in

Short-chain fatty acids mediate interactions between immune responses and commensal bacteria in high altitude yaks


Abstract

The complex interplay between host and commensal gut microbiota affects the major biological functions such as metabolism and stress adaptation, and displays pronounced seasonality in mammals. However, the seasonal dynamic patterns of immune responses and microbiota, and their interactions remain uncertain in animals inhabiting extreme environments. We analyzed monthly hormones, immunoglobulins and fecal microbiota from yaks grazing on the Tibetan plateau. Clear seasonal patterns were observed: glucocorticoid levels peaked in the cold season, while concentrations of IgA, IgG, IgM, and short-chain fatty acids (SCFAs) increased during the warm season. Yak fecal microbiota also fluctuated seasonally, with lowest diversity in the warm season but accompanied by an enrichment of Firmicutes and Actinobacteria. Taxa such as Alistipes, Bacteroides, Romboutsia and Arthrobacter contributed to seasonal shifts in the levels of SCFAs and immunoglobulins. These results indicate that yaks synchronize peak immune activation and energy production with the nutrient-rich warm season, suggesting a role for microbiome plasticity in driving immune flexibility for high-altitude animals.

Data availability

Raw data generated or analyzed during this study are included in this published article (and its supplementary information files). 16S rRNA gene sequencing raw data are deposited in the dryad database at http://datadryad.org/stash/share/lwsE1wTCwixFVpOgtytCDENrx3hgvxJmOTKSkpzqslo.

Code availability

The R code used to generate the main results of this study is available publicly on Zenodo (https://doi.org/10.5281/zenodo.17622103)75.

References

  1. Alexander, M. & Turnbaugh, P. J. Deconstructing mechanisms of diet-microbiome-immune interactions. Immunity 53, 264–276 (2020).

    Google Scholar 

  2. Ansaldo, E., Farley, T. K. & Belkaid, Y. Control of immunity by the microbiota. Annu. Rev. Immunol. 39, 449–479 (2021).

    Google Scholar 

  3. Penny, H. A. et al. Rhythmicity of intestinal IgA responses confers oscillatory commensal microbiota mutualism. Sci. Immunol. 7, eabk2541 (2022).

    Google Scholar 

  4. Couch, C. E. et al. Diet and gut microbiome enterotype are associated at the population level in African buffalo. Nat. Commun. 12, 2267 (2021).

    Google Scholar 

  5. Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 26 (2021).

    Google Scholar 

  6. Kartzinel, T. R. et al. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. USA. 116, 23588–23593 (2019).

    Google Scholar 

  7. Graham, A. L. Naturalizing mouse models for immunology. Nat. Immuno. 22, 111–117 (2021).

    Google Scholar 

  8. Guo, N. et al. Seasonal dynamics of diet-gut microbiota interaction in adaptation of yaks to life at high altitude. npj Biofilms Microbi 7, 38 (2021).

    Google Scholar 

  9. Li, H. et al. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584, 273–278 (2020).

    Google Scholar 

  10. Sonnenburg, E. D. & Justin, L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20, 779–786 (2014).

    Google Scholar 

  11. Takeuchi, T. et al. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 595, 560–564 (2021).

    Google Scholar 

  12. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Google Scholar 

  13. Mann, E. R., Lam, Y. K. & Uhlig, H. H. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat. Rev. Immunol. 24, 577–595 (2024).

    Google Scholar 

  14. Sun, M., Wu, W., Liu, Z. & Cong, Y. Microbiota metabolite short-chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52, 1–8 (2017).

    Google Scholar 

  15. Thomas, S. P. & Denu, J. M. Short-chain fatty acids activate acetyltransferase p300. eLife 10, e72171 (2021).

    Google Scholar 

  16. Nabhani, Z. A. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288 (2019).

    Google Scholar 

  17. Luck, H. et al. Gut-associated IgA (+) immune cells regulate obesity-related insulin resistance. Nat. Commun. 10, 3650 (2019).

    Google Scholar 

  18. Nagai, M. et al. Fasting-refeeding impacts immune cell dynamics and mucosal immune responses. Cell 178, 1072–1087 (2019).

    Google Scholar 

  19. Huus, K. E., Petersen, C. & Finlay, B. B. Diversity and dynamism of IgA-microbiota interactions. Nat. Rev. Immunol. 21, 514–525 (2021).

    Google Scholar 

  20. Metrione, L. C., Hunter, D. & Penfold, L. M. Seasonal changes in fecal glucocorticoid metabolite concentrations in Bison (Bison bison) living with or without wolves (Canis lupus). J. Wildlife Dis. 56, 175–178 (2020).

    Google Scholar 

  21. Place, N. J. & Kenagy, G. J. Seasonal changes in plasma testosterone and glucocorticosteroids in free-living male yellow-pine chipmunks and the response to capture and handling. J. Comp. Physiol. B. 170, 245–251 (2000).

    Google Scholar 

  22. Boswell, T., Woods, S. & Kenagy, G. J. Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels. Gen. Comp. Endocr 96, 339–346 (1994).

    Google Scholar 

  23. Crespi, E. J., Williams, T. D., Jessop, T. S. & Delehanty, B. Life history and the ecology of stress: how do glucocorticoid hormones influence life-history variation in animals?. Funct. Ecol. 27, 93–106 (2013).

    Google Scholar 

  24. Tendler, A. et al. Hormone seasonality in medical records suggests circannual endocrine circuits. Proc. Natl. Acad. Sci. USA 2118, e2003926118 (2021).

    Google Scholar 

  25. Crill Matzke, C., Kusch, J. M., Janz, D. M. & Lane, J. E. Perceived predation risk predicts glucocorticoid hormones, but not reproductive success in a colonial rodent. Horm. Behav. 143, 105200 (2022).

    Google Scholar 

  26. Romero, M. L. et al. Seasonal glucocorticoid responses to capture in wild free-living mammals. Am. J. Physiol-Reg. I 294, 614–622 (2008).

    Google Scholar 

  27. Charbonnel, N. et al. Stress and Demographic Decline: A potential effect mediated by impairment of reproduction and immune function in cyclic vole populations. Physiol. Biochem. Zool. 81, 63–73 (2008).

    Google Scholar 

  28. Christopherson, R. J., Hudson, R. J. & Richmond, R. J. Comparative winter bioenergetics of American bison, yak, Scottish highland and Hereford calves. Acta Theriol 23, 49–54 (1978).

    Google Scholar 

  29. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Google Scholar 

  30. Yawoot, N., Govitrapong, P., Tocharus, C. & Tocharus, J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. BioFactors 47, 41–58 (2021).

    Google Scholar 

  31. Wang, X. T. et al. Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation. Microbiome 11, 17 (2023).

    Google Scholar 

  32. Zhang, B. et al. Gut microbiota dysbiosis induced by decreasing endogenous melatonin mediates the pathogenesis of Alzheimer’s disease and obesity. Front. Immunol. 13, 900132 (2022).

    Google Scholar 

  33. Wu, Y. L. et al. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway. J. Nanobiotechnol. 19, 170 (2021).

    Google Scholar 

  34. Kim, M., Qie, Y. Q., Park, J. & Kim, C. H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214 (2016).

    Google Scholar 

  35. Bjork, J. R. et al. Synchrony and idiosyncrasy in the gut microbiome of wild baboons. Nat. Ecol. Evol. 6, 955–964 (2022).

    Google Scholar 

  36. Long, R. J., Apori, S. O., Castroc, F. B. & Ørskov, E. R. Feed value of native forages of the Tibetan Plateau of China. Anim. Feed Sci. Technol. 80, 101–113 (1999).

    Google Scholar 

  37. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Google Scholar 

  38. Bensch, H. M., Tolf, C., Waldenström, J., Lundin, D. & Zöttl, M. Bacteroidetes to Firmicutes: captivity changes the gut microbiota composition and diversity in a social subterranean rodent. Animal Microbiome 5, 9 (2023).

    Google Scholar 

  39. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Google Scholar 

  40. Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Reports 14, 1655–1661 (2016).

    Google Scholar 

  41. Springer, A. et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol. Evol. 7, 5732–5745 (2017).

    Google Scholar 

  42. Staudacher, H. M. et al. Fermentable carbohydrate restriction reduces luminal bifidobacterial and gastrointestinal symptoms in patients with irritable bowel syndrome. Nutr. J. 142, 1510–1518 (2012).

    Google Scholar 

  43. Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Google Scholar 

  44. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–105 (2011).

    Google Scholar 

  45. Binda, C. et al. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digest. Liver Dis. 50, 421–428 (2018).

    Google Scholar 

  46. Lyons, A. et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin. Exp. Allergy. 40, 811–819 (2010).

    Google Scholar 

  47. Wexler, H. M. & Goodman, A. L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2, 17026 (2017).

    Google Scholar 

  48. Kokou, F. et al. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat. Microbiol. 4, 2456–2465 (2019).

    Google Scholar 

  49. Ding, L. M. & Long, R. J. The use of herbage n-alkanes as markers to estimate the diet composition of yaks on the Qinghai-Tibetan Plateau. Asian-Aust. J. Anim. Sci. 23, 61–67 (2010).

    Google Scholar 

  50. Kubinak, J. L. & Round, J. L. Do antibodies select a healthy microbiota?. Nat. Rev. Immunol. 16, 767–774 (2016).

    Google Scholar 

  51. Sutherland, D. B., Suzuki, K. & Fagarasan, S. Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunol. Rev. 270, 20–31 (2016).

    Google Scholar 

  52. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018).

    Google Scholar 

  53. Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host-microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    Google Scholar 

  54. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Google Scholar 

  55. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Google Scholar 

  56. Zhao, H. et al. Meta-analysis identifying gut microbial biomarkers of Qinghai-Tibet Plateau populations and the functionality of microbiota-derived butyrate in high-altitude adaptation. Gut Microbes 16, 2350151 (2024).

    Google Scholar 

  57. Jing, X. P. et al. Tibetan sheep have a high capacity to absorb and to regulate metabolism of SCFA in the rumen epithelium to adapt to low energy intake. Br. J. Nutr. 123, 721–731 (2020).

    Google Scholar 

  58. Li, H. et al. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl. Microbiol. Biotechnol. 102, 6739–6751 (2018).

    Google Scholar 

  59. Paramastri, Y. et al. Urinary and fecal immunoglobulin A, cortisol and dioxoandrostanes, and serum cortisol in metabolic cage housed female cynomolgus monkeys (Macaca fascicularis). J. Med. Primatol. 36, 355–364 (2007).

    Google Scholar 

  60. Reese, A. T. & Kearney, S. M. Incorporating functional trade-offs into studies of the gut microbiota. Curr. Opin. Microbiol. 50, 20–27 (2019).

    Google Scholar 

  61. Vijendravarma, R. K. et al. Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens. Ecol. Lett. 18, 1078–1086 (2015).

    Google Scholar 

  62. Congiu, M. et al. Predicting feed efficiency of Angus steers using the gastrointestinal microbiome. Animal 18, 101102 (2024).

    Google Scholar 

  63. Mendes, L. W. et al. Taxonomy and functional diversity in the fecal microbiome of beef cattle reared in Brazilian traditional and semi-intensive production systems. Front. Microbiol. 12, 768480 (2021).

    Google Scholar 

  64. Myer, P. R., Freetly, H. C., Wells, J. E., Smith, T. P. L. & Kuehn, L. A. Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. J. Anim. Sci. 95, 3215–3224 (2017).

    Google Scholar 

  65. von der Ohe, C. G. & Servheen, C. Measuring stress in mammals using fecal glucocorticoids: opportunities and challenges. Wildlife Soc. B. 30, 1215–1225 (2002).

    Google Scholar 

  66. Burgener, N., Gusset, M. & Schmid, H. Frustrated appetitive foraging behavior, stereotypic pacing, and fecal glucocorticoid levels in Snow Leopards (Uncia uncia) in the Zurich Zoo. J. Appl. Anim. Welf. Sci. 11, 74–83 (2008).

    Google Scholar 

  67. Crill, C. et al. Investigation of the utility of feces and hair as non-invasive measures of glucocorticoids in wild black-tailed prairie dogs (Cynomys ludovicianus). Gen. Comp. Endocrinol. 275, 15–24 (2019).

    Google Scholar 

  68. Zhang, Z. G. et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr. Biol. 26, 1873–1879 (2016).

    Google Scholar 

  69. Takahashi, S. et al. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).

    Google Scholar 

  70. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Google Scholar 

  71. Oksanen, J. et al. Vegan: community ecology package. R Package Version 1.17-4 (2006).

  72. De Caceres, M. & Pierre, L. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).

    Google Scholar 

  73. Sang, J. N. et al. Convergent and divergent age patterning of gut microbiota diversity in humans and nonhuman primates. mSystems 7, e01512-21 (2022).

    Google Scholar 

  74. Otasek, D. et al. Cytoscape automation: empowering workflow-based network analysis. Genome Biol 20, 185 (2019).

    Google Scholar 

  75. Guo, N. et al. Short-chain fatty acids mediate interactions between immune responses and commensal bacteria in high altitude yaks. [Dataset and Code] Zenodo https://doi.org/10.5281/zenodo.17622103 (2025).

Download references

Acknowledgements

This work was supported by the Second Tibetan Plateau Expedition (2019QZKK0302), the Natural Science Foundation of China (U21A20183; 32471581; 32102498), the Science-based Advisory Program of The Alliance of National and International Science Organizations for the Belt and Road Regions (ANSO-SBA-2023-02), Natural Science Foundation Youth Program of Shandong Province (ZR2024QC346), the State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement (XZNKY-CZ-2022-016-10), and the Open Project of Qinghai Key Laboratory of Adaptive Management of Alpine Grasslands (2023-GHSYS-KF-02).

Author information

Authors and Affiliations

Authors

Contributions

N.G, N.N.G and F.Y.S collected field data and samples; N.G and F.Y.S analyzed the data; N.N.G and F.Y.S analyzed samples; W.Y.W, S.S.L, S.S.B, J.X.J, B.Y.L and M.H assisted with the field work; N.G wrote the first draft; A.A.D and Z.H.S contributed to interpretation of data and writing the manuscript; and Z.H.S designed and supported the study. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to
A. Allan Degen or Zhanhuan Shang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Richard Nyamota, Hongfang Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Silvio Waschina and Mengtan Xing.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Guo, N., Gou, N., Shi, F. et al. Short-chain fatty acids mediate interactions between immune responses and commensal bacteria in high altitude yaks.
Commun Biol (2025). https://doi.org/10.1038/s42003-025-09351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42003-025-09351-7


Source: Ecology - nature.com

Episodic-like memory in a simulation of cuttlefish behavior

Breeding male mole-rats (Fukomys) use strong bites to defend reproductive monopoly

Back to Top