in

Building material stock drives embodied carbon emissions and risks future climate goals in China


Abstract

Long-term effects of massive building material use in China, which experienced intense urbanization in the past two decades, remain insufficiently explored. Here, to fill these gaps, we developed a high-resolution time-series database of building material stocks from 2000 to 2019 and found that China held 15% of the global stock, which accounted for 19% of the country’s total carbon emissions. Although rapid urbanization generally increased per capita building material stock, the extent of this increase varied across cities and building types. We show that the growth rate has slowed since 2016; however, it remains challenging to simultaneously achieve both carbon-neutrality and urbanization goals. Future urbanization in China is projected to consume 12.5% of the nation’s total 1.5 °C carbon budget and 37.4% of its average annual budget allocation. Addressing these challenges requires targeted urban interventions, such as aligning low-carbon material production with projected regional demand and strategically planning materials recycling from future building demolitions.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methodological process flow for establishing a high-resolution, long-term building material stock database for China.
Fig. 2: Spatiotemporal patterns of building material stock mapped at 30-m resolution.
Fig. 3: Spatiotemporal dynamics of per capita building material stock.
Fig. 4: Embodied carbon emissions from increased building material stock.

Data availability

All the data used in this study are publicly available. The building material stock database generated in this study is available via Zenodo at https://doi.org/10.5281/zenodo.17174497 (ref. 68). Sentinel-1 and Sentinel-2 data are available at https://developers.google.com/earth-engine/datasets/. Building footprint data used in this study are available via Zenodo at https://doi.org/10.5281/zenodo.8174931 and at https://doi.org/10.11888/Geogra.tpdc.271702. The CNBH dataset is available via Zenodo at https://doi.org/10.5281/zenodo.7015081. EULUC-China data are available at https://data-starcloud.pcl.ac.cn/zh. GAIA data can be accessed at https://data-starcloud.pcl.ac.cn/zh. The Global Urban Entities dataset can be found at http://geodata.nnu.edu.cn/. WorldPop population data are available at https://www.worldpop.org/. Carbon budget data can be found at https://carbonbudgetcalculator.com/.

Code availability

The code used to generate figures of this study is available via Zenodo at https://doi.org/10.5281/zenodo.17174497 (ref. 68).

References

  1. Yang, X. J. China’s rapid urbanization. Science 342, 310–310 (2013).

    Article 
    CAS 

    Google Scholar 

  2. Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

    Article 

    Google Scholar 

  3. Zhong, X., Deetman, S., Tukker, A. & Behrens, P. Increasing material efficiencies of buildings to address the global sand crisis. Nat. Sustain. 5, 389–392 (2022).

    Article 

    Google Scholar 

  4. Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2013).

    Article 
    CAS 

    Google Scholar 

  5. Müller, D. B. et al. Carbon emissions of infrastructure development. Environ. Sci. Technol. 47, 11739–11746 (2013).

    Article 

    Google Scholar 

  6. Krausmann, F., Wiedenhofer, D. & Haberl, H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets. Glob. Environ. Change 61, 102034 (2020).

    Article 

    Google Scholar 

  7. Building Materials and the Climate: Constructing a New Future (United Nations Environment Programme, 2023).

  8. Pandey, B., Brelsford, C. & Seto, K. C. Rising infrastructure inequalities accompany urbanization and economic development. Nat. Commun. 16, 1193 (2025).

    Article 
    CAS 

    Google Scholar 

  9. Pandey, B., Brelsford, C. & Seto, K. C. Infrastructure inequality is a characteristic of urbanization. Proc. Natl Acad. Sci. USA 119, e2119890119 (2022).

    Article 
    CAS 

    Google Scholar 

  10. Song, L. et al. China’s bulk material loops can be closed but deep decarbonization requires demand reduction. Nat. Clim. Change 13, 1136–1143 (2023).

    Article 

    Google Scholar 

  11. Röck, M. et al. Embodied GHG emissions of buildings—the hidden challenge for effective climate change mitigation. Appl. Energy 258, 114107 (2020).

    Article 

    Google Scholar 

  12. De Coninck, H. et al. in Global Warming of 1.5 °C: Summary for Policy Makers 313-443 (IPCC, 2018).

  13. Watari, T., Cabrera Serrenho, A., Gast, L., Cullen, J. & Allwood, J. Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand. Nat. Commun. 14, 7895 (2023).

    Article 
    CAS 

    Google Scholar 

  14. Xia, X. et al. The carbon budget of China: 1980–2021. Sci. Bull. 69, 114–124 (2024).

    Article 

    Google Scholar 

  15. Lu, H. et al. Reducing China’s building material embodied emissions: opportunities and challenges to achieve carbon neutrality in building materials. iScience https://doi.org/10.1016/j.isci.2024.109028 (2024).

  16. Frantz, D. et al. Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nat. Commun. 14, 8014 (2023).

    Article 
    CAS 

    Google Scholar 

  17. Wiedenhofer, D. et al. Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland. Resour. Conserv. Recycl. 206, 107630 (2024).

    Article 

    Google Scholar 

  18. Haberl, H. et al. High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environ. Sci. Technol. 55, 3368–3379 (2021).

    Article 
    CAS 

    Google Scholar 

  19. Haberl, H. et al. Weighing the global built environment: high-resolution mapping and quantification of material stocks in buildings. J. Ind. Ecol. 29, 159–172 (2024).

    Article 

    Google Scholar 

  20. Bao, Y. et al. High-resolution mapping of material stocks in the built environment across 50 Chinese cities. Resour. Conserv. Recycl. 199, 107232 (2023).

    Article 

    Google Scholar 

  21. Sun, J., Wang, T., Jiang, N., Liu, Z. & Gao, X. Gridded material stocks in China based on geographical and geometric configurations of the built-environment. Sci. Data 10, 915 (2023).

    Article 

    Google Scholar 

  22. Cai, B. et al. Mapping material stocks in buildings and infrastructures across the Beijing–Tianjin–Hebei urban agglomeration at high-resolution using multi-source geographical data. Resour. Conserv. Recycl. 205, 107561 (2024).

    Article 

    Google Scholar 

  23. Elhacham, E., Ben-Uri, L., Grozovski, J., Bar-On, Y. M. & Milo, R. Global human-made mass exceeds all living biomass. Nature 588, 442–444 (2020).

    Article 
    CAS 

    Google Scholar 

  24. Deng, Y., Qi, W., Fu, B. & Wang, K. Geographical transformations of urban sprawl: exploring the spatial heterogeneity across cities in China 1992–2015. Cities 105, 102415 (2020).

    Article 

    Google Scholar 

  25. Wang, J., Lin, Y., Glendinning, A. & Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 75, 375–387 (2018).

    Article 

    Google Scholar 

  26. Cai, Z., Liu, Q. & Cao, S. Real estate supports rapid development of China’s urbanization. Land Use Policy 95, 104582 (2020).

    Article 

    Google Scholar 

  27. Zhao, S. et al. Spatial and temporal dimensions of urban expansion in China. Environ. Sci. Technol. 49, 9600–9609 (2015).

    Article 
    CAS 

    Google Scholar 

  28. Lin, W. et al. Regional differences of urbanization in China and its driving factors. Sci. China Earth Sci. 61, 778–791 (2018).

    Article 

    Google Scholar 

  29. Guo, J., Yu, Z., Ma, Z., Xu, D. & Cao, S. What factors have driven urbanization in China. Environ., Dev. Sustain. 24, 6508–6526 (2022).

    Article 

    Google Scholar 

  30. Zhang, C., Zhou, B. & Wang, Q. Effect of China’s western development strategy on carbon intensity. J. Clean. Prod. 215, 1170–1179 (2019).

    Article 

    Google Scholar 

  31. Pauliuk, S., Carrer, F., Heeren, N. & Hertwich, E. G. Scenario analysis of supply- and demand-side solutions for circular economy and climate change mitigation in the global building sector. J. Ind. Ecol. 28, 1699–1715 (2024).

    Article 

    Google Scholar 

  32. Tanikawa, H. et al. A framework of indicators for associating material stocks and flows to service provisioning: application for Japan 1990–2015. J. Clean. Prod. 285, 125450 (2021).

    Article 

    Google Scholar 

  33. Lanau, M. et al. Taking stock of built environment stock studies: progress and prospects. Environ. Sci. Technol. 53, 8499–8515 (2019).

    Article 
    CAS 

    Google Scholar 

  34. Streeck, J., Dammerer, Q., Wiedenhofer, D. & Krausmann, F. The role of socio-economic material stocks for natural resource use in the United States of America from 1870 to 2100. J. Ind. Ecol. 25, 1486–1502 (2021).

    Article 

    Google Scholar 

  35. Xie, J., Wei, N. & Gao, Q. Assessing spatiotemporal population density dynamics from 2000 to 2020 in megacities using urban and rural morphologies. Sci. Rep. 14, 14166 (2024).

    Article 
    CAS 

    Google Scholar 

  36. Zhang, P. et al. Remote sensing modeling of urban density dynamics across 36 major cities in China: fresh insights from hierarchical urbanized space. Landsc. Urban Plan. 203, 103896 (2020).

    Article 

    Google Scholar 

  37. Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

    Article 

    Google Scholar 

  38. Hu, M. et al. Iron and steel in Chinese residential buildings: a dynamic analysis. Resour. Conserv. Recycl. 54, 591–600 (2010).

    Article 

    Google Scholar 

  39. Zhong, X. et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 12, 6126 (2021).

    Article 
    CAS 

    Google Scholar 

  40. Huang, T., Shi, F., Tanikawa, H., Fei, J. & Han, J. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resour. Conserv. Recycl. 72, 91–101 (2013).

    Article 

    Google Scholar 

  41. Fernando, Y. & Hor, W. L. Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of Malaysian manufacturing firms. Resour. Conserv. Recycl. 126, 62–73 (2017).

    Article 

    Google Scholar 

  42. Pan, W. & Pan, M. Opportunities and risks of implementing zero-carbon building policy for cities: Hong Kong case. Appl. Energy 256, 113835 (2019).

    Article 

    Google Scholar 

  43. Hossain, M. U., Poon, C. S., Dong, Y. H. & Xuan, D. Evaluation of environmental impact distribution methods for supplementary cementitious materials. Renew. Sustain. Energy Rev. 82, 597–608 (2018).

    Article 
    CAS 

    Google Scholar 

  44. Singh, A. P. Assessment of India’s Green Hydrogen Mission and environmental impact. Renew. Sustain. Energy Rev. 203, 114758 (2024).

    Article 
    CAS 

    Google Scholar 

  45. Fan, J.-L. et al. A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage. Nat. Commun. 14, 5972 (2023).

    Article 
    CAS 

    Google Scholar 

  46. Chen, S., Liu, J., Zhang, Q., Teng, F. & McLellan, B. C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 167, 112537 (2022).

    Article 
    CAS 

    Google Scholar 

  47. Wang, N. et al. Optimal CCUS supply chain toward carbon neutrality: novel framework for thermal power, iron-steel, and cement sectors. Ind. Eng. Chem. Res. 63, 4460–4477 (2024).

    Article 
    CAS 

    Google Scholar 

  48. Che, Y. et al. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth Syst. Sci. Data 16, 5357–5374 (2024).

    Article 

    Google Scholar 

  49. Zhang, Z. et al. Vectorized rooftop area data for 90 cities in China. Sci. Data 9, 66 (2022).

    Article 
    CAS 

    Google Scholar 

  50. Zhang, Z. et al. Carbon mitigation potential afforded by rooftop photovoltaic in China. Nat. Commun. 14, 2347 (2023).

    Article 
    CAS 

    Google Scholar 

  51. Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 15, 094044 (2020).

    Article 

    Google Scholar 

  52. Wu, W.-B. et al. A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source Earth observations and machine learning. Remote Sens. Environ. 291, 113578 (2023).

    Article 

    Google Scholar 

  53. Ma, X. et al. Mapping fine-scale building heights in urban agglomeration with spaceborne lidar. Remote Sens. Environ. 285, 113392 (2023).

    Article 

    Google Scholar 

  54. Che, Y. et al. Mapping of individual building heights reveals the large gap of urban-rural living spaces in the contiguous US. Innov. Geosci. 2, 100069 (2024).

    Article 
    CAS 

    Google Scholar 

  55. Herfort, B., Lautenbach, S., Porto de Albuquerque, J., Anderson, J. & Zipf, A. A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap. Nat. Commun. 14, 3985 (2023).

    Article 
    CAS 

    Google Scholar 

  56. P, G. et al. Mapping essential urban land use categories in China (EULUC-China): preliminary. Sci. Bull. 65, 182–187 (2020).

    Article 

    Google Scholar 

  57. Zhou, Z.-H. & Feng, J. Deep forest. Natl Sci. Rev. 6, 74–86 (2018).

    Article 

    Google Scholar 

  58. Feng, Q. et al. Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability. Sci. Data 10, 908 (2023).

    Article 

    Google Scholar 

  59. Kennedy, R. E. et al. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).

    Article 

    Google Scholar 

  60. Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).

    Article 
    CAS 

    Google Scholar 

  61. Ni, H., Yu, L., Gong, P., Li, X. & Zhao, J. Urban renewal mapping: a case study in Beijing from 2000 to 2020. J. Remote Sens. 3, 0072 (2023).

  62. Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).

    Article 

    Google Scholar 

  63. Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).

    Article 

    Google Scholar 

  64. Chen, B. et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 13, 4636 (2022).

    Article 
    CAS 

    Google Scholar 

  65. Röck, M., Balouktsi, M. & Ruschi Mendes Saade, M. Embodied carbon emissions of buildings and how to tame them. One Earth 6, 1458–1464 (2023).

    Article 

    Google Scholar 

  66. IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2023).

  67. Grant, D., Hansen, T., Jorgenson, A. & Longhofer, W. A worldwide analysis of stranded fossil fuel assets’ impact on power plants’ CO2 emissions. Nat. Commun. 15, 7517 (2024).

    Article 
    CAS 

    Google Scholar 

  68. Zhang, C. & Chen, Z. Building material stock drives embodied carbon emissions and risks future climate goals in China. Zenodo https://doi.org/10.5281/zenodo.17174497 (2025).

Download references

Acknowledgements

Qiao Wang is supported by the National Natural Science Foundation of China (Major Program No. 42192580). Z.C. is supported by the National Natural Science Foundation of China (grant no. 41901414) and the Fundamental Research Funds for the Central Universities (grant no. 2243200008).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and Z.C. conceived and designed the research; C.Z., S.L., Z.W., L.L., B.Y., X.W., B.G., Y.L., J.H., Y.F., Q.L., J.Y., Y.W. and Qianqian Wang performed data analysis; C.Z., L.Y., D.W. and Z.C. wrote the manuscript; and M.K., Y.Z., L.Z., M.L., Q.Z., B.C., J.G., X.Y. and Qiao Wang contributed ideas to interpretation of results and manuscript revisions.

Corresponding author

Correspondence to
Ziyue Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Hadi Arbabi, Chao Ding and Lola Rousseau for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods 1–5, Figs. S1–S7, Tables S1–S8 and Discussions 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Zhang, C., Yang, L., Wiedenhofer, D. et al. Building material stock drives embodied carbon emissions and risks future climate goals in China.
Nat. Clim. Chang. (2026). https://doi.org/10.1038/s41558-025-02527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41558-025-02527-3


Source: Ecology - nature.com

Comparative analysis of suspension fertilizers as alternatives to conventional organic fertilizers in drip irrigation systems

Combining UAV-SfM, SAR, MSI and field surveys for estimation of above ground biomass in mangrove forest of Chonburi, Thailand