in

Combining UAV-SfM, SAR, MSI and field surveys for estimation of above ground biomass in mangrove forest of Chonburi, Thailand


Abstract

Mangrove biomass is a key indicator for quantifying carbon cycling in blue-carbon ecosystems, yet conventional approaches face significant challenges. To improve large-scale mangrove biomass assessment and provide a baseline for targeted conservation, present study proposes a Single-tree–Plot–Community–Region (AGBT/F~U~S) upscaling method that integrates UAV-SfM, SAR, MSI, and field surveys, and applies it to Chonburi, Thailand. In 2023, total mangrove aboveground biomass in Chonburi Province was 145.24 kt, with a mean AGB density of 101.61 Mg/ha, slightly below the global mangrove average. Long-term records reveal an initial decline followed by post-2015 recovery to about 85% of the 1996 level. Relative to the conventional plot–satellite model, the AGBT/F~U~S framework substantially improves estimation performance and reduces prediction error (ΔR²≈0.47; ΔRMSE ≈ 66.03 Mg/ha), and remains robust under limited training data, with accuracy gains saturating once plot numbers exceed a moderate threshold. These results demonstrate that multi-scale upscaling provides a transferable pathway for mangrove biomass mapping in data-scarce regions and offers a practical baseline for blue-carbon accounting and targeted restoration planning.

Data availability

Data will be made available on request; you can access the data in the study through the DOI: https://doi.org/10.6084/m9.figshare.28639718.v1 or by contacting the following email address: [email protected] (Zhen Guo).

References

  1. Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A. & Donato, D. C. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31, 343–352 (2011).

    Google Scholar 

  2. He, Y. et al. Comparison of methane emissions among invasive and native mangrove species in Dongzhaigang, Hainan Island. Sci. Total Environ. 697, 133945 (2019).

    Google Scholar 

  3. Song, S. et al. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nat. Commun. 14, 756 (2023).

    Google Scholar 

  4. Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change. 8, 240–244 (2018).

    Google Scholar 

  5. Ezcurra, P., Ezcurra, E., Garcillán, P. P., Costa, M. T. & Aburto-Oropeza, O. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. Proc. Natl. Acad. Sci. 113, 4404–4409 (2016).

    Google Scholar 

  6. Arnaud, M. et al. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves. Global Change Biol. 29, 3256–3270 (2023).

    Google Scholar 

  7. Chatting, M. et al. Future mangrove carbon storage under climate change and deforestation. Front. Mar. Sci. 9, 781876 (2022).

    Google Scholar 

  8. Mcleod, E. et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  9. Giri, C. et al. Status and distribution of mangrove forests of the world using Earth observation satellite data. Global Ecol. Biogeogr. 20, 154–159 (2011).

    Google Scholar 

  10. Petersson, H. et al. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass–A comparative study. For. Ecol. Manage. 270, 78–84 (2012).

    Google Scholar 

  11. Ueyama, M. et al. Continuous measurement of methane flux over a larch forest using a relaxed eddy accumulation method. Theoretica Appl. Climatology. 109, 461–472 (2012).

    Google Scholar 

  12. Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manage. 222, 9–16 (2006).

    Google Scholar 

  13. Rahman, S. & Mesev, V. Change vector analysis, tasseled cap, and NDVI-NDMI for measuring land use/cover changes caused by a sudden short-term severe drought: 2011 Texas event. Remote Sens. 11, 2217 (2019).

    Google Scholar 

  14. Kamal, M. & Phinn, S. Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sens. 3, 2222–2242 (2011).

    Google Scholar 

  15. Kamal, M., Phinn, S. & Johansen, K. Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. Remote Sens. 7, 4753–4783 (2015).

    Google Scholar 

  16. Cissell, J. R., Delgado, A. M., Sweetman, B. M. & Steinberg, M. K. Monitoring mangrove forest dynamics in Campeche, Mexico, using Landsat satellite data. Remote Sens. Appl. Soc. Environ. 9, 60–68 (2018).

    Google Scholar 

  17. Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coastal. Shelf Sci. 73, 91–100 (2007).

    Google Scholar 

  18. GUO, S., Huang, B. A. I. H., Meng, X., Zhao, T. & Q. & Remote sensing phenology of Larix chinensis forest in response to climate change in Qinling mountains. Chin. J. Ecol. 38, 1123 (2019).

    Google Scholar 

  19. Lucas, R. M. et al. The potential of L-band SAR for quantifying mangrove characteristics and change: Case studies from the tropics. Aquat. Conservation: Mar. Freshw. Ecosyst. 17, 245–264 (2007).

    Google Scholar 

  20. Pandit, S., Tsuyuki, S. & Dube, T. Landscape-scale aboveground biomass estimation in buffer zone community forests of central nepal: coupling in situ measurements with Landsat 8 satellite data. Remote Sens. 10, 1848 (2018).

    Google Scholar 

  21. Castillo, J. A. A., Apan, A. A., Maraseni, T. N. & Salmo, S. G. III Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm Remote Sens. 134, 70–85 (2017).

    Google Scholar 

  22. Pham, T. D., Yoshino, K., Le, N. N. & Bui, D. T. Estimating aboveground biomass of a mangrove plantation on the northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Int. J. Remote Sens. 39, 7761–7788 (2018).

    Google Scholar 

  23. Korhonen, L., Packalen, P. & Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 195, 259–274 (2017).

    Google Scholar 

  24. Matasci, G. et al. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens. Environ. 209, 90–106 (2018).

    Google Scholar 

  25. Su, Y. et al. Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 173, 187–199 (2016).

    Google Scholar 

  26. Wulder, M. A. et al. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 121, 196–209 (2012).

    Google Scholar 

  27. Puliti, S., Ene, L. T., Gobakken, T. & Næsset, E. Use of partial-coverage UAV data in sampling for large scale forest inventories. Remote Sens. Environ. 194, 115–126 (2017).

    Google Scholar 

  28. Puliti, S., Saarela, S., Gobakken, T., Ståhl, G. & Næsset, E. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sens. Environ. 204, 485–497 (2018).

    Google Scholar 

  29. Wang, D. et al. Estimating aboveground biomass of the mangrove forests on Northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery. Int. J. Appl. Earth Obs Geoinf. 85, 101986 (2020).

    Google Scholar 

  30. Huang, H., Liu, C., Wang, X., Zhou, X. & Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 221, 225–234 (2019).

    Google Scholar 

  31. Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

    Google Scholar 

  32. Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 27, 1297–1328 (2006).

    Google Scholar 

  33. Guo, Q. et al. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China. Int. J. Remote Sens. 38, 2954–2972 (2017).

    Google Scholar 

  34. Fatoyinbo, T. E. & Simard, M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int. J. Remote Sens. 34, 668–681 (2013).

    Google Scholar 

  35. Liu, K., Shen, X., Cao, L., Wang, G. & Cao, F. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS J. Photogrammetry Remote Sens. 146, 465–482 (2018).

    Google Scholar 

  36. Pereira, R. S. Reducing uncertainty in mapping of mangrove aboveground biomass using airborne discrete return lidar data. Remote Sens. 10, 637 (2018).

    Google Scholar 

  37. Shi, Y., Wang, T., Skidmore, A. K. & Heurich, M. Important lidar metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogrammetry Remote Sens. 137, 163–174 (2018).

    Google Scholar 

  38. Salum, R. B., Robinson, S. A. & Rogers, K. A validated and accurate method for quantifying and extrapolating mangrove above-ground biomass using lidar data. Remote Sens. 13, 2763 (2021).

    Google Scholar 

  39. Zhang, Z., Kazakova, A., Moskal, L. M. & Styers, D. M. Object-based tree species classification in urban ecosystems using lidar and hyperspectral data. Forests 7, 122 (2016).

    Google Scholar 

  40. Huang, N., Lu, G. & Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 9, 767 (2016).

    Google Scholar 

  41. Nelson, R. et al. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sens. Environ. 188, 127–140 (2017).

    Google Scholar 

  42. Tian, Y. et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 781, 146816 (2021).

    Google Scholar 

  43. Wanthongchai, P. & Pongruktham, O. Mangrove cover, biodiversity, and carbon storage of mangrove forests in Thailand. Sabkha Ecosyst. 1, 459–467 (2019).

    Google Scholar 

  44. Kida, M. et al. Organic carbon stock and composition in 3.5-m core mangrove soils (Trat, Thailand). Sci. Total Environ. 801, 149682 (2021).

    Google Scholar 

  45. Tian, Y. et al. Aboveground biomass of typical invasive mangroves and its distribution patterns using UAV-LiDAR data in a subtropical estuary: Maoling River estuary, Guangxi, China. Ecol. Indic. 136, 108694 (2022).

    Google Scholar 

  46. Heritage, G. L., Milan, D. J., Large, A. R. & Fuller, I. C. Influence of survey strategy and interpolation model on DEM quality. J. Geomorphology. 112, 334–344 (2009).

    Google Scholar 

  47. Esch, T. et al. Exploiting big Earth data from space–First experiences with the timescan processing chain. Big Earth Data. 2, 36–55 (2018).

    Google Scholar 

  48. Mullissa, A. et al. Sentinel-1 Sar backscatter analysis ready data preparation in Google Earth engine. Remote Sens. 13, 1954 (2021).

    Google Scholar 

  49. Vollrath, A., Mullissa, A. & Reiche, J. Angular-based radiometric slope correction for Sentinel-1 on Google Earth engine. Remote Sens. 12, 1867 (2020).

    Google Scholar 

  50. Wang, M., Cao, W., Guan, Q., Wu, G. & Wang, F. Assessing changes of mangrove forest in a coastal region of Southeast China using multi-temporal satellite images. Estuar. Coastal. Shelf Sci. 207, 283–292 (2018).

    Google Scholar 

  51. Cardille, J. A., Crowley, M. A., Saah, D. & Clinton, N. E. Cloud-based Remote Sensing with Google Earth Engine: Fundamentals and Applications (Springer Nature, 2023).

  52. Rouse, J. W. Jr, Haas, R. H., Deering, D., Schell, J. & Harlan, J. C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. (1974).

  53. Richards, J. A. & Richards, J. A. Remote Sensing Digital Image Analysis. Vol. 5 (Springer, 2022).

  54. Baloloy, A. B., Blanco, A. C., Ana, R. R. C. S. & Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogrammetry Remote Sens. 166, 95–117 (2020).

    Google Scholar 

  55. Son, N., Chen, C., Chen, C., Minh, V. & Trung, N. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agric. For. Meteorol. 197, 52–64 (2014).

    Google Scholar 

  56. Zhen, Z., Chen, S., Yin, T. & Gastellu-Etchegorry, J. P. Globally quantitative analysis of the impact of atmosphere and spectral response function on 2-band enhanced vegetation index (EVI2) over Sentinel-2 and Landsat-8. ISPRS J. Photogrammetry Remote Sens. 205, 206–226 (2023).

    Google Scholar 

  57. McFeeters, S. K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).

    Google Scholar 

  58. Singh, K. V., Setia, R., Sahoo, S., Prasad, A. & Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 30, 650–661 (2015).

    Google Scholar 

  59. Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).

    Google Scholar 

  60. Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    Google Scholar 

  61. Guha, S., Govil, H., Dey, A. & Gill, N. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur. J. Remote Sens. 51, 667–678 (2018).

    Google Scholar 

  62. Mebane, C. A., Maret, T. R. & Hughes, R. M. An index of biological integrity (IBI) for Pacific Northwest rivers. Trans. Am. Fish. Soc. 132, 239–261 (2003).

    Google Scholar 

  63. Komiyama, A., Poungparn, S. & Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477 (2005).

    Google Scholar 

  64. Komiyama, A., Ong, J. E. & Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 89, 128–137 (2008).

    Google Scholar 

  65. Clough, B. Primary productivity and growth of mangrove forests. Trop. Mangrove Ecosyst. 41, 225–249 (1992).

    Google Scholar 

  66. Baba, S., Chan, H. T. & Aksornkoae, S. Useful products from mangrove and other coastal plants. ISME Mangrove Educational book. Ser. 3, 45–47 (2013).

    Google Scholar 

  67. Solberg, S., Naesset, E. & Bollandsas, O. M. Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogrammetric Eng. Remote Sens. 72, 1369–1378 (2006).

    Google Scholar 

  68. Bunting, P. et al. Global mangrove extent change 1996–2020: Global mangrove watch version 3.0. Remote Sens. 14, 3657 (2022).

    Google Scholar 

  69. Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E. & Van de Giesen, N. A 30 m resolution surface water mask including Estimation of positional and thematic differences using landsat 8, srtm and openstreetmap: A case study in the Murray-Darling Basin, Australia. Remote Sens. 8, 386 (2016).

  70. Pham, L. T. & Brabyn, L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J. Photogrammetry Remote Sens. 128, 86–97 (2017).

    Google Scholar 

  71. Bayati, H., Najafi, A., Vahidi, J. & Jalali, G. 3D reconstruction of uneven-aged forest in single tree scale using digital camera and SfM-MVS technique. Scand. J. Res. 36, 210–220 (2021).

  72. Ayrey, E. et al. Layer stacking: A novel algorithm for individual forest tree segmentation from lidar point clouds. Can. J. Remote Sens. 43, 16–27 (2017).

    Google Scholar 

  73. Gupta, S., Weinacker, H. & Koch, B. Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave lidar data. Remote Sens. 2, 968–989 (2010).

    Google Scholar 

  74. Aslan, A., Rahman, A. F., Warren, M. W. & Robeson, S. M. Mapping Spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sens. Environ. 183, 65–81 (2016).

    Google Scholar 

  75. Wang, D. et al. Evaluating the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove extent and species. Remote Sens. 10, 1468 (2018).

    Google Scholar 

  76. Jiang, L., Yang, D., Mei, L. & Yang, X. Remote sensing estimation of carbon storage of mangrove communities in Shenzhen City. Wetl Sci. 16, 618–625 (2018).

    Google Scholar 

  77. Hu, T. et al. Mapping the global mangrove forest aboveground biomass using multisource remote sensing data. Remote Sens. 12, 1690 (2020).

    Google Scholar 

  78. Hickey, S., Callow, N., Phinn, S., Lovelock, C. & Duarte, C. M. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuar. Coastal. Shelf Sci. 200, 194–201 (2018).

    Google Scholar 

  79. Jachowski, N. R. et al. Mangrove biomass estimation in Southwest Thailand using machine learning. Appl. Geogr. 45, 311–321 (2013).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 42171292, 42376228), the Special Fund for Asian Regional Cooperation from the China Ministry of Foreign Affairs (Grant No. WJ0922011), and the China Oceanic Development Foundation (Grant No. B222023017). We extend our sincere gratitude to the Thailand Department of Marine and Coastal Resources (DMCR) and the Intergovernmental Oceanographic Commission Sub-Commission for the Western Pacific (IOC-WESTPAC) for their invaluable support in facilitating this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Z.G. and H.F.; methodology, Z.G. and Z.Z.; investigation, W.X. and H.N.; resources, W.X. and H.N.; data curation, J.M. and J.S.; writing—original draft preparation, J.M.; writing—review and editing, Z.G.; supervision, H.F.; funding acquisition, Z.G. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to
Zhen Guo or Haibo Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Ma, J., Guo, Z., Feng, H. et al. Combining UAV-SfM, SAR, MSI and field surveys for estimation of above ground biomass in mangrove forest of Chonburi, Thailand.
Sci Rep (2026). https://doi.org/10.1038/s41598-025-34281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-34281-z

Keywords

  • Mangrove
  • Aboveground biomass
  • Upscaling method
  • Structure from motion
  • Single-tree segmentation


Source: Ecology - nature.com

Building material stock drives embodied carbon emissions and risks future climate goals in China

When local arthropod biomass declines, every species counts

Back to Top