Abstract
Skeletochronology combined with growth curve reconstruction is routinely used to assess the age and growth dynamics of extinct and extant vertebrates. Here we performed in vivo labelling studies of the bone histology of four 2 years-old Crocodylus niloticus individuals. We found that all the crocodiles have more growth marks in their compacta than expected for their age, i.e., they deposited stochastic growth marks in their bones. Using the fluorochrome markers we determined that these stochastic growth marks were deposited during their favourable season of growth. The variable preservation of growth marks in the crocodile bones highlights developmental plasticity in their growth, which can be extrapolated to extinct archosaurs, and other reptiles. We caution the use of growth marks in fossil bones as a reliable estimator of age and discuss the far-reaching implications this has for growth curve reconstruction and life history assessments of extinct vertebrates, such as nonavian dinosaurs.
Data availability
High resolution images will be uploaded onto Morphobank. All thin sections will be deposited in the Vertebrate Comparative Collections of Iziko Museums of Cape Town.
References
Castanet, J., Newman, D. & Girons, H. S. Skeletochronological data on the growth, age, and population structure of the tuatara, Sphenodon punctatus, on Stephens and lady Alice Islands, New Zealand. Herpetologica 44, 25–37 (1988).
Castanet, J., Vieillot, H. F., Meunier, F. J. & De Ricqlès, A. Bone and individual aging. Bone 7, 245–283 (1993).
Chinsamy-Turan, A. The Microstructure of Dinosaur Bones: Deciphering Biology Through Fine Scale Techniques (John Hopkins University, 2005).
Buffrenil, V. Q. & Castanet, A. J. in Vertebrate Skeletal Histology and Paleohistology. (eds de Buffrenil, V., de Ricqles, A. J., Zylberberg, L., Padian, K.) Ch. 31, 626–644 (CRC Press, 2021).
Castanet, J., Francillon-Vieillot, H., Meunier, F., De Ricqles, A. & Hall, B. Bone and individual aging. Bone 7, 245–283 (1993).
Kohler, M., Marin-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012). https://doi.org/10.1038/nature11264
Hutton, J. M. Age determination of living Nile crocodiles from the cortical stratification of bone. Copeia 2, 332–341 (1986).
Roberts, E., Matlock, C., Joanen, T., McNease, L. & Bowen, M. Bone morphometrics and Tetracycline marking patterns in young growing American alligators (Alligator mississippiensis). J. Wildl. Dis. 24, 67–70 (1988).
Snover, M. L. & Hohn, A. A. Validation and interpretation of annual skeletal marks in loggerhead (Caretta caretta) and kemp’s ridley (Lepidochelys kempii) sea turtles. Fish. Bull. 102 (4), 682–693 (2004).
Cubo, J. et al. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes. Evol. Dev. 10, 217–227 (2008).
Ricqlès, A., Meunier, F. J., Castanet, J. & Francillon-Viellot, H. in Bone Matrix and Bone Specific Products, Vol. 31–78 (ed Hall B. K.) (CRC Press, Inc., 1991).
Chinsamy, A. Palaeoecological deductions from osteohistology. Biol. Lett. 19, 20230245 (2023).
Caetano, M. & Castanet, J. Variability and microevolutionary patterns in Triturus marmoratus from Portugal: Age, size, longevity and individual growth. Amphibia-reptilia 14, 117–129 (1993).
Erismis, U. C. & Chinsamy, A. Ontogenetic changes in the epiphyseal cartilage of Rana (Pelophylax) Caralitana (Anura: Ranidae). Anat. Rec (Hoboken). 293, 1825–1837 (2010). https://doi.org/10.1002/ar.21241
Mattox, N. T. Annular rings in the long bones of turtles and their correlation with size. Trans. Ill. State Acad. Sci. 28, 255–256 (1936).
Avens, L., Taylor, J. C., Goshe, L. R., Jones, T. T. & Hastings, M. Use of skeletochronological analysis to estimate the age of leatherback sea turtles Dermochelys coriacea in the Western North Atlantic. Endanger. Species Res. 8, 165–177 (2009). https://doi.org/10.3354/esr00202
Pereyra, M. E. et al. Growth dynamics and body size evolution of South American long-necked chelid turtles: A bone histology approach. Acta Palaeontol. Pol. 65, 535–545 (2020).
Pereyra, M. E. Comparative postcranial osteohistology and bone histovariability of aquatic and terrestrial turtles: The case of the South American Phrynops hilarii, Hydromedusa tectifera (Pleurodira, Chelidae), and Chelonoidis Chilensis (Cryptodira, Testudinidae). Anat. Rec. 306, 1304–1322 (2023).
Bhat, M. S., Chinsamy, A. & Parkington, J. Long bone histology of Chersina angulata: Interelement variation and life history data. J. Morphol. 280, 1881–1899 (2019).
Bhat, M. S., Chinsamy, A. & Parkington, J. Bone histology of neogene angulate tortoises (Testudines: Testudinidae) from South africa: Palaeobiological and skeletochronological implications. R. Soc. Open. Sci. 10, 230064 (2023).
Bhat, M. S. & Cullen, T. M. Growth and life history of freshwater chelydrid turtles (Testudines: Cryptodira): A bone histological approach. J. Anat., 247(3-4), 518–541 .
Castanet, J. & Naulleau, G. Données expérimentales sur la Valeur des Marques squelettiques comme indicateur de l ‘âge Chez Vipera Aspis (L.)(Ophidia, Viperidae). Zoolog. Scr. 3, 201–208 (1974).
Castanet, J. & Baez, M. Data on age and longevity in Gallotia Galloti (Sauria, Lacertidae) assessed by skeletochronology. Herpetol. J. 1, 218–222 (1988).
Castanet, J. & Baez, M. Adaptation and evolution in Gallotia Lizard from the Canary islands: Age, growth, maturity and longevity. Amphibia-Reptilia 12, 81–102 (1991).
Chinsamy, A., Hanrahan, S. A., Neto, M. & Seely, M. Skeletochronological assessment of age in Angolosaurus skoogi, a cordylid Lizard living in an aseasonal environment. J. Herpetol. 29, 457–460 (1995).
Chinsamy, A. The Osteohistology of Femoral Growth within a Clade: A Comparison of the Crocodile, Crocodylus niloticus, the Dinosaurs, Massospondylus and Syntarsus, and the Birds, Struthio and Sagittarius, (Witwatersrand, 1991).
Woodward, H. N., Horner, J. R. & Farlow, J. O. Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology. PeerJ 2, e422 (2014).
Pereyra, M. E., Bona, P., Siroski, P. & Chinsamy, A. Ontogenetic and interelemental study of appendicular bones of Caiman latirostris Daudin, 1802 sheds light on osteohistological variability in crocodylians. J. Morphol. 285, e21687 (2024).
Pereyra, M. E., Bona, P., Siroski, P. & Chinsamy, A. Analyzing the life history of caimans: the growth dynamics of Caiman latirostris from an osteohistological approach. J. Morphol. 286, e70010 (2025).
Audije-Gil, J., Barroso‐Barcenilla, F. & Cambra‐Moo, O. Mapping histovariability and growth patterns of Crocodylus niloticus bred in captivity and their Paleobiological implications. Ruling Reptiles: Crocodylian Biology Archosaur Paleobiology, 284–299 (2023).
Castanet, J. et al. Lines of arrested growth in bone and age Estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39 (2004). https://doi.org/10.1017/s0952836904004844
Morris, P. A. A method for determinng absolute age in the Hedgehog. J. Zool. 20, 277–281 (1970).
Bourdon, E. et al. Bone growth marks reveal protracted growth in New Zealand Kiwi (Aves, Apterygidae). Biol. Lett. 5, 639–642. (2009). https://doi.org/10.1098/rsbl.2009.0310
Chinsamy, A., Angst, D., Canoville, A. & Göhlich, U. B. Bone histology yields insights into the biology of the extinct elephant birds (Aepyornithidae) from Madagascar. Biol. J. Linn. Soc. 130, 268–295 (2020).
Chinsamy, A., Handley, W. D. & Worthy, T. H. Osteohistology of Dromornis stirtoni (Aves: Dromornithidae) and the biological implications of the bone histology of the Australian Mihirung birds. Anat. Rec. 306 (7), 1842–1863 (2022).
Weiss, B. M., Dollman, K. N., Choiniere, J. N., Browning, C. & Botha, J. The osteohistology of Orthosuchus stormbergi using synchrotron radiation microcomputed tomography. J. Anat. 247 (3-4), 587–607 (2024).
Fernández Dumont, M. L., Pereyra, M. E., Bona, P. & Apesteguía, S. New data on the palaeosteohistology and growth dynamic of the notosuchian Araripesuchus Price, 1959. Lethaia 54, 578–590 (2021).
Hoffman, D. et al. Evolution of growth strategy in alligators and Caimans informed by osteohistology of the late eocene early-diverging alligatoroid crocodylian Diplocynodon hantoniensis. J. Anat. 247, 165 (2025).
Chinsamy, A. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Mod. Geol. 18, 319–329 (1993).
Varricchio, D. J. Bone microstructure of the upper cretaceous theropod dinosaur Troodon formosus. J. Vertebr. Paleontol. 13, 99–104 (1993).
Horner, J. R., De Ricqlès, A. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20 (1), 115–129 (2000).
Erickson, G. M. Assessing dinosaur growth patterns: A microscopic revolution. Trends Ecol. Evol. 20, 677–684. (2005). https://doi.org/10.1016/j.tree.2005.08.012
Sander, M. Long bone histology of the Tendaguru sauropods: Implications for growth and biology. Paleobiology 26 (3), 466–488 (2000).
Woodward, H. N., Fowler, E. A. F., Farlow, J. O. & Horner, J. R. Maiasaura, a model organism for extinct vertebrate population biology: A large sample statistical assessment of growth dynamics and survivorship. Paleobiology 41, 503–527 (2015).
Bybee, P. J., Lee, A. H. & Lamm, E. T. Sizing the jurassic theropod dinosaur Allosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs. J. Morphol. 267, 347–359. (2006). https://doi.org/10.1002/jmor.10406
Cullen, T. M. et al. Growth variability, dimensional scaling, and the interpretation of osteohistological growth data. Biol. Lett. 17, 20210383 (2021).
Cullen, T. M., Evans, D. C., Ryan, M. J., Currie, P. J. & Kobayashi, Y. Osteohistological variation in growth marks and osteocyte lacunar density in a theropod dinosaur (Coelurosauria: Ornithomimidae). BMC Evol. Biol. 14, 231 (2014).
Cerda, I. A., Pol, D., Otero, A. & Chinsamy, A. Palaeobiology of the early sauropodomorph Mussaurus patagonicus inferred from its long bone histology. Palaeontology 65, e12614 (2022).
SchuchtP.J., Klein, N. & Lambertz, M. What’s my age again? On the ambiguity of histology-based skeletochronology. Proc. R. Soc. B. 288, 20211166 (2021).
Bruce, R. C., Castanet, J. & Francillon-Vieillot, H. Skeletochronological analysis of variation in age structure, body size, and life history in three species of desmognathine salamanders. Herpetologica 58, 181–193 (2002).
Nacarino-Meneses, C. & Köhler, M. Limb bone histology records birth in mammals. PloS One. 13, e0198511 (2018).
Woolley, M. R., Chinsamy, A., Govender, R. & Bester, M. N. Microanatomy and histology of bone pathologies of extant and extinct phocid seals. Hist. Biol. 33 (8), 1231–1246 (2019).
Calderón, T., Arnold, W., Stalder, G., Painer, J. & Köhler, M. Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants. Sci. Rep. 11, 14074 (2021).
Klevezal, G. A. & Kleinenberg, S. E. Age Determination of Mammals from Annual Layers in Teeth and Bones. (Translated from Russian by Salkind J.) (Israel Program for Scientific Translations Press, Jerusalem, 1969).
Köhler, M. et al. Insular giant leporid matured later than predicted by scaling. Iscience 26, 107654 (2023).
D’Emic, M. D. et al. Developmental strategies underlying gigantism and miniaturization in non-avialan theropod dinosaurs. Science 379, 811–814 (2023).
Chinsamy, A. R. Preparation of fossil bone for histological examination. Palaeontol. Afr. 29, 39–44 (1992).
Castanet, J. & Baez, M. Adaptation and evolution in Gallotia lizards from the Canary islands: Age, growth, maturity and longevity. Amphibia-Reptilia 12, 81–102 (1991).
Larriera, A. & Imhof, A. Proyecto yacaré. Manejo de Fauna Silvestre en Argentina. Ministerio de Salud y Ambiente de la Nación, Buenos Aires, 51–64 (2006).
Viotto, E. V., Simoncini, M. S., Verdade, L. M., Navarro, J. L. & Piña, C. Winter survivorship of hatchling broad-snouted Caimans (Caiman latirostris) in Argentina. Ethnobiol. Conserv. 11 (2022).
Petter-Rousseaux, A. Recherches Sur La croissance et Le cycle d’activité testiculaire de natrix natrix helvetica (Lacépède). Revue d’Écologie (La Terre Et La. Vie). 7, 175–223 (1953).
Saint Girons, H. Les critères d’âge Chez les reptiles et leurs applications à l’étude de La structure des populations sauvages. Revue d’Écologie, 342–358 (1965).
Heck, C. T. & Woodward, H. N. Intraskeletal bone growth patterns in the North Island brown Kiwi (Apteryx mantelli): Growth mark discrepancy and implications for extinct taxa. J. Anat. 239, 1075–1095 (2021).
Collins, E. P. & Rodda, G. H. Bone layers associated with ecdysis in laboratory-reared Boiga irregularis (Colubridae). J. Herpetol. 28, 378–381 (1994).
Castanet, J. Les méthodes d’estimation de l’age Chez les chéloniens. Mesogee 48, 21–28 (1988).
de Buffrénil, V. & Castanet, J. Age Estimation by skeletochronology in the Nile monitor (Varanus niloticus), a highly exploited species. J. Herpetol. 34, 414–424 (2000).
Castanet, J., Rogers, K. C., Cubo, J. & Boisard, J. J. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. C. R. Acad. Sci. 323, 543–550 (2000).
Starck, J. M. & Chinsamy, A. Bone microsructure and developmental plasticity in birds and other dinosaurs. J. Morphol. 254, 232–246 (2002).
Montes, L., Castanet, J. & Cubo, J. Relationship between bone growth rate and bone tissue organization in amniotes: First test of Amprino’s rule in a phylogenetic context. Anim. Biol. 60, 25–41 (2010).
Cubo, J. & Laurin, M. Perspectives on vertebrate evolution: Topics and problems. C.R. Palevol. 10, 285–292. (2011). https://doi.org/10.1016/j.crpv.2011.05.007
Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler‐Crish, C. M. & Chinsamy, A. Bone remodeling in the longest living rodent, the naked mole‐rat: Interelement variation and the effects of reproduction. J. Anat. 239 (1), 81–100 (2021).
Schlief, S. C., Richman, J. M. & Brink, K. S. Bone labeling experiments and intraskeletal growth patterns in captive Leopard geckos (Eublepharis macularius). J. Anat. 247 (3-4), 542–555 (2024).
Maloney, S. K. et al. Minimum daily core body temperature in Western grey kangaroos decreases as summer advances: A seasonal pattern, or a direct response to water, heat or energy supply? J. Exp. Biol. 214, 1813–1820 (2011).
Jacobsen, T. & Kushlan, J. A. Growth dynamics in the American alligator (Alligator mississippiensis). J. Zool. Lond. 219, 309–328 (1989).
Wilkinson, P. M. & Rhodes, W. E. Growth rates of American alligators in coastal South Carolina. J. Wildl. Manag. 61, 397–402 (1997).
Brito, J. C., Martinez-Freiria, F., Sierra, P., Sillero, N. & Tarroso, P. Crocodiles in the Sahara desert: An update of distribution, habitats and population status for conservation planning in Mauritania. PLoS One. 6, e14734 (2011).
Caetano, M. H. Use and results of skeletochronology in some urodeles (Triturus marmoratus, Latreille 1800 and Triturus boscai, lataste 1879. Ann. des. Sci. Nat. Zool. 11, 197–199 (1990).
Webb, G., Manolis, S. & Buckworth, R. Crocodylus Johnstoni in the McKinlay river area N. T, III.* Growth, movement and the population age structure. Wildl. Res. 10, 383–401 (1983).
Sander, P. M. & Klein, N. Developmental plasticity in the life history of a prosauropod dinosaur. Science 310, 1800–1802 (2005).
Chapelle, K. E., Botha, J. & Choiniere, J. N. Extreme growth plasticity in the early branching sauropodomorph Massospondylus carinatus. Biol. Lett. 17, 20200843 (2021).
Chinsamy, A., Marugán-Lobón, J., Serrano, F. J. & Chiappe, L. Osteohistology and Life History of the Basal Pygostylian, Confuciusornis sanctus. Anat. Record 303(4), 949–962 (2019).
Spiekman, S. N., Butler, R. J. & Maidment, S. C. The postcranial anatomy and osteohistology of Terrestrisuchus gracilis (Archosauria, Crocodylomorpha) from the late triassic of Wales. Papers Palaeontol. 10, e1577 (2024).
Pereyra, E. M., Bona, P., Siroski, P. & Chinsamy, A. Analyzing the life history of caimans: The growth dynamics of Caiman latirostris from an osteohistological approach. J. Morphol. 286, e70010 (2025).
Chinsamy, A. in Fifth Symposium on Mesozoic Terrestrial Ecosystems and Biota. (ed Z. Kielan-Jaworoska, Natascha Heitz and Hans Arne Nakrem) 13 (Paleontological Museum).
Erickson, G. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zool. J. Linn. Soc. 130, 551–566 (2000). https://doi.org/10.1111/j.1096-3642.2000.tb02201.x
Erickson, G. M. et al. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430, 772–775 (2004).
Woodward, H. N. Maiasaura (Dinosauria: Hadrosauridae) tibia osteohistology reveals Non-annual cortical vascular rings in young of the year. Front. Earth Sci. 7, 50 (2019). https://doi.org/10.3389/feart.2019.00050
Horner, J. R. & Padian, K. Age and growth dynamics of Tyrannosaurus. Rex. Proc. Biol. Sci. 271, 1875–1880 (2004). https://doi.org/10.1098/rspb.2004.2829
Cullen, T. M., Simon, D. J., Benner, E. K. & Evans, D. C. Morphology and osteohistology of a large-bodied caenagnathid (Theropoda, Oviraptorosauria) from the hell creek formation (Montana): implications for size‐based classifications and growth reconstruction in theropods. Papers Palaeontol. 7, 751–767 (2021).
Kolb, C. et al. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 15, 19 (2015). https://doi.org/10.1186/s12862-015-0295-3
Curry Rogers, K., Whitney, M., D’Emic, M. & Bagley, B. Precocity in a tiny titanosaur from the cretaceous of Madagascar. Science 352, 450–453 (2016).
Horner, J. R., Ricqlès, A. & Padian, K. Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology 25 (3), 295–304 (1999).
Campbell, D. L., Hewitt, L., Lee, C., Timmerhues, C. A. & Small, A. H. Behaviours of farmed saltwater crocodiles (Crocodylus porosus) housed individually or in groups. Front. Veterinary Sci. 11, 1394198 (2024).
Morpurgo, B., Gvaryahu, G. & Robinzon, B. Aggressive behaviour in immature captive nile crocodiles, Crocodylus niloticus, in relation to feeding. Physiol. Behav. 53, 1157–1161 (1993).
Acknowledgements
We are grateful to Le Bonheur Reptiles and Adventures for permitting access to the crocodiles investigated here. Aurore Canoville and Andrea Plos are warmly thanked for assisting with fieldwork. Vidushi Dabee is acknowledged for having prepared some of the thin sections. We thank Viantha Naidoo and Dirk Lang at the Confocal and Light Microscope Imaging Facility of the Faculty of Health Sciences at UCT. Shafi M. Bhat of the Department of Geosciences at Auburn University, Alabama, is acknowledged for having read an earlier draft of this manuscript. Devin Hoffman and two additional anonymous reviewers are thanked for their comments. The University of Cape Town Research Committee (URC) is thanked for the postdoctoral fellowship awarded to the second author.
Author information
Authors and Affiliations
Contributions
AC conceived and designed the project and administered the fluorochrome labelling to the crocodiles. M-EP and AC analysed the histological thin sections, and both contributed to the data interpretation and analysis. M-EP did the confocal and petrographic micrographs and figures for the manuscript. AC wrote the first draft, and M-EP contributed to the write up and made important suggestions. Both authors approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Supplementary Material 2
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Chinsamy, A., Pereyra, ME. Stochastic growth marks in Crocodylus niloticus.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31384-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-31384-5
Source: Ecology - nature.com

