in

Climate variability disrupts microbial mutualism-driven population persistence


Abstract

Understanding how species interactions impact population dynamics and long-term persistence over broad temporal and spatial scales is crucial for predicting species distributions and responses to global change. Here we investigate how microbial mutualisms can promote long-term and range-wide population persistence of plants, particularly by ameliorating drought stress. We integrate range-wide field surveys of ~90 grass host populations spanning 13 years with demographic modelling based on 6-year common garden experiments conducted across the host range. We found that mutualistic fungal endophytes (genus Epichloë) promote population-level persistence and growth of their native host grass (Bromus laevipes) across its distribution, with non-mutualistic populations four times more likely to go locally extinct. However, endophyte prevalence declined eightfold more in historically mutualistic populations that experienced high climate variability. This demonstrates that mutualisms can underpin population persistence and buffer hosts against environmental stress but may themselves be vulnerable to global change, with concerning implications for long-term population viability and, ultimately, species distributions under an increasingly uncertain climate.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A map of surveyed B. laevipes populations.
Fig. 2: Plant population persistence increased with historical endophyte prevalence and decreased with fire occurrence.
Fig. 3: Endophytes enhanced population growth rates, largely through promoting host fecundity.
Fig. 4: Positive endophyte contributions to population growth had a unimodal relationship with aridity and declined with increasing climate variability.
Fig. 5: Current endophyte prevalence has declined with increasing climate variability.

Similar content being viewed by others

Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community

Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene

Above- and belowground fungal biodiversity of Populus trees on a continental scale

Data availability

All datasets involved are available via Zenodo at https://doi.org/10.5281/zenodo.17379577 (ref. 83). Raw climate data are available from the PRISM Group (https://prism.oregonstate.edu/).

Code availability

Code to replicate our analyses and associated datasets are available via Zenodo at https://doi.org/10.5281/zenodo.17379577 (ref. 83).

References

  1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  2. Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  3. Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  4. Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Article 

    Google Scholar 

  5. Porter, S. S. et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34, 2075–2086 (2020).

    Article 

    Google Scholar 

  6. Benning, J. W. & Moeller, D. A. Microbes, mutualism, and range margins: testing the fitness consequences of soil microbial communities across and beyond a native plant’s range. New Phytol. 229, 2886–2900 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  7. Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J. & Henson, J. M. Thermotolerance generated by plant/fungal symbiosis. Science 298, 1581 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  8. Donald, M. L. et al. Context-dependent variability in the population prevalence and individual fitness effects of plant–fungal symbiosis. J. Ecol. 109, 847–859 (2021).

    Article 
    CAS 

    Google Scholar 

  9. Biesmeijer, J. C. et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  10. Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Change 5, 941–945 (2015).

    Article 

    Google Scholar 

  11. David, A. S. et al. Soil microbiomes underlie population persistence of an endangered plant species. Am. Nat. 194, 488–494 (2019).

    Article 
    PubMed 

    Google Scholar 

  12. Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7, 12473 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  13. Afkhami, M. E., McIntyre, P. J. & Strauss, S. Y. Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol. Lett. 17, 1265–1273 (2014).

    Article 
    PubMed 

    Google Scholar 

  14. Kivlin, S. N., Emery, S. M. & Rudgers, J. A. Fungal symbionts alter plant responses to global change. Am. J. Bot. 100, 1445–1457 (2013).

    Article 
    PubMed 

    Google Scholar 

  15. Baynes, M., Newcombe, G., Dixon, L., Castlebury, L. & O’Donnell, K. A novel plant–fungal mutualism associated with fire. Fungal Biol. 116, 133–144 (2012).

    Article 
    PubMed 

    Google Scholar 

  16. Fowler, J. C., Ziegler, S., Whitney, K. D., Rudgers, J. A. & Miller, T. E. X. Microbial symbionts buffer hosts from the demographic costs of environmental stochasticity. Ecol. Lett. 27, e14438 (2024).

    Article 
    PubMed 

    Google Scholar 

  17. Vázquez, D. P., Morris, W. F. & Jordano, P. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett. 8, 1088–1094 (2005).

    Article 

    Google Scholar 

  18. Moeller, D. A., Geber, M. A., Eckhart, V. M. & Tiffin, P. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant. Ecology 93, 1036–1048 (2012).

    Article 
    PubMed 

    Google Scholar 

  19. Harrower, J. & Gilbert, G. S. Context-dependent mutualisms in the Joshua tree–yucca moth system shift along a climate gradient. Ecosphere 9, e02439 (2018).

    Article 

    Google Scholar 

  20. Lopez, Z. C., Friesen, M. L., Von Wettberg, E., New, L. & Porter, S. Microbial mutualist distribution limits spread of the invasive legume Medicago polymorpha. Biol. Invasions 23, 843–856 (2021).

    Article 

    Google Scholar 

  21. Leal, L. C. & Peixoto, P. E. C. Decreasing water availability across the globe improves the effectiveness of protective ant–plant mutualisms: a meta-analysis. Biol. Rev. 92, 1785–1794 (2017).

    Article 
    PubMed 

    Google Scholar 

  22. Iannone, L. J., Irisarri, J. G. N., Mc Cargo, P. D., Pérez, L. I. & Gundel, P. E. Occurrence of Epichloë fungal endophytes in the sheep-preferred grass Hordeum comosum from Patagonia. J. Arid. Environ. 115, 19–26 (2015).

    Article 

    Google Scholar 

  23. Clay, K., Holah, J. & Rudgers, J. A. Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc. Natl Acad. Sci. USA 102, 12465–12470 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  24. Panaccione, D. G., Beaulieu, W. T. & Cook, D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct. Ecol. 28, 299–314 (2014).

    Article 

    Google Scholar 

  25. Shen, Y. & Duan, T. The interaction between arbuscular mycorrhizal fungi (AMF) and grass endophyte (Epichloë) on host plants: a review. J. Fungi 10, 174 (2024).

    Article 
    CAS 

    Google Scholar 

  26. Decunta, F. A., Pérez, L. I., Malinowski, D. P., Molina-Montenegro, M. A. & Gundel, P. E. A systematic review on the effects of Epichloë fungal endophytes on drought tolerance in cool-season grasses. Front. Plant Sci. 12, 644731 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Kiers, T. E., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474 (2010).

    Article 

    Google Scholar 

  28. Fowler, J. C., Moutouama, J. & Miller, T. E. X. Increasing prevalence of plant-fungal symbiosis across two centuries of environmental change. Glob. Change Biol. 31, e70577 (2025).

    Article 
    CAS 

    Google Scholar 

  29. Rudgers, J. A. et al. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).

    Article 

    Google Scholar 

  30. Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. Oikos 124, 14–21 (2015).

    Article 
    PubMed 

    Google Scholar 

  31. Charlton, N. D. et al. Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol. Ecol. 90, 276–289 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  32. Rodriguez, R. J., White, J. F. Jr, Arnold, A. E. & Redman, R. S. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  33. Card, S. D. et al. Mutualistic fungal endophytes in the Triticeae – Survey and description. FEMS Microbiol. Ecol. 88, 94–106 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  34. Cabral, D., Iannone, L. J., Stewart, A. & Novas, M. V. The distribution and incidence of Neotyphodium endophytes in native grasses from Argentina and its association with environmental factors. NZGA Res. Pract. Ser. 13, 79–82 (2007).

    Article 

    Google Scholar 

  35. Iannone, L. J., White, J. F., Giussani, L. M., Cabral, D. & Victoria Novas, M. Diversity and distribution of Neotyphodium-infected grasses in Argentina. Mycol. Prog. 10, 9–19 (2011).

    Article 

    Google Scholar 

  36. Afkhami, M. E. Fungal endophyte–grass symbioses are rare in the California floristic province and other regions with Mediterranean-influenced climates. Fungal Ecol. 5, 345–352 (2012).

    Article 

    Google Scholar 

  37. IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2023).

  38. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar 

  39. Yule, K. M., Miller, T. E. X. & Rudgers, J. A. Costs, benefits, and loss of vertically transmitted symbionts affect host population dynamics. Oikos 122, 1512–1520 (2013).

    Article 

    Google Scholar 

  40. Chung, Y. A., Miller, T. E. X. & Rudgers, J. A. Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. J. Ecol. 103, 967–977 (2015).

    Article 

    Google Scholar 

  41. Gibert, A., Magda, D. & Hazard, L. Interplay between endophyte prevalence, effects and transmission: insights from a natural grass population. PLoS ONE 10, e0139919 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  42. Rudgers, J. A., Miller, T. E. X., Ziegler, S. M. & Craven, K. D. There are many ways to be a mutualist: endophytic fungus reduces plant survival but increases population growth. Ecology 93, 565–574 (2012).

    Article 
    PubMed 

    Google Scholar 

  43. Gibert, A., Magda, D. & Hazard, L. Endophytic fungus fine-tunes the persistence strategy of its alpine host grass in response to soil resource levels. Oikos 122, 367–376 (2013).

    Article 

    Google Scholar 

  44. Fowler, J. C., Donald, M. L., Bronstein, J. L. & Miller, T. E. X. The geographic footprint of mutualism: how mutualists influence species’ range limits. Ecol. Monogr. 93, e1558 (2023).

    Article 

    Google Scholar 

  45. Stanton-Geddes, J. & Anderson, C. G. Does a facultative mutualism limit species range expansion?. Oecologia 167, 149–155 (2011).

    Article 
    PubMed 

    Google Scholar 

  46. Benning, J. W. & Moeller, D. A. Maladaptation beyond a geographic range limit driven by antagonistic and mutualistic biotic interactions across an abiotic gradient. Evolution 73, 2044–2059 (2019).

    Article 
    PubMed 

    Google Scholar 

  47. Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).

    Article 
    PubMed 

    Google Scholar 

  48. Pierce, D. W., Kalansky, J. F. & Cayan, D. R. Climate, drought, and sea level rise scenarios for the fourth California climate assessment (California Energy Commission, 2018).

  49. Afkhami, M. E. & Rudgers, J. A. Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am. Nat. 172, 405–416 (2008).

    Article 
    PubMed 

    Google Scholar 

  50. Martínez-García, L. B., de Dios Miranda, J. & Pugnaire, F. I. Impacts of changing rainfall patterns on mycorrhizal status of a shrub from arid environments. Eur. J. Soil Biol. 50, 64–67 (2012).

    Article 

    Google Scholar 

  51. Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions?. Ecol. Lett. 17, 881–890 (2014).

    Article 
    PubMed 

    Google Scholar 

  52. Bruijning, M., Henry, L. P., Forsberg, S. K. G., Metcalf, C. J. E. & Ayroles, J. F. Natural selection for imprecise vertical transmission in host–microbiota systems. Nat. Ecol. Evol. 6, 77–87 (2022).

    Article 
    PubMed 

    Google Scholar 

  53. Sneck, M. E., Rudgers, J. A., Young, C. A. & Miller, T. E. X. Variation in the prevalence and transmission of heritable symbionts across host populations in heterogeneous environments. Microb. Ecol. 74, 640–653 (2017).

    Article 
    PubMed 

    Google Scholar 

  54. Rodriguez, R. & Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J. Exp. Bot. 59, 1109–1114 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  55. do Valle Ribeiro, M. A. M. Transmission and survival of Acremonium and the implications for grass breeding. Agric. Ecosyst. Environ. 44, 195–213 (1993).

    Article 

    Google Scholar 

  56. Freitas, P. P. et al. A tale of two grass species: temperature affects the symbiosis of a mutualistic Epichloë endophyte in both tall fescue and perennial ryegrass. Front. Plant Sci. 11, 530 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  57. Corbin, C., Heyworth, E. R., Ferrari, J. & Hurst, G. D. D. Heritable symbionts in a world of varying temperature. Heredity 118, 10–20 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  58. Saikkonen, K., Faeth, S. H., Helander, M. & Sullivan, T. J. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Evol. Syst. 29, 319–343 (1998).

    Article 

    Google Scholar 

  59. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar 

  60. Miller, T. E. X. & Rudgers, J. A. Niche differentiation in the dynamics of host–symbiont interactions: symbiont prevalence as a coexistence problem. Am. Nat. 183, 506–518 (2014).

    Article 
    PubMed 

    Google Scholar 

  61. Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS ONE 8, e66993 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  62. Hale, K. R. S., Valdovinos, F. S. & Martinez, N. D. Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat. Commun. 11, 2182 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  63. Taylor, B. N., Simms, E. L. & Komatsu, K. J. More than a functional group: diversity within the legume–rhizobia mutualism and its relationship with ecosystem function. Diversity 12, 50 (2020).

    Article 

    Google Scholar 

  64. Wei, W. et al. Long-term fertilization coupled with rhizobium inoculation promotes soybean yield and alters soil bacterial community composition. Front. Microbiol. 14, 1161983 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  65. Thom, E. R., Popay, A. J., Hume, D. E. & Fletcher, L. R. Evaluating the performance of endophytes in farm systems to improve farmer outcomes – A review. Crop Pasture Sci. 63, 927–943 (2012).

    Article 

    Google Scholar 

  66. Csorba, A. B. et al. Aphid adaptation in a changing environment through their bacterial endosymbionts: an overview, including a new major cereal pest (Rhopalosiphum maidis (Fitch) scenario. Symbiosis 93, 139–152 (2024).

    Article 

    Google Scholar 

  67. Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12, 291–314 (2020).

    Article 

    Google Scholar 

  68. Remke, M. J., Johnson, N. C., Wright, J., Williamson, M. & Bowker, M. A. Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. J. Ecol. 109, 1210–1223 (2021).

    Article 
    CAS 

    Google Scholar 

  69. Rodriguez, R. J. et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2, 404–416 (2008).

    Article 
    PubMed 

    Google Scholar 

  70. Leuchtmann, A. Systematics, distribution, and host specificity of grass endophytes. Nat. Toxins 1, 150–162 (1993).

    Article 

    Google Scholar 

  71. Xia, C. et al. Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Dis. 102, 2061–2073 (2018).

    Article 
    PubMed 

    Google Scholar 

  72. Ahlholm, J. U., Helander, M., Lehtimäki, S., Wäli, P. & Saikkonen, K. Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99, 173–183 (2002).

    Article 

    Google Scholar 

  73. Hickman, J. C. The Jepson Manual: Higher Plants of California (Univ. California Press, 1993).

  74. Bacon, C. W. & White, J. F. in Biotechnology of Endophytic Fungi of Grasses (eds Bacon, C. W. & White, J. F.) 47–56 (CRC, 1994).

  75. Dombrowski, J. E., Baldwin, J. C., Azevedo, M. D. & Banowetz, G. M. A sensitive PCR-based assay to detect Neotyphodium fungi in seed and plant tissue of tall fescue and ryegrass species. Crop Sci. 46, 1064–1070 (2006).

    Article 
    CAS 

    Google Scholar 

  76. Beguería, S. & Vicente-Serrano, S. M. SPEI: Calculation of the Standardized Precipitation-evapotranspiration Index. R version 1.8.1 https://cran.r-project.org/web/packages/SPEI (2023).

  77. Bartoń, K. MuMIn: Multi-model Inference. R version 1.48.4 https://cran.r-project.org/web/packages/MuMIn (2024).

  78. Zeileis, A. et al. betareg: Beta Regression. R version 3.2-3 https://cran.r-project.org/web/packages/betareg (2025).

  79. Paradis, E. et al. ape: Analyses of Phylogenetics and Evolution. R version 5.7-1 https://cran.r-project.org/web/packages/ape (2023).

  80. Afkhami, M. E. & Strauss, S. Y. Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology 97, 1159–1169 (2016).

    Article 
    PubMed 

    Google Scholar 

  81. Kohl, M. MKinfer: Inferential Statistics. R version 1.2 https://cran.r-project.org/web/packages/MKinfer (2024).

  82. Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).

  83. Li, V. et al. Climate variability disrupts microbial mutualism-driven population persistence. Zenodo https://doi.org/10.5281/zenodo.17379578 (2025).

  84. Moon, K.-W. ggiraphExtra: Make Interactive ‘ggplot2’. Extension to ‘ggplot2’ and ‘ggiraph’. R version 0.3.0 https://cran.r-project.org/web/packages/ggiraphExtra (2020).

Download references

Acknowledgements

We thank the University of California Natural Reserve System, particularly the McLaughlin, Quail Ridge, Hastings and Angelo Reserves, for providing protected natural habitats in which to conduct our experiments; the US Forest Service for their support of this project; and UC Reserve and Forest Service staff: J. Huhndorf, P. Aigner, C. Koehler, M. Power, J. Hunter, P. Steel, A. Spyres, R. Brennan, V. Boucher, J. Clary, L. Johnson and M. Stromberg. We also thank the Afkhami and Searcy laboratories, especially D. Hernandez, K. Kiesewetter, A. O’Brien and R. Rumelt, as well as W. Browne and D. DeAngelis for helpful feedback on analyses and the manuscript. This research was supported by the National Science Foundation (grant nos. NSF DEB-2030060 and NSF DEB-1922521 to M.E.A. and C.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

V.W.L. collected field survey data, performed data analysis and demographic modelling and wrote the manuscript. J.C.F. contributed to demographic model construction and manuscript revisions. A.S.D. contributed to building and writing methods for the demographic model and manuscript revisions. S.Y.S. contributed to the conceptualization and design of the common garden experiments as well as the manuscript revisions and student supervision. C.A.S. contributed to survey data collection, manuscript revisions and feedback on modelling and statistical analyses. M.E.A. led overall project conception and contributed to data collection for field surveys and common gardens, common garden experimental design and establishment, feedback on analyses, manuscript revisions and student supervision.

Corresponding author

Correspondence to
Vicki W. Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs 1–17, Tables 1–13 and References.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Li, V.W., Fowler, J.C., David, A.S. et al. Climate variability disrupts microbial mutualism-driven population persistence.
Nat Ecol Evol (2026). https://doi.org/10.1038/s41559-025-02943-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41559-025-02943-w


Source: Ecology - nature.com

Social-ecological-technological drivers of freshwater salinization in the Occoquan Reservoir, United States

Climate variability disrupts crucial plant–fungal mutualisms