Abstract
The predatory mite, Neoseiulus baraki Athias-Henriot has been reported from the Asia, Africa and Americas, frequently in association with eriophyid and tetranychid mites, these are the most important pests of fig trees in different parts of the world. The objective of our study was to examine the influence of different diets on biological characteristics and life table parameters of the predatory mite Neoseiulus baraki under laboratory conditions. All trials were conducted on fig leaf discs in an incubator at 33 ± 2 °C, 55 ± 5% RH, and a photoperiod of 12:12 (L: D) h. As food sources for the predatory mite, nymphal stages of fig bud mite Aceria ficus (Cotte) (Acari: Eriophyidae), different life stages of two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), corn pollen Zea mays L. and citrus pollen Citrus aurantium L. were selected. The results show that food type did not significantly effect on N. baraki survival; it varied between 95 and 98%. Development time was significantly shorter for N. baraki females fed on A. ficus (5.17 ± 0.16 days) than T. urticae (6.49 ± 0.31 days) or corn pollen (6.72 ± 0.20 days) or citrus pollen (6.91 ± 0.30 days). Female longevity varied from 21.31 ± 2.09 to 27.43 ± 1.78 days; the maximum value was noted on a diet of A. ficus. The longest oviposition period and greatest value of fecundity was observed on A. ficus, followed by T. urticae, corn pollen and citrus pollen. The net reproduction rate (Ro), finite rate of increase (λ) and intrinsic rate of increase (rm) reached the highest value on A. ficus. Considering these results, in the absence or scarcity of the primary prey in the fig orchards, corn pollen or citrus pollen can be recommended as supplementary or an alternative food for N. baraki. Furthermore, N. baraki has promising qualities to suppress A. ficus and T. urticae populations and is suitable as biocontrol agents against these pests.
Similar content being viewed by others
Effects of field releases of Neoseiulus barkeri on Megalurothrips usitatus abundance and arthropod diversity
Diet optimization for rearing Transeius montdorensis predatory mites under laboratory conditions
Biological control of citrus rust mite Phyllocoptruta oleivora by three bacterial species
Data availability
Data is contained within the article.
References
Oldfield, G. N. & Proeseler, G. Eriophyoid mites as vectors of plant pathogens. World Crop Pests. 6, 259–275. https://doi.org/10.1016/S1572-4379(96)80017-0 (1996).
Singh, S. & Kaur, G. Biodiversity of insect and mite pests infesting Fig in the Indian Punjab. Acta Hortic. 1173, 257–262. https://doi.org/10.17660/ActaHortic.2017.1173.44 (2017).
Preising, S., Borges, D. F., de Queiroz Ambrósio, M. M. & da Silva, W. L. A Fig deal: a global look at Fig mosaic disease and its putative associates. Plant Dis. 105, 727–738. https://doi.org/10.1094/PDIS-06-20-1352-FE (2021).
Zaman, M. et al. Prevalence andmolecular diagnosis of viruses infecting Fig trees in Saudi Arabia. Phyton-International J Exp. Bot. 94 (3), 897–910. https://doi.org/10.32604/phyton.2025.063093 (2025).
Abou-Awad, B. A., El-Sawaf, B. M., Reda, A. S. & Abdel-Khalek, A. A. Environmental management and biological aspects of two eriophyoid Fig mites in egypt: Aceria ficus and Rhyncaphytoptus ficifoliae. Acarologia 40, 419–429 (2000).
Caglayan, K. et al. Detection of Fig mosaic virus in viruliferous eriophyid mite Aceria ficus. J. Plant. Pathol. 94, (3), 629–634 (2012). https://api.semanticscholar.org/CorpusID:82471071
Alicia, D., Gyanpriya, M., Mark, R. & Rovindra, L. Biological control methods for agricultural mites: A review. Agric. Rev. 44, 12–21. https://doi.org/10.18805/ag.RF-247 (2023).
Elhakim, E., Mohamed, O. & Elazouni, I. Virulence and proteolytic activity of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egypt. J. Biol. Pest Control. 30, 30. https://doi.org/10.1186/s41938-020-00227-y (2020).
Hoy, M. A. & Myths Models and mitigation of resistance to pesticides. Philosophical Trans. Royal Soc. Lond. B. 353, 1787–1795 (1998).
Cranham, J. E. & Helle, W. Pesticide resistance in Tetranychidae. In Natural Enemies and Control, Vol. 1B. Spider mites—Their Biology (eds Helle, W. & Sabelis, M. W.) 405–422 (Elsevier Science, 1985).
Campos, F. J. & Omoto, C. Resistance to Hexythiazox in Brevipalpus phoenicis (Acari: Tenuipalpidae) from Brazilian citrus. Exp. Appl. Acarol. 24, 243–251. https://doi.org/10.1023/A:1021103209193 (2002).
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic. Appl. Ecol. 11, 97–105. https://doi.org/10.1016/j.baae.2009.12.001 (2010).
Alhewairini, S. S. & Al-Azzazy, M. M. Side effects of abamectin and Hexythiazox on seven predatory mites. Braz J. Biol. 83, e251442. https://doi.org/10.1590/1519-6984.251442 (2021).
Fathipour, Y. & Maleknia, B. Mite predators. In Ecofriendly Pest Management for Food Security (ed. Gavkare, O.) 329–366 (Academic, 2016). https://doi.org/10.1016/B978-0-12-803265-7.00011-7.
Shakarami, J. & Bazgir, F. Effect of temperature on life table parameters of Phytoseius plumifer (Phytoseiidae) fed on Eotetranychus hirsti (Tetranychidae). Syst. Appl. Acarol. 22, 410–422. https://doi.org/10.11158/saa.22.3.7 (2017).
Al-Azzazy, M. M. Biological performance of the predatory mite Neoseiulus barkeri Hughes (Phytoseiidae): A candidate for controlling of three mite species infesting grape trees. Vitis 60, 11–20. https://doi.org/10.5073/vitis.2021.60.11-20 (2021).
Vásquez, C., Colmenárez, Y. C., Greco, N. & Ramos, M. Current status of phytoseiid mites as biological control agents in Latin America and experiences from Argentina using Neoseiulus Californicus. Neotrop. Entomol. 52 (2), 240–250. https://doi.org/10.1007/s13744-023-01026-4 (2023).
McMurtry, J. A., De Moraes, G. J. & Sourassou, N. F. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol. 18, 297–320. https://doi.org/10.11158/saa.18.4.1 (2013).
Goleva, I. & Zebitz, C. P. W. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp. Appl. Acarol. 61, 259–283. https://doi.org/10.1007/s10493-013-9700-z (2013).
Mendoza, J. E. et al. Genetic improvement of Orius laevigatus for better fitness feeding on pollen. J. Pest Sci. 94, 729–742. https://doi.org/10.1007/s10340-020-01291-x (2021).
Xin, T. & Zhang, Z. Suitability of pollen as an alternative food source for different developmental stages of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) to facilitate predation on whitefly eggs. Acarologia 61 (4), 790–801. https://doi.org/10.24349/bIV1-2heN (2022).
Shishehber, P., Rahmani Piyani, A. & Riahi, E. Effects of different pollen diets in comparison to a natural prey, Tetranychus Turkestani (Acari: Tetranychidae), on development, survival, and reproduction of Euseius scutalis (Acari: Phytoseiidae). Syst. Appl. Acarol. 27 (10), 2111–2122. https://doi.org/10.11158/saa.27.10.19 (2022).
Coll, M. & Guershon, M. Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu. Rev Entomol. 47, 267–297. https://doi.org/10.1146/annurev.ento.47.091201.145209 (2022).
Al-Azzazy, M. M. & Alhewairini, S. S. The potential of two phytoseiid mites as predators of the grape Erineum Mite, Colomerus vitis. Plants 13, 1953. https://doi.org/10.3390/plants13141953 (2024b).
Leman, A. & Messelink, G. J. Supplemental food that supports both predator and pest: A risk for biological control? Exp. Appl. Acarol. 65, 511–524. https://doi.org/10.1007/s10493-014-9859-y (2015).
Kumar, V. et al. Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach. Exp. Appl. Acarol. 65, 465–481. https://doi.org/10.1007/s10493-015-9895-2 (2015).
Van Rijn, P. C., van Houten, Y. M. & Sabelis, M. W. How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology. 83, 2664–2679 https://doi.org/10.2307/3072005 (2002).
Al-Azzazy, M. M. & Alhewairini, S. S. Effects of different diets on life table parameters of the predatory mite Phytoseius plumifer (Acari: Phytoseiidae). Acarologia 64, 1019–1029. https://doi.org/10.24349/hwu2-v0ct (2024a).
Takafuji, A. & Chant, D. A. Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey. Res. Popul. Ecol. 17, 255–310. https://doi.org/10.1007/BF02530777 (1976).
Fernando, L. C. P., Aratchige, N. S., Kumari, S. L. M. L., Appuhamy, P. A. L. D. & Hapuarachchi, D. C. L. Development of a method for mass rearing of Neoseiulus baraki, a mite predatory on the coconut mite, Aceria Guerreronis. Cocos 16, 22–36. https://doi.org/10.4038/cocos.v16i0.2194 (2004).
Negloh, K., Hanna, R. & Schausberger, P. Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biol. Control. 46, 523–531. https://doi.org/10.1016/j.biocontrol.2008.04.022 (2008).
Wu, S. et al. Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Sci. Technol. 24, 1110–1121. https://doi.org/10.1080/09583157.2014.924478 (2014).
Li, L. et al. Functional response and prey stage preference of Neoseiulus barkeri on Trasonemus confuses. Syst. Appl. Acarol. 23, 2244–2258. https://doi.org/10.11158/saa.23.11.16 (2018).
Al-Shemmary, K. A. The availability of rearing Neoseiulus Cucumeris (Oud.) and Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) on three insect egg species. Egypt. J. Biol. Pest Control. 28, 1–7. https://doi.org/10.1186/s41938-018-0084-6 (2018).
Yang, S. H., Zhou, W. Q., Wang, D. W. & Xu, C. L. Hui Xi. Evaluation of Neoseiulus barkeri (Acari: Phytoseiidae) for the control of plant parasitic nematodes, Radopholus similis (Tylenchida: Pratylenchidae) and Meloidogyne incognita (Tylenchida: Heteroderidae). Biocontrol Sci. Technol. 30, 201–211. https://doi.org/10.1080/09583157.2019.1698713 (2020).
Chen, J. et al. Evaluation of the predatory mite Neoseiulus barkeri against spider mites damaging rubber trees. Insects 14, 648. https://doi.org/10.3390/insects14070648 (2023).
Chi, Y. et al. Effects of field releases of Neoseiulus barkeri on Megalurothrips usitatus abundance and arthropod diversity. Sci. Rep. 14, 14247. https://doi.org/10.1038/s41598-024-64740-y (2024).
Domingos, C. A. et al. Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus Baraki (Acari: Phytoseiidae). Exp Appl Acarol. 50 (3), 201–215. https://doi.org/10.1007/s10493-009-9308-5 (2010).
Negm, M. W., Alatawi, F. J. & Aldryhim, Y. N. Biology, Predation, and life table of Cydnoseius negevi and Neoseiulus barkeri (Acari: Phytoseiidae) on the Old-World date Mite, Oligonychus Afrasiaticus (Acari: Tetranychidae). J. Insect Sci. 14, 1–6. https://doi.org/10.1093/jisesa/ieu039 (2014).
Xia, B. et al. Effect of temperature on development and reproduction of Neoseiulus barkeri (Acari: Phytoseiidae) fed on Aleuroglyphus ovatus. Exp. Appl. Acarol. 56, 33–41. https://doi.org/10.1007/s10493-011-9481-1 (2012).
Imani, Z. & Shishehbor, P. Effect of temperature on life history and life tables of Eutetranychus orientalis (Klein) (Acari: Tetranychidae). Syst. Appl. Acarol. 14, 11–18. https://doi.org/10.11158/saa.14.1.2 (2009).
Ferrero, M., Tixier, M. S. & Kreiter, S. Different feeding behaviors in a single predatory mite species. 1. Comparative life histories of three populations of Phytoseiulus longipes (Acari: Phytoseiidae) depending on prey species and plant substrate. Exp. Appl. Acarol. 62, 313–324. https://doi.org/10.1007/s10493-013-9745-z (2013).
Adar, E. et al. Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. Bio Control. 59, 307–317. https://doi.org/10.1007/s10526-014-9563-1 (2014).
Wang, J., Zhang, K., Li, L. & Zhang, Z. Q. Development and reproduction of four predatory mites (Parasitiformes: Phytoseiidae) feeding on the spider mites Tetranychus evansi and T. urticae (Trombidiformes: Tetranychidae) and the dried fruit mite Carpoglyphus lactis (Sarcoptiformes: Carpoglyphidae). Syst. Appl. Acarol. 29, 269–284. https://doi.org/10.11158/saa.29.2.7 (2024).
Jafari, S., Fathipo ur, Y., Faraj, I. F. & Bagheri, M. Demographic response to constant temperatures in Neoseiulus barkeri (Phytoseiidae) fed on Tetranychus urticae (Tetranychidae). Syst. Appl. Acarol. 15, 83–99. https://doi.org/10.11158/saa.15.2.1 (2010).
Momen, F. M. Feeding, development and reproduction of Amblyseius barkeri (Acarina:Phytoseiidae) on various kinds of food substances. Acarologia 36, 101–105 https://www1.montpellier.inra.fr/CBGP/acarologia/article.php?id=2286 (1995).
Metwally, A. M., Abou-Awad, B. A. & Al-Azzazy, M. M. Life table and prey consumption of the predatory mite Neoseiulus cydnodactylon Shehata and Zaher (Acari: Phytoseiidae) with three mite species as prey. J. Plant. Dis. Prot. 112, 276–286 (2005). Available online: https://www.jstor.org/stable/45154911
Huang, H. et al. Impact of proteins and saccharides on mass production of Tyrophagus putrescentiae (Acari: Acaridae) and its predator Neoseiulus barkeri (Acari: Phytoseiidae). Biocontrol Sci. Technol. 23, 1231–1244. https://doi.org/10.1080/09583157.2013.822849 (2013).
Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 15–26. https://doi.org/10.2307/1605 (1948).
Acknowledgements
The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2026).
Funding
This research was funded by Qassim University (QU-APC-2026).
Author information
Authors and Affiliations
Contributions
This manuscript was drafted by Mahmoud M. Al-Azzazy and Saleh S. Alhewairini. Laboratory work and statistical analysis were performed by Mahmoud M. Al-Azzazy and Saleh S. Alhewairini. All authors have read and agreed to the published version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Al-Azzazy, M.M., Alhewairini, S.S. Influence of different diets on biological characteristics and life table parameters of the predatory mite, Neoseiulus baraki Hughes (Acari: Phytoseiidae).
Sci Rep (2026). https://doi.org/10.1038/s41598-025-34143-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-34143-8
Keywords
- Biological control
Aceria ficus
Tetranychus urticae
- Alternative food
Source: Ecology - nature.com
