in

Influence of different diets on biological characteristics and life table parameters of the predatory mite, Neoseiulus baraki Hughes (Acari: Phytoseiidae)


Abstract

The predatory mite, Neoseiulus baraki Athias-Henriot has been reported from the Asia, Africa and Americas, frequently in association with eriophyid and tetranychid mites, these are the most important pests of fig trees in different parts of the world. The objective of our study was to examine the influence of different diets on biological characteristics and life table parameters of the predatory mite Neoseiulus baraki under laboratory conditions. All trials were conducted on fig leaf discs in an incubator at 33 ± 2 °C, 55 ± 5% RH, and a photoperiod of 12:12 (L: D) h. As food sources for the predatory mite, nymphal stages of fig bud mite Aceria ficus (Cotte) (Acari: Eriophyidae), different life stages of two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), corn pollen Zea mays L. and citrus pollen Citrus aurantium L. were selected. The results show that food type did not significantly effect on N. baraki survival; it varied between 95 and 98%. Development time was significantly shorter for N. baraki females fed on A. ficus (5.17 ± 0.16 days) than T. urticae (6.49 ± 0.31 days) or corn pollen (6.72 ± 0.20 days) or citrus pollen (6.91 ± 0.30 days). Female longevity varied from 21.31 ± 2.09 to 27.43 ± 1.78 days; the maximum value was noted on a diet of A. ficus. The longest oviposition period and greatest value of fecundity was observed on A. ficus, followed by T. urticae, corn pollen and citrus pollen. The net reproduction rate (Ro), finite rate of increase (λ) and intrinsic rate of increase (rm) reached the highest value on A. ficus. Considering these results, in the absence or scarcity of the primary prey in the fig orchards, corn pollen or citrus pollen can be recommended as supplementary or an alternative food for N. baraki. Furthermore, N. baraki has promising qualities to suppress A. ficus and T. urticae populations and is suitable as biocontrol agents against these pests.

Similar content being viewed by others

Effects of field releases of Neoseiulus barkeri on Megalurothrips usitatus abundance and arthropod diversity

Diet optimization for rearing Transeius montdorensis predatory mites under laboratory conditions

Biological control of citrus rust mite Phyllocoptruta oleivora by three bacterial species

Data availability

Data is contained within the article.

References

  1. Oldfield, G. N. & Proeseler, G. Eriophyoid mites as vectors of plant pathogens. World Crop Pests. 6, 259–275. https://doi.org/10.1016/S1572-4379(96)80017-0 (1996).

    Google Scholar 

  2. Singh, S. & Kaur, G. Biodiversity of insect and mite pests infesting Fig in the Indian Punjab. Acta Hortic. 1173, 257–262. https://doi.org/10.17660/ActaHortic.2017.1173.44 (2017).

    Google Scholar 

  3. Preising, S., Borges, D. F., de Queiroz Ambrósio, M. M. & da Silva, W. L. A Fig deal: a global look at Fig mosaic disease and its putative associates. Plant Dis. 105, 727–738. https://doi.org/10.1094/PDIS-06-20-1352-FE (2021).

    Google Scholar 

  4. Zaman, M. et al. Prevalence andmolecular diagnosis of viruses infecting Fig trees in Saudi Arabia. Phyton-International J Exp. Bot. 94 (3), 897–910. https://doi.org/10.32604/phyton.2025.063093 (2025).

    Google Scholar 

  5. Abou-Awad, B. A., El-Sawaf, B. M., Reda, A. S. & Abdel-Khalek, A. A. Environmental management and biological aspects of two eriophyoid Fig mites in egypt: Aceria ficus and Rhyncaphytoptus ficifoliae. Acarologia 40, 419–429 (2000).

    Google Scholar 

  6. Caglayan, K. et al. Detection of Fig mosaic virus in viruliferous eriophyid mite Aceria ficus. J. Plant. Pathol. 94, (3), 629–634 (2012). https://api.semanticscholar.org/CorpusID:82471071

    Google Scholar 

  7. Alicia, D., Gyanpriya, M., Mark, R. & Rovindra, L. Biological control methods for agricultural mites: A review. Agric. Rev. 44, 12–21. https://doi.org/10.18805/ag.RF-247 (2023).

    Google Scholar 

  8. Elhakim, E., Mohamed, O. & Elazouni, I. Virulence and proteolytic activity of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egypt. J. Biol. Pest Control. 30, 30. https://doi.org/10.1186/s41938-020-00227-y (2020).

    Google Scholar 

  9. Hoy, M. A. & Myths Models and mitigation of resistance to pesticides. Philosophical Trans. Royal Soc. Lond. B. 353, 1787–1795 (1998).

    Google Scholar 

  10. Cranham, J. E. & Helle, W. Pesticide resistance in Tetranychidae. In Natural Enemies and Control, Vol. 1B. Spider mites—Their Biology (eds Helle, W. & Sabelis, M. W.) 405–422 (Elsevier Science, 1985).

    Google Scholar 

  11. Campos, F. J. & Omoto, C. Resistance to Hexythiazox in Brevipalpus phoenicis (Acari: Tenuipalpidae) from Brazilian citrus. Exp. Appl. Acarol. 24, 243–251. https://doi.org/10.1023/A:1021103209193 (2002).

    Google Scholar 

  12. Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic. Appl. Ecol. 11, 97–105. https://doi.org/10.1016/j.baae.2009.12.001 (2010).

    Google Scholar 

  13. Alhewairini, S. S. & Al-Azzazy, M. M. Side effects of abamectin and Hexythiazox on seven predatory mites. Braz J. Biol. 83, e251442. https://doi.org/10.1590/1519-6984.251442 (2021).

    Google Scholar 

  14. Fathipour, Y. & Maleknia, B. Mite predators. In Ecofriendly Pest Management for Food Security (ed. Gavkare, O.) 329–366 (Academic, 2016). https://doi.org/10.1016/B978-0-12-803265-7.00011-7.

    Google Scholar 

  15. Shakarami, J. & Bazgir, F. Effect of temperature on life table parameters of Phytoseius plumifer (Phytoseiidae) fed on Eotetranychus hirsti (Tetranychidae). Syst. Appl. Acarol. 22, 410–422. https://doi.org/10.11158/saa.22.3.7 (2017).

    Google Scholar 

  16. Al-Azzazy, M. M. Biological performance of the predatory mite Neoseiulus barkeri Hughes (Phytoseiidae): A candidate for controlling of three mite species infesting grape trees. Vitis 60, 11–20. https://doi.org/10.5073/vitis.2021.60.11-20 (2021).

    Google Scholar 

  17. Vásquez, C., Colmenárez, Y. C., Greco, N. & Ramos, M. Current status of phytoseiid mites as biological control agents in Latin America and experiences from Argentina using Neoseiulus Californicus. Neotrop. Entomol. 52 (2), 240–250. https://doi.org/10.1007/s13744-023-01026-4 (2023).

    Google Scholar 

  18. McMurtry, J. A., De Moraes, G. J. & Sourassou, N. F. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol. 18, 297–320. https://doi.org/10.11158/saa.18.4.1 (2013).

    Google Scholar 

  19. Goleva, I. & Zebitz, C. P. W. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp. Appl. Acarol. 61, 259–283. https://doi.org/10.1007/s10493-013-9700-z (2013).

    Google Scholar 

  20. Mendoza, J. E. et al. Genetic improvement of Orius laevigatus for better fitness feeding on pollen. J. Pest Sci. 94, 729–742. https://doi.org/10.1007/s10340-020-01291-x (2021).

    Google Scholar 

  21. Xin, T. & Zhang, Z. Suitability of pollen as an alternative food source for different developmental stages of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) to facilitate predation on whitefly eggs. Acarologia 61 (4), 790–801. https://doi.org/10.24349/bIV1-2heN (2022).

    Google Scholar 

  22. Shishehber, P., Rahmani Piyani, A. & Riahi, E. Effects of different pollen diets in comparison to a natural prey, Tetranychus Turkestani (Acari: Tetranychidae), on development, survival, and reproduction of Euseius scutalis (Acari: Phytoseiidae). Syst. Appl. Acarol. 27 (10), 2111–2122. https://doi.org/10.11158/saa.27.10.19 (2022).

    Google Scholar 

  23. Coll, M. & Guershon, M. Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu. Rev Entomol. 47, 267–297. https://doi.org/10.1146/annurev.ento.47.091201.145209 (2022).

    Google Scholar 

  24. Al-Azzazy, M. M. & Alhewairini, S. S. The potential of two phytoseiid mites as predators of the grape Erineum Mite, Colomerus vitis. Plants 13, 1953. https://doi.org/10.3390/plants13141953 (2024b).

    Google Scholar 

  25. Leman, A. & Messelink, G. J. Supplemental food that supports both predator and pest: A risk for biological control? Exp. Appl. Acarol. 65, 511–524. https://doi.org/10.1007/s10493-014-9859-y (2015).

    Google Scholar 

  26. Kumar, V. et al. Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach. Exp. Appl. Acarol. 65, 465–481. https://doi.org/10.1007/s10493-015-9895-2 (2015).

    Google Scholar 

  27. Van Rijn, P. C., van Houten, Y. M. & Sabelis, M. W. How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology. 83, 2664–2679 https://doi.org/10.2307/3072005 (2002).

  28. Al-Azzazy, M. M. & Alhewairini, S. S. Effects of different diets on life table parameters of the predatory mite Phytoseius plumifer (Acari: Phytoseiidae). Acarologia 64, 1019–1029. https://doi.org/10.24349/hwu2-v0ct (2024a).

    Google Scholar 

  29. Takafuji, A. & Chant, D. A. Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey. Res. Popul. Ecol. 17, 255–310. https://doi.org/10.1007/BF02530777 (1976).

    Google Scholar 

  30. Fernando, L. C. P., Aratchige, N. S., Kumari, S. L. M. L., Appuhamy, P. A. L. D. & Hapuarachchi, D. C. L. Development of a method for mass rearing of Neoseiulus baraki, a mite predatory on the coconut mite, Aceria Guerreronis. Cocos 16, 22–36. https://doi.org/10.4038/cocos.v16i0.2194 (2004).

    Google Scholar 

  31. Negloh, K., Hanna, R. & Schausberger, P. Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biol. Control. 46, 523–531. https://doi.org/10.1016/j.biocontrol.2008.04.022 (2008).

    Google Scholar 

  32. Wu, S. et al. Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Sci. Technol. 24, 1110–1121. https://doi.org/10.1080/09583157.2014.924478 (2014).

    Google Scholar 

  33. Li, L. et al. Functional response and prey stage preference of Neoseiulus barkeri on Trasonemus confuses. Syst. Appl. Acarol. 23, 2244–2258. https://doi.org/10.11158/saa.23.11.16 (2018).

    Google Scholar 

  34. Al-Shemmary, K. A. The availability of rearing Neoseiulus Cucumeris (Oud.) and Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) on three insect egg species. Egypt. J. Biol. Pest Control. 28, 1–7. https://doi.org/10.1186/s41938-018-0084-6 (2018).

    Google Scholar 

  35. Yang, S. H., Zhou, W. Q., Wang, D. W. & Xu, C. L. Hui Xi. Evaluation of Neoseiulus barkeri (Acari: Phytoseiidae) for the control of plant parasitic nematodes, Radopholus similis (Tylenchida: Pratylenchidae) and Meloidogyne incognita (Tylenchida: Heteroderidae). Biocontrol Sci. Technol. 30, 201–211. https://doi.org/10.1080/09583157.2019.1698713 (2020).

    Google Scholar 

  36. Chen, J. et al. Evaluation of the predatory mite Neoseiulus barkeri against spider mites damaging rubber trees. Insects 14, 648. https://doi.org/10.3390/insects14070648 (2023).

    Google Scholar 

  37. Chi, Y. et al. Effects of field releases of Neoseiulus barkeri on Megalurothrips usitatus abundance and arthropod diversity. Sci. Rep. 14, 14247. https://doi.org/10.1038/s41598-024-64740-y (2024).

    Google Scholar 

  38. Domingos, C. A. et al. Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus Baraki (Acari: Phytoseiidae). Exp Appl Acarol. 50 (3), 201–215. https://doi.org/10.1007/s10493-009-9308-5 (2010).

    Google Scholar 

  39. Negm, M. W., Alatawi, F. J. & Aldryhim, Y. N. Biology, Predation, and life table of Cydnoseius negevi and Neoseiulus barkeri (Acari: Phytoseiidae) on the Old-World date Mite, Oligonychus Afrasiaticus (Acari: Tetranychidae). J. Insect Sci. 14, 1–6. https://doi.org/10.1093/jisesa/ieu039 (2014).

    Google Scholar 

  40. Xia, B. et al. Effect of temperature on development and reproduction of Neoseiulus barkeri (Acari: Phytoseiidae) fed on Aleuroglyphus ovatus. Exp. Appl. Acarol. 56, 33–41. https://doi.org/10.1007/s10493-011-9481-1 (2012).

    Google Scholar 

  41. Imani, Z. & Shishehbor, P. Effect of temperature on life history and life tables of Eutetranychus orientalis (Klein) (Acari: Tetranychidae). Syst. Appl. Acarol. 14, 11–18. https://doi.org/10.11158/saa.14.1.2 (2009).

    Google Scholar 

  42. Ferrero, M., Tixier, M. S. & Kreiter, S. Different feeding behaviors in a single predatory mite species. 1. Comparative life histories of three populations of Phytoseiulus longipes (Acari: Phytoseiidae) depending on prey species and plant substrate. Exp. Appl. Acarol. 62, 313–324. https://doi.org/10.1007/s10493-013-9745-z (2013).

    Google Scholar 

  43. Adar, E. et al. Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. Bio Control. 59, 307–317. https://doi.org/10.1007/s10526-014-9563-1 (2014).

    Google Scholar 

  44. Wang, J., Zhang, K., Li, L. & Zhang, Z. Q. Development and reproduction of four predatory mites (Parasitiformes: Phytoseiidae) feeding on the spider mites Tetranychus evansi and T. urticae (Trombidiformes: Tetranychidae) and the dried fruit mite Carpoglyphus lactis (Sarcoptiformes: Carpoglyphidae). Syst. Appl. Acarol. 29, 269–284. https://doi.org/10.11158/saa.29.2.7 (2024).

    Google Scholar 

  45. Jafari, S., Fathipo ur, Y., Faraj, I. F. & Bagheri, M. Demographic response to constant temperatures in Neoseiulus barkeri (Phytoseiidae) fed on Tetranychus urticae (Tetranychidae). Syst. Appl. Acarol. 15, 83–99. https://doi.org/10.11158/saa.15.2.1 (2010).

    Google Scholar 

  46. Momen, F. M. Feeding, development and reproduction of Amblyseius barkeri (Acarina:Phytoseiidae) on various kinds of food substances. Acarologia 36, 101–105 https://www1.montpellier.inra.fr/CBGP/acarologia/article.php?id=2286 (1995).

    Google Scholar 

  47. Metwally, A. M., Abou-Awad, B. A. & Al-Azzazy, M. M. Life table and prey consumption of the predatory mite Neoseiulus cydnodactylon Shehata and Zaher (Acari: Phytoseiidae) with three mite species as prey. J. Plant. Dis. Prot. 112, 276–286 (2005). Available online: https://www.jstor.org/stable/45154911

    Google Scholar 

  48. Huang, H. et al. Impact of proteins and saccharides on mass production of Tyrophagus putrescentiae (Acari: Acaridae) and its predator Neoseiulus barkeri (Acari: Phytoseiidae). Biocontrol Sci. Technol. 23, 1231–1244. https://doi.org/10.1080/09583157.2013.822849 (2013).

    Google Scholar 

  49. Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 15–26. https://doi.org/10.2307/1605 (1948).

    Google Scholar 

Download references

Acknowledgements

The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2026).

Funding

This research was funded by Qassim University (QU-APC-2026).

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was drafted by Mahmoud M. Al-Azzazy and Saleh S. Alhewairini. Laboratory work and statistical analysis were performed by Mahmoud M. Al-Azzazy and Saleh S. Alhewairini. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to
Mahmoud M. Al-Azzazy or Saleh S. Alhewairini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Al-Azzazy, M.M., Alhewairini, S.S. Influence of different diets on biological characteristics and life table parameters of the predatory mite, Neoseiulus baraki Hughes (Acari: Phytoseiidae).
Sci Rep (2026). https://doi.org/10.1038/s41598-025-34143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-34143-8

Keywords

  • Biological control

  • Aceria ficus

  • Tetranychus urticae
  • Alternative food


Source: Ecology - nature.com

Effects of the photovoltaic fishery breeding model on intestinal microbiota structure and diversity in Litopenaeus vannamei

The first complete mitochondrial genome and phylogenetic analysis of Clypeaster virescens (Clypeasteroida, Clypeasteridae)

Back to Top