in

Stochastic growth marks in Crocodylus niloticus


Abstract

Skeletochronology combined with growth curve reconstruction is routinely used to assess the age and growth dynamics of extinct and extant vertebrates. Here we performed in vivo labelling studies of the bone histology of four 2 years-old Crocodylus niloticus individuals. We found that all the crocodiles have more growth marks in their compacta than expected for their age, i.e., they deposited stochastic growth marks in their bones. Using the fluorochrome markers we determined that these stochastic growth marks were deposited during their favourable season of growth. The variable preservation of growth marks in the crocodile bones highlights developmental plasticity in their growth, which can be extrapolated to extinct archosaurs, and other reptiles. We caution the use of growth marks in fossil bones as a reliable estimator of age and discuss the far-reaching implications this has for growth curve reconstruction and life history assessments of extinct vertebrates, such as nonavian dinosaurs.

Data availability

High resolution images will be uploaded onto Morphobank. All thin sections will be deposited in the Vertebrate Comparative Collections of Iziko Museums of Cape Town.

References

  1. Castanet, J., Newman, D. & Girons, H. S. Skeletochronological data on the growth, age, and population structure of the tuatara, Sphenodon punctatus, on Stephens and lady Alice Islands, New Zealand. Herpetologica 44, 25–37 (1988).

    Google Scholar 

  2. Castanet, J., Vieillot, H. F., Meunier, F. J. & De Ricqlès, A. Bone and individual aging. Bone 7, 245–283 (1993).

    Google Scholar 

  3. Chinsamy-Turan, A. The Microstructure of Dinosaur Bones: Deciphering Biology Through Fine Scale Techniques (John Hopkins University, 2005).

  4. Buffrenil, V. Q. & Castanet, A. J. in Vertebrate Skeletal Histology and Paleohistology. (eds de Buffrenil, V., de Ricqles, A. J., Zylberberg, L., Padian, K.) Ch. 31, 626–644 (CRC Press, 2021).

  5. Castanet, J., Francillon-Vieillot, H., Meunier, F., De Ricqles, A. & Hall, B. Bone and individual aging. Bone 7, 245–283 (1993).

    Google Scholar 

  6. Kohler, M., Marin-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012). https://doi.org/10.1038/nature11264

    Google Scholar 

  7. Hutton, J. M. Age determination of living Nile crocodiles from the cortical stratification of bone. Copeia 2, 332–341 (1986).

    Google Scholar 

  8. Roberts, E., Matlock, C., Joanen, T., McNease, L. & Bowen, M. Bone morphometrics and Tetracycline marking patterns in young growing American alligators (Alligator mississippiensis). J. Wildl. Dis. 24, 67–70 (1988).

    Google Scholar 

  9. Snover, M. L. & Hohn, A. A. Validation and interpretation of annual skeletal marks in loggerhead (Caretta caretta) and kemp’s ridley (Lepidochelys kempii) sea turtles. Fish. Bull. 102 (4), 682–693 (2004).

    Google Scholar 

  10. Cubo, J. et al. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes. Evol. Dev. 10, 217–227 (2008).

    Google Scholar 

  11. Ricqlès, A., Meunier, F. J., Castanet, J. & Francillon-Viellot, H. in Bone Matrix and Bone Specific Products, Vol. 31–78 (ed Hall B. K.) (CRC Press, Inc., 1991).

  12. Chinsamy, A. Palaeoecological deductions from osteohistology. Biol. Lett. 19, 20230245 (2023).

    Google Scholar 

  13. Caetano, M. & Castanet, J. Variability and microevolutionary patterns in Triturus marmoratus from Portugal: Age, size, longevity and individual growth. Amphibia-reptilia 14, 117–129 (1993).

    Google Scholar 

  14. Erismis, U. C. & Chinsamy, A. Ontogenetic changes in the epiphyseal cartilage of Rana (Pelophylax) Caralitana (Anura: Ranidae). Anat. Rec (Hoboken). 293, 1825–1837 (2010). https://doi.org/10.1002/ar.21241

    Google Scholar 

  15. Mattox, N. T. Annular rings in the long bones of turtles and their correlation with size. Trans. Ill. State Acad. Sci. 28, 255–256 (1936).

    Google Scholar 

  16. Avens, L., Taylor, J. C., Goshe, L. R., Jones, T. T. & Hastings, M. Use of skeletochronological analysis to estimate the age of leatherback sea turtles Dermochelys coriacea in the Western North Atlantic. Endanger. Species Res. 8, 165–177 (2009). https://doi.org/10.3354/esr00202

    Google Scholar 

  17. Pereyra, M. E. et al. Growth dynamics and body size evolution of South American long-necked chelid turtles: A bone histology approach. Acta Palaeontol. Pol. 65, 535–545 (2020).

    Google Scholar 

  18. Pereyra, M. E. Comparative postcranial osteohistology and bone histovariability of aquatic and terrestrial turtles: The case of the South American Phrynops hilarii, Hydromedusa tectifera (Pleurodira, Chelidae), and Chelonoidis Chilensis (Cryptodira, Testudinidae). Anat. Rec. 306, 1304–1322 (2023).

    Google Scholar 

  19. Bhat, M. S., Chinsamy, A. & Parkington, J. Long bone histology of Chersina angulata: Interelement variation and life history data. J. Morphol. 280, 1881–1899 (2019).

    Google Scholar 

  20. Bhat, M. S., Chinsamy, A. & Parkington, J. Bone histology of neogene angulate tortoises (Testudines: Testudinidae) from South africa: Palaeobiological and skeletochronological implications. R. Soc. Open. Sci. 10, 230064 (2023).

    Google Scholar 

  21. Bhat, M. S. & Cullen, T. M. Growth and life history of freshwater chelydrid turtles (Testudines: Cryptodira): A bone histological approach. J. Anat., 247(3-4), 518–541 .

    Google Scholar 

  22. Castanet, J. & Naulleau, G. Données expérimentales sur la Valeur des Marques squelettiques comme indicateur de l ‘âge Chez Vipera Aspis (L.)(Ophidia, Viperidae). Zoolog. Scr. 3, 201–208 (1974).

    Google Scholar 

  23. Castanet, J. & Baez, M. Data on age and longevity in Gallotia Galloti (Sauria, Lacertidae) assessed by skeletochronology. Herpetol. J. 1, 218–222 (1988).

    Google Scholar 

  24. Castanet, J. & Baez, M. Adaptation and evolution in Gallotia Lizard from the Canary islands: Age, growth, maturity and longevity. Amphibia-Reptilia 12, 81–102 (1991).

    Google Scholar 

  25. Chinsamy, A., Hanrahan, S. A., Neto, M. & Seely, M. Skeletochronological assessment of age in Angolosaurus skoogi, a cordylid Lizard living in an aseasonal environment. J. Herpetol. 29, 457–460 (1995).

    Google Scholar 

  26. Chinsamy, A. The Osteohistology of Femoral Growth within a Clade: A Comparison of the Crocodile, Crocodylus niloticus, the Dinosaurs, Massospondylus and Syntarsus, and the Birds, Struthio and Sagittarius, (Witwatersrand, 1991).

  27. Woodward, H. N., Horner, J. R. & Farlow, J. O. Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology. PeerJ 2, e422 (2014).

    Google Scholar 

  28. Pereyra, M. E., Bona, P., Siroski, P. & Chinsamy, A. Ontogenetic and interelemental study of appendicular bones of Caiman latirostris Daudin, 1802 sheds light on osteohistological variability in crocodylians. J. Morphol. 285, e21687 (2024).

    Google Scholar 

  29. Pereyra, M. E., Bona, P., Siroski, P. & Chinsamy, A. Analyzing the life history of caimans: the growth dynamics of Caiman latirostris from an osteohistological approach. J. Morphol. 286, e70010 (2025).

    Google Scholar 

  30. Audije-Gil, J., Barroso‐Barcenilla, F. & Cambra‐Moo, O. Mapping histovariability and growth patterns of Crocodylus niloticus bred in captivity and their Paleobiological implications. Ruling Reptiles: Crocodylian Biology Archosaur Paleobiology, 284–299 (2023).

  31. Castanet, J. et al. Lines of arrested growth in bone and age Estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39 (2004). https://doi.org/10.1017/s0952836904004844

    Google Scholar 

  32. Morris, P. A. A method for determinng absolute age in the Hedgehog. J. Zool. 20, 277–281 (1970).

    Google Scholar 

  33. Bourdon, E. et al. Bone growth marks reveal protracted growth in New Zealand Kiwi (Aves, Apterygidae). Biol. Lett. 5, 639–642. (2009). https://doi.org/10.1098/rsbl.2009.0310

    Google Scholar 

  34. Chinsamy, A., Angst, D., Canoville, A. & Göhlich, U. B. Bone histology yields insights into the biology of the extinct elephant birds (Aepyornithidae) from Madagascar. Biol. J. Linn. Soc. 130, 268–295 (2020).

    Google Scholar 

  35. Chinsamy, A., Handley, W. D. & Worthy, T. H. Osteohistology of Dromornis stirtoni (Aves: Dromornithidae) and the biological implications of the bone histology of the Australian Mihirung birds. Anat. Rec. 306 (7), 1842–1863 (2022).

    Google Scholar 

  36. Weiss, B. M., Dollman, K. N., Choiniere, J. N., Browning, C. & Botha, J. The osteohistology of Orthosuchus stormbergi using synchrotron radiation microcomputed tomography. J. Anat. 247 (3-4), 587–607 (2024).

    Google Scholar 

  37. Fernández Dumont, M. L., Pereyra, M. E., Bona, P. & Apesteguía, S. New data on the palaeosteohistology and growth dynamic of the notosuchian Araripesuchus Price, 1959. Lethaia 54, 578–590 (2021).

    Google Scholar 

  38. Hoffman, D. et al. Evolution of growth strategy in alligators and Caimans informed by osteohistology of the late eocene early-diverging alligatoroid crocodylian Diplocynodon hantoniensis. J. Anat. 247, 165 (2025).

    Google Scholar 

  39. Chinsamy, A. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Mod. Geol. 18, 319–329 (1993).

    Google Scholar 

  40. Varricchio, D. J. Bone microstructure of the upper cretaceous theropod dinosaur Troodon formosus. J. Vertebr. Paleontol. 13, 99–104 (1993).

    Google Scholar 

  41. Horner, J. R., De Ricqlès, A. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20 (1), 115–129 (2000).

    Google Scholar 

  42. Erickson, G. M. Assessing dinosaur growth patterns: A microscopic revolution. Trends Ecol. Evol. 20, 677–684. (2005). https://doi.org/10.1016/j.tree.2005.08.012

    Google Scholar 

  43. Sander, M. Long bone histology of the Tendaguru sauropods: Implications for growth and biology. Paleobiology 26 (3), 466–488 (2000).

    Google Scholar 

  44. Woodward, H. N., Fowler, E. A. F., Farlow, J. O. & Horner, J. R. Maiasaura, a model organism for extinct vertebrate population biology: A large sample statistical assessment of growth dynamics and survivorship. Paleobiology 41, 503–527 (2015).

    Google Scholar 

  45. Bybee, P. J., Lee, A. H. & Lamm, E. T. Sizing the jurassic theropod dinosaur Allosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs. J. Morphol. 267, 347–359. (2006). https://doi.org/10.1002/jmor.10406

    Google Scholar 

  46. Cullen, T. M. et al. Growth variability, dimensional scaling, and the interpretation of osteohistological growth data. Biol. Lett. 17, 20210383 (2021).

    Google Scholar 

  47. Cullen, T. M., Evans, D. C., Ryan, M. J., Currie, P. J. & Kobayashi, Y. Osteohistological variation in growth marks and osteocyte lacunar density in a theropod dinosaur (Coelurosauria: Ornithomimidae). BMC Evol. Biol. 14, 231 (2014).

    Google Scholar 

  48. Cerda, I. A., Pol, D., Otero, A. & Chinsamy, A. Palaeobiology of the early sauropodomorph Mussaurus patagonicus inferred from its long bone histology. Palaeontology 65, e12614 (2022).

    Google Scholar 

  49. SchuchtP.J., Klein, N. & Lambertz, M. What’s my age again? On the ambiguity of histology-based skeletochronology. Proc. R. Soc. B. 288, 20211166 (2021).

    Google Scholar 

  50. Bruce, R. C., Castanet, J. & Francillon-Vieillot, H. Skeletochronological analysis of variation in age structure, body size, and life history in three species of desmognathine salamanders. Herpetologica 58, 181–193 (2002).

    Google Scholar 

  51. Nacarino-Meneses, C. & Köhler, M. Limb bone histology records birth in mammals. PloS One. 13, e0198511 (2018).

    Google Scholar 

  52. Woolley, M. R., Chinsamy, A., Govender, R. & Bester, M. N. Microanatomy and histology of bone pathologies of extant and extinct phocid seals. Hist. Biol. 33 (8), 1231–1246 (2019).

    Google Scholar 

  53. Calderón, T., Arnold, W., Stalder, G., Painer, J. & Köhler, M. Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants. Sci. Rep. 11, 14074 (2021).

    Google Scholar 

  54. Klevezal, G. A. & Kleinenberg, S. E. Age Determination of Mammals from Annual Layers in Teeth and Bones. (Translated from Russian by Salkind J.) (Israel Program for Scientific Translations Press, Jerusalem, 1969).

  55. Köhler, M. et al. Insular giant leporid matured later than predicted by scaling. Iscience 26, 107654 (2023).

    Google Scholar 

  56. D’Emic, M. D. et al. Developmental strategies underlying gigantism and miniaturization in non-avialan theropod dinosaurs. Science 379, 811–814 (2023).

    Google Scholar 

  57. Chinsamy, A. R. Preparation of fossil bone for histological examination. Palaeontol. Afr. 29, 39–44 (1992).

    Google Scholar 

  58. Castanet, J. & Baez, M. Adaptation and evolution in Gallotia lizards from the Canary islands: Age, growth, maturity and longevity. Amphibia-Reptilia 12, 81–102 (1991).

    Google Scholar 

  59. Larriera, A. & Imhof, A. Proyecto yacaré. Manejo de Fauna Silvestre en Argentina. Ministerio de Salud y Ambiente de la Nación, Buenos Aires, 51–64 (2006).

  60. Viotto, E. V., Simoncini, M. S., Verdade, L. M., Navarro, J. L. & Piña, C. Winter survivorship of hatchling broad-snouted Caimans (Caiman latirostris) in Argentina. Ethnobiol. Conserv. 11 (2022).

  61. Petter-Rousseaux, A. Recherches Sur La croissance et Le cycle d’activité testiculaire de natrix natrix helvetica (Lacépède). Revue d’Écologie (La Terre Et La. Vie). 7, 175–223 (1953).

    Google Scholar 

  62. Saint Girons, H. Les critères d’âge Chez les reptiles et leurs applications à l’étude de La structure des populations sauvages. Revue d’Écologie, 342–358 (1965).

  63. Heck, C. T. & Woodward, H. N. Intraskeletal bone growth patterns in the North Island brown Kiwi (Apteryx mantelli): Growth mark discrepancy and implications for extinct taxa. J. Anat. 239, 1075–1095 (2021).

    Google Scholar 

  64. Collins, E. P. & Rodda, G. H. Bone layers associated with ecdysis in laboratory-reared Boiga irregularis (Colubridae). J. Herpetol. 28, 378–381 (1994).

    Google Scholar 

  65. Castanet, J. Les méthodes d’estimation de l’age Chez les chéloniens. Mesogee 48, 21–28 (1988).

    Google Scholar 

  66. de Buffrénil, V. & Castanet, J. Age Estimation by skeletochronology in the Nile monitor (Varanus niloticus), a highly exploited species. J. Herpetol. 34, 414–424 (2000).

    Google Scholar 

  67. Castanet, J., Rogers, K. C., Cubo, J. & Boisard, J. J. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. C. R. Acad. Sci. 323, 543–550 (2000).

    Google Scholar 

  68. Starck, J. M. & Chinsamy, A. Bone microsructure and developmental plasticity in birds and other dinosaurs. J. Morphol. 254, 232–246 (2002).

    Google Scholar 

  69. Montes, L., Castanet, J. & Cubo, J. Relationship between bone growth rate and bone tissue organization in amniotes: First test of Amprino’s rule in a phylogenetic context. Anim. Biol. 60, 25–41 (2010).

    Google Scholar 

  70. Cubo, J. & Laurin, M. Perspectives on vertebrate evolution: Topics and problems. C.R. Palevol. 10, 285–292. (2011). https://doi.org/10.1016/j.crpv.2011.05.007

    Google Scholar 

  71. Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler‐Crish, C. M. & Chinsamy, A. Bone remodeling in the longest living rodent, the naked mole‐rat: Interelement variation and the effects of reproduction. J. Anat. 239 (1), 81–100 (2021).

    Google Scholar 

  72. Schlief, S. C., Richman, J. M. & Brink, K. S. Bone labeling experiments and intraskeletal growth patterns in captive Leopard geckos (Eublepharis macularius). J. Anat. 247 (3-4), 542–555 (2024).

    Google Scholar 

  73. Maloney, S. K. et al. Minimum daily core body temperature in Western grey kangaroos decreases as summer advances: A seasonal pattern, or a direct response to water, heat or energy supply? J. Exp. Biol. 214, 1813–1820 (2011).

    Google Scholar 

  74. Jacobsen, T. & Kushlan, J. A. Growth dynamics in the American alligator (Alligator mississippiensis). J. Zool. Lond. 219, 309–328 (1989).

    Google Scholar 

  75. Wilkinson, P. M. & Rhodes, W. E. Growth rates of American alligators in coastal South Carolina. J. Wildl. Manag. 61, 397–402 (1997).

    Google Scholar 

  76. Brito, J. C., Martinez-Freiria, F., Sierra, P., Sillero, N. & Tarroso, P. Crocodiles in the Sahara desert: An update of distribution, habitats and population status for conservation planning in Mauritania. PLoS One. 6, e14734 (2011).

    Google Scholar 

  77. Caetano, M. H. Use and results of skeletochronology in some urodeles (Triturus marmoratus, Latreille 1800 and Triturus boscai, lataste 1879. Ann. des. Sci. Nat. Zool. 11, 197–199 (1990).

    Google Scholar 

  78. Webb, G., Manolis, S. & Buckworth, R. Crocodylus Johnstoni in the McKinlay river area N. T, III.* Growth, movement and the population age structure. Wildl. Res. 10, 383–401 (1983).

    Google Scholar 

  79. Sander, P. M. & Klein, N. Developmental plasticity in the life history of a prosauropod dinosaur. Science 310, 1800–1802 (2005).

    Google Scholar 

  80. Chapelle, K. E., Botha, J. & Choiniere, J. N. Extreme growth plasticity in the early branching sauropodomorph Massospondylus carinatus. Biol. Lett. 17, 20200843 (2021).

    Google Scholar 

  81. Chinsamy, A., Marugán-Lobón, J., Serrano, F. J. & Chiappe, L. Osteohistology and Life History of the Basal Pygostylian, Confuciusornis sanctus. Anat. Record 303(4), 949–962 (2019).

    Google Scholar 

  82. Spiekman, S. N., Butler, R. J. & Maidment, S. C. The postcranial anatomy and osteohistology of Terrestrisuchus gracilis (Archosauria, Crocodylomorpha) from the late triassic of Wales. Papers Palaeontol. 10, e1577 (2024).

    Google Scholar 

  83. Pereyra, E. M., Bona, P., Siroski, P. & Chinsamy, A. Analyzing the life history of caimans: The growth dynamics of Caiman latirostris from an osteohistological approach. J. Morphol. 286, e70010 (2025).

    Google Scholar 

  84. Chinsamy, A. in Fifth Symposium on Mesozoic Terrestrial Ecosystems and Biota. (ed Z. Kielan-Jaworoska, Natascha Heitz and Hans Arne Nakrem) 13 (Paleontological Museum).

  85. Erickson, G. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zool. J. Linn. Soc. 130, 551–566 (2000). https://doi.org/10.1111/j.1096-3642.2000.tb02201.x

    Google Scholar 

  86. Erickson, G. M. et al. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430, 772–775 (2004).

    Google Scholar 

  87. Woodward, H. N. Maiasaura (Dinosauria: Hadrosauridae) tibia osteohistology reveals Non-annual cortical vascular rings in young of the year. Front. Earth Sci. 7, 50 (2019). https://doi.org/10.3389/feart.2019.00050

    Google Scholar 

  88. Horner, J. R. & Padian, K. Age and growth dynamics of Tyrannosaurus. Rex. Proc. Biol. Sci. 271, 1875–1880 (2004). https://doi.org/10.1098/rspb.2004.2829

    Google Scholar 

  89. Cullen, T. M., Simon, D. J., Benner, E. K. & Evans, D. C. Morphology and osteohistology of a large-bodied caenagnathid (Theropoda, Oviraptorosauria) from the hell creek formation (Montana): implications for size‐based classifications and growth reconstruction in theropods. Papers Palaeontol. 7, 751–767 (2021).

    Google Scholar 

  90. Kolb, C. et al. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 15, 19 (2015). https://doi.org/10.1186/s12862-015-0295-3

    Google Scholar 

  91. Curry Rogers, K., Whitney, M., D’Emic, M. & Bagley, B. Precocity in a tiny titanosaur from the cretaceous of Madagascar. Science 352, 450–453 (2016).

    Google Scholar 

  92. Horner, J. R., Ricqlès, A. & Padian, K. Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology 25 (3), 295–304 (1999).

    Google Scholar 

  93. Campbell, D. L., Hewitt, L., Lee, C., Timmerhues, C. A. & Small, A. H. Behaviours of farmed saltwater crocodiles (Crocodylus porosus) housed individually or in groups. Front. Veterinary Sci. 11, 1394198 (2024).

    Google Scholar 

  94. Morpurgo, B., Gvaryahu, G. & Robinzon, B. Aggressive behaviour in immature captive nile crocodiles, Crocodylus niloticus, in relation to feeding. Physiol. Behav. 53, 1157–1161 (1993).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Le Bonheur Reptiles and Adventures for permitting access to the crocodiles investigated here. Aurore Canoville and Andrea Plos are warmly thanked for assisting with fieldwork. Vidushi Dabee is acknowledged for having prepared some of the thin sections. We thank Viantha Naidoo and Dirk Lang at the Confocal and Light Microscope Imaging Facility of the Faculty of Health Sciences at UCT. Shafi M. Bhat of the Department of Geosciences at Auburn University, Alabama, is acknowledged for having read an earlier draft of this manuscript. Devin Hoffman and two additional anonymous reviewers are thanked for their comments. The University of Cape Town Research Committee (URC) is thanked for the postdoctoral fellowship awarded to the second author.

Author information

Authors and Affiliations

Authors

Contributions

AC conceived and designed the project and administered the fluorochrome labelling to the crocodiles. M-EP and AC analysed the histological thin sections, and both contributed to the data interpretation and analysis.  M-EP did the confocal and petrographic micrographs and figures for the manuscript. AC wrote the first draft, and M-EP contributed to the write up and made important suggestions. Both authors approved the final version of the manuscript.

Corresponding author

Correspondence to
Anusuya Chinsamy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Chinsamy, A., Pereyra, ME. Stochastic growth marks in Crocodylus niloticus.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-31384-5


Source: Ecology - nature.com

Bridging agriculture, health and industry through plant molecular farming in the bioeconomic era

Tariff familiarity sustains household water conservation

Back to Top