a).

    Google Scholar 

  56. Wiatrowska, B. et al. The effect of soil physicochemical properties on intraspecific variability of pollen morphology in Staphylea pinnata L. Sci. Rep. 15 https://doi.org/10.1038/s41598-025-14136-3 (2025).

  57. Khaleghi, E., Karamnezhad, F. & Moallemi, N. Study of pollen morphology and salinity effect on the pollen grains of four Olive (Olea europaea) cultivars. S Afr. J. Bot. 127, 51–57. https://doi.org/10.1016/j.sajb.2019.08.031 (2019).

    Google Scholar 

  58. Vasilevskaya, N. Pollution of the environment and pollen: A review. Stresses 2, 515–530. https://doi.org/10.3390/stresses2040035 (2022).

    Google Scholar 

  59. Mehmood, M., Tanveer, N. A., Joyia, F. A., Ullah, I. & Mohamed, H. I. Effect of high temperature on pollen grains and yield in economically important crops: a review. Planta 261, 141. https://doi.org/10.1007/s00425-025-04714-0 (2025).

    Google Scholar 

  60. Zając, A. & Zając, M. Distribution Atlas of Vascular Plants in Poland (Uniwersytet Jagielloński w Krakowie, 2001). [in Polish].

  61. Zając, A. & Zając, M. Distribution Atlas of Vascular Plants in Poland: Appendix (Uniwersytet Jagielloński w Krakowie, 2019) [in Polish].

  62. Wrońska-Pilarek, D., Jagodziński, A. M., Bocianowski, J. & Janyszek, M. The optimal sample size in pollen morphological studies using the example of Rosa canina L. Rosaceae. Palynol 39, 56–75. https://doi.org/10.1080/01916122.2014.933748 (2015).

    Google Scholar 

  63. Erdtman, G. Pollen Morphology and Plant Taxonomy. Angiosperms. An Introduction To Palynology (Almquist and Wiksell, 1952).

  64. Erdtman, G. The acetolysis method. A revised description. Sven Bot. Tidskr. 54, 561–564 (1960).

    Google Scholar 

  65. Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S. & Le Thomas, A. Glossary of pollen and spore terminology. Rev. Palaeobot Palynol. 143, 1–81. https://doi.org/10.1016/j.revpalbo.2006.06.008 (2007).

    Google Scholar 

  66. Halbritter, H. et al. Illustrated Pollen Terminology. Second Edition (Springer, 2018).

  67. Sikorska, E. & Lasota, J. Typological habitat classification system and phytosociological habitat assessment. Studia I Materiały Centrum Edukacji Przyrodniczo-Leśnej. 9, 44–51 (2007). (in Polish).

    Google Scholar 

  68. Matuszkiewicz, W. Guide To Identifying Plant Communities in Poland (Wydawnictwo Naukowe PWN, 2022). [in Polish].

  69. Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 https://doi.org/10.1093/biomet/52.3-4.591 (1965).

  70. Mahalanobis, P. C. On the generalized distance in statistics. Proc. Natl. Acad. Sci. India A. 12, 49–55 (1936). (1936).

    Google Scholar 

  71. Core Team, R. R: A Language and Environment for Statistical Computing (R. Core Team, 2025).

  72. Bigazzi, M. & Selvi, F. Pollen morphology in the Boragineae (Boraginaceae) in relation to the taxonomy of the tribe. Pl Syst. Evol. 213, 121–151. https://doi.org/10.1007/BF00988912 (1998).

    Google Scholar 

  73. Erdtman, G. Pollen Morphology and Plant Taxonomy 3rd edn (E.J. Brill, 1986).

  74. Tuler, A. C. et al. Taxonomic significance of pollen morphology for species delimitation in Psidium (Myrtaceae). Pl Syst. Evol. 303, 317–327. https://doi.org/10.1007/s00606-016-1373-8 (2017).

    Google Scholar 

  75. Grímsson, F., Grimm, G. W. & Zetter, R. Evolution of pollen morphology in Loranthaceae. Grana 57, 16–116. https://doi.org/10.1080/00173134.2016.1261939 (2018).

    Google Scholar 

  76. Rull, V. An updated review of fossil pollen evidence for the study of the origin, evolution and diversification of Caribbean mangroves. Plants. 12, 3852 https://doi.org/10.3390/plants12223852 (2023).

  77. Attique, R. et al. Pollen morphology of selected melliferous plants and its taxonomic implications using microscopy. Microsc Res. Tech. 85, 2361–2380. https://doi.org/10.1002/jemt.24091 (2022).

    Google Scholar 

  78. Stace, C. A. Plant Taxonomy and Biosystematics (Cambridge University Press, 1989).

  79. Wrońska–Pilarek, D. et al. The effect of herbicides on morphological features of pollen grains in Prunus serotina Ehrh. In the context of elimination of this Invasive species from European forests. Sci. Rep. 13, 4657. https://doi.org/10.1038/s41598-023-31010-2 (2023).

    Google Scholar 

  80. Wang, R. & Dobritsa, A. A. Exine and aperture patterns on the pollen surface: their formation and roles in plant reproduction. Annu. Plant. Rev. Online. 1, 1–40. https://doi.org/10.1002/9781119312994.apr0625 (2018).

    Google Scholar 

  81. Rejón, J. D. et al. The pollen coat proteome: At the cutting edge of plant reproduction. Proteome. 4, 5 https://doi.org/10.3390/proteomes4010005 (2016).

  82. Katifori, E., Alben, S., Cerda, E., Nelson, D. R. & Dumais, J. Foldable structures and the natural design of pollen grains. Proc. Natl. Acad. Sci. U.S.A. 107, 7635–7639 https://doi.org/10.1073/pnas.0911223107 (2010).

  83. Oorts, K. C. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Environ. Pollut. (ed. Alloway B. J.) 22, 367–394 (2010).

  84. Matamoro-Vidal, A. et al. Links between morphology and function of the pollen wall: an experimental approach. Bot. J. Linn. Soc. 180, 478–490. https://doi.org/10.1111/boj.12378 (2016).

    Google Scholar 

  85. Lisci, M., Tanda, C. & Pacini, E. Pollination ecophysiology of Mercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year round. Ann. Bot. 74, 125–135. https://doi.org/10.1006/anbo.1994.1102 (1994).

    Google Scholar 

  86. Agarwala, S. C., Chatterjee, C., Sharma, P. N., Sharma, C. P. & Nautiyal, N. Pollen development in maize plants subjected to molybdenum deficiency. Can. J. Bot. 57, 1946–1950. https://doi.org/10.1139/b79-244 (1979).

    Google Scholar 

  87. Pandey, N., Gupta, M. & Sharma, C. P. Ultrastructural changes in pollen grains of green gram subjected to copper deficiency. Geophytology 25, 147–150 (1996).

    Google Scholar 

  88. Sancenón, V. et al. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J. Biol. Chem. 279, 15348–15355. https://doi.org/10.1074/jbc.M313321200 (2004).

    Google Scholar 

  89. Bertin, R. I. Paternity in plants. In Plant Reproductive Ecology. Patterns and Strategies (eds Doust, J. L. & Doust, L. L.) (Oxford University Press, 1988).

  90. Pyšek, P. & Prach, K. Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed. Biol. Conserv. 74, 41–48. https://doi.org/10.1016/0006-3207(95)00013-T (1995).

    Google Scholar 

  91. Follak, S. et al. Invasive alien plants along roadsides in Europe. EPPO Bull. 48, 256–4265. https://doi.org/10.1111/epp.12465 (2018).

    Google Scholar 

  92. Kostrakiewicz-Gieralt, K. The effect of habitat conditions on the abundance of populations and selected individual and floral traits of Impatiens glandulifera Royle. Biodiv Res. Conserv. 37, 15–22. https://doi.org/10.1515/biorc-2015-0002 (2015).

    Google Scholar 

  93. Pyšek, P. & Prach, K. Plant invasions and the role of riparian habitats a comparison of four species alien to central Europe. J. Biogeogr. 20, 413–420. https://doi.org/10.1007/978-1-4612-4018-1_23 (1993).

    Google Scholar 

  94. Hejda, M. & Pyšek, P. What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation? Biol. Conserv. 123, 143–152. https://doi.org/10.1016/j.biocon.2006.03.025 (2006).

    Google Scholar 

Download references

Funding

The publication was financed by the Polish Minister of Science and Higher Education as part of the Strategy of the Poznań University of Life Sciences for 20242026 in the field of improving scientific research and development work in priority research areas and co-financed by the Minister of Science under the “Regional Excellence Initiative” Program for 20242027 (RID/SP/0045/2024/01) and statutory funds of the Institute of Marine and Environmental Sciences, University of Szczecin, Poland.

Author information

Authors and Affiliations

Authors

Contributions

DWP: Writing – original draft, Writing – review & editing, Methodology, Investigation, Formal analysis, Data curation. KL: Writing – original draft, Writing – review & editing, Methodology, Investigation, Visualization, Data curation. KB: Writing – original draft, Methodology, Investigation, Software, Visualization, Formal analysis, Data curation. MM: Investigation, Writing – original draft, Writing – review & editing, Data curation. BT-G: Investigation, Writing – original draft, Data curation. LK: Data curation. B.W: Conceptualization, Writing – original draft, Writing – review & editing, Methodology, Investigation, Formal analysis, Data curation.

Corresponding author

Correspondence to
Dorota Wrońska-Pilarek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Wrońska-Pilarek, D., Lechowicz, K., Banaś, K. et al. Pollen morphology of three invasive Impatiens species in Europe under varying habitat conditions—a case study from Poland.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-32427-7

Keywords


  • Impatiens parviflora

  • I. glandulifera

  • I. capensis
  • Invasive alien species
  • Pollen morphology
  • Pollen size
  • P/E
  • Habitat conditions


Source: Ecology - nature.com

Morph-specific selection drives phenotypic divergence in color polymorphic tawny owls (Strix aluco) in Northern Europe

Episodic-like memory in a simulation of cuttlefish behavior

Back to Top