in

Modeling genotype-by-environment interactions across climatic conditions reveals environment-specific genomic regions and candidate genes underlying feed efficiency traits in tropical beef cattle


Abstract

Heat stress represents a major limitation for livestock production systems, negatively affecting feed efficiency, animal health and welfare, and overall performance. In this context, the objective of this study was to identify genomic regions, candidate genes, biological pathways, and functional networks associated with dry matter intake (DMI) and residual feed intake (RFI) in Nellore cattle exposed to varying levels of thermal stress. The dataset comprised records from 22,838 animals, with genotypes available for 18,567 individuals. The data were collected during 296 feed efficiency trials between 2011 and 2023 across 21 Brazilian farms. Genome-wide association studies (GWAS) were performed using the single-step GBLUP (ssGBLUP) approach to account for genotype-by-environment (G×E) interactions in Nellore cattle. Environmental variation was modeled using the temperature-humidity index (THI) as the environmental gradient, with analyses stratified across three environmental gradients (EG): low (THI = 66), medium (THI = 74), and high (THI = 81). Fifty-one SNPs were significantly associated with RFI, including 27 shared across all three EGs, 10 exclusive to the low EG, one to the high EG, and 13 shared between the moderate and high EGs. These associations were mapped to 44 candidate genes, with 19 genes commonly identified across all EGs, including key candidates such as PIPOX, GTF2F2, KCTD4, MYO18A, and NFIA. For DMI, 136 significant SNPs were identified: 12 and 39 exclusive to the low and moderate EGs, respectively; 28 shared across all EGs; and 57 shared between the moderate and high EGs. These variants were linked to 58 candidate genes, of which 19 were common to all EGs, including NCAPG, LCORL, FAM13A, HERC3, CCND1, and FGF19. Gene network analyses revealed a clear reconfiguration of interaction structures across thermal gradients, particularly for RFI, where gene connectivity declined with increasing THI levels. For DMI, gene networks remained highly integrated, especially in the lowest THI level. Functional annotation highlighted both conserved and environment-specific regulatory architectures, involving key biological processes such as growth regulation, lipid and protein metabolism, intracellular signaling, stress response, and neuroendocrine control. These findings uncover the environmental sensitivity of RFI and DMI, highlight the complex and dynamic genomic basis of these traits under varying climatic conditions, and support the identification of candidate genes for genomic selection programs aiming to enhance climatic resilience in tropical beef cattle.

Data availability

The data analyzed in this study were obtained from the National Association of Breeders and Researchers (ANCP). The phenotypic and genotypic information was provided to the authors for academic research purposes only. The following restrictions apply: the dataset is not publicly available and its use requires formal authorization. Requests to access these datasets should be directed to Dr. João Carlos G. Giffoni Filho, President of ANCP (email: [email protected]).

References

  1. Baumgard, L. H. & Rhoads, R. P. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 1, 311–337. https://doi.org/10.1146/annurev-animal-031412-103644 (2013).

    Google Scholar 

  2. Gupta, S., Sharma, A., Joy, A., Dunshea, F. R. & Chauhan, S. S. The impact of heat stress on immune status of dairy cattle and strategies to ameliorate the negative effects. Animals 13, 107. https://doi.org/10.3390/ani13010107 (2023).

    Google Scholar 

  3. Cheruiyot, E. K. et al. Genotype-by-environment (temperature-humidity) interaction of milk production traits in Australian Holstein cattle. J. Dairy. Sci. 103, 2460–2476. https://doi.org/10.3168/jds.2019-17609 (2020).

    Google Scholar 

  4. Hoffmann, G. et al. Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosyst Eng. 199, 83–96. https://doi.org/10.1016/j.biosystemseng.2019.10.017 (2020).

    Google Scholar 

  5. Imran, S. et al. Delineation of temperature-humidity index (THI) as indicator of heat stress in riverine buffaloes (Bubalus bubalis) of a sub-tropical Indian region. Cell. Stress Chaperones. 26, 657–669. https://doi.org/10.1007/s12192-021-01209-1/Published (2021).

    Google Scholar 

  6. Dikmen, S., Cole, J. B., Null, D. J. & Hansen, P. J. Genome-Wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. PLoS One. 8, e69202. https://doi.org/10.1371/journal.pone.0069202 (2013).

    Google Scholar 

  7. Velayudhan, S. M. et al. Molecular, physiological and hematological responses of crossbred dairy cattle in a tropical savanna climate. Biology (Basel). 12, 26. https://doi.org/10.3390/biology12010026 (2022).

    Google Scholar 

  8. Min, L. et al. Metabolic responses and omics technologies for elucidating the effects of heat stress in dairy cows. Int. J. Biometeorol. 61, 1149–1158. https://doi.org/10.1007/s00484-016-1283-z (2017).

    Google Scholar 

  9. Elvinger, F., Natzke, R. P. & Hansen, P. J. Interactions of heat stress and bovine Somatotropin affecting physiology and immunology of lactating cows. J. Dairy. Sci. 75, 449–462. https://doi.org/10.3168/jds.S0022-0302(92)77781-9 (1992).

    Google Scholar 

  10. Wolfenson, D. & Roth, Z. Impact of heat stress on cow reproduction and fertility. Anim. Front. 9, 32–38. https://doi.org/10.1093/af/vfy027 (2019).

    Google Scholar 

  11. Giannone, C., Bovo, M., Ceccarelli, M., Torreggiani, D. & Tassinari, P. Review of the heat Stress-Induced responses in dairy cattle. Animals 13, 3451. https://doi.org/10.3390/ani13223451 (2023).

    Google Scholar 

  12. Khan, I. et al. Heat stress as a barrier to successful reproduction and potential alleviation strategies in cattle. Animals 13, 2359. https://doi.org/10.3390/ani13142359 (2023).

    Google Scholar 

  13. Cooke, R. F. et al. Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. J. Anim. Sci. 98, skaa014. https://doi.org/10.1093/jas/skaa014 (2020).

    Google Scholar 

  14. Minsky, N. & Roeder, R. G. Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α. Proc. Natl. Acad. Sci. U S A. 112, E5669–E5678. https://doi.org/10.1073/pnas.1516219112 (2015).

    Google Scholar 

  15. Xu, L., Ma, X., Bagattin, A. & Mueller, E. The transcriptional coactivator PGC1α protects against hyperthermic stress via Cooperation with the heat shock factor HSF1. Cell. Death Dis. 7, e2102–e2102. https://doi.org/10.1038/cddis.2016.22 (2016).

    Google Scholar 

  16. Martyniuk, C. J. Perspectives on transcriptomics in animal physiology studies. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 250, 110490. https://doi.org/10.1016/j.cbpb.2020.110490 (2020).

    Google Scholar 

  17. Dovolou, E., Giannoulis, T., Nanas, I. & Amiridis, G. S. Heat stress: A serious disruptor of the reproductive physiology of dairy cows. Animals 13, 1846. https://doi.org/10.3390/ani13111846 (2023).

    Google Scholar 

  18. Weller, J. I., Ezra, E. & Gershoni, M. Broad phenotypic impact of the effects of transgenerational heat stress in dairy cattle: a study of four consecutive generations. Genet. Selection Evol. 53, 69. https://doi.org/10.1186/s12711-021-00666-7 (2021).

    Google Scholar 

  19. Silva Neto, J. B. et al. Exploring the impact of heat stress on feed efficiency in tropical beef cattle using genomic reaction norm models. Animal (2025). https://doi.org/10.1016/j.Animal.2025.101612

    Google Scholar 

  20. Lees, A. M. et al. The impact of heat load on cattle. Animals 9, 322. https://doi.org/10.3390/ani9060322 (2019).

    Google Scholar 

  21. Wang, J. et al. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 11, 79. https://doi.org/10.1186/s40104-020-00485-8 (2020).

    Google Scholar 

  22. Winton, T. S., Nicodemus, M. C. & Harvey, K. M. Stressors inherent to beef cattle management in the united States of America and the resulting impacts on production sustainability: A review. Ruminants 4, 227–240. https://doi.org/10.3390/ruminants4020016 (2024).

    Google Scholar 

  23. Halli, K., Vanvanhossou, S. F., Bohlouli, M., König, S. & Yin, T. Identification of candidate genes on the basis of SNP by time-lagged heat stress interactions for milk production traits in German Holstein cattle. PLoS One. 16 (10 October), e0258216. https://doi.org/10.1371/journal.pone.0258216 (2021).

    Google Scholar 

  24. Braz, C. U., Rowan, T. N., Schnabel, R. D. & Decker, J. E. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in simmental cattle. Sci. Rep. 11, 13335. https://doi.org/10.1038/s41598-021-92455-x (2021).

    Google Scholar 

  25. Carvalho Filho, I. et al. Genome-wide association study considering genotype-by-environment interaction for productive and reproductive traits using whole-genome sequencing in Nellore cattle. BMC Genom. 25, 623. https://doi.org/10.1186/s12864-024-10520-x (2024).

    Google Scholar 

  26. Silva Neto, J. B. et al. Genotype-by-environment interactions in beef and dairy cattle populations: A review of methodologies and perspectives on research and applications. Anim. Genet. 55, 871–892. https://doi.org/10.1111/age.13483 (2024).

    Google Scholar 

  27. Mendes, E. D. M. Procedimentos para mensuração de consumo individual de alimento em bovinos de corte. Ribeirão Preto, Brazil; (2020).

  28. Silva Neto, J. B. et al. Genotype-by-environment interactions for feed efficiency traits in Nellore cattle based on bi-trait reaction norm models. Genet. Sel. Evol. https://doi.org/10.1186/s12711-023-00867-2 (2023).

    Google Scholar 

  29. Roso, V. M. & Schenkel, F. S. AMC-a computer programme to assess the degree of connectedness among contemporary groups. Belo Horizonte, Brazil: 8th World Congress on Genetics Applied to Livestock Production (2006).

  30. Sargolzaei, M., Chesnais, J. P. & Schenkel, F. S. A new approach for efficient genotype imputation using information from relatives. BMC Genom. 15 https://doi.org/10.1186/1471-2164-15-478 (2014).

  31. Mota, L. F. M. et al. Assessment of inbreeding coefficients and inbreeding depression on complex traits from genomic and pedigree data in Nelore cattle. BMC Genom. https://doi.org/10.1186/s12864-024-10842-w (2024).

  32. Misztal, I., TS, LD & AI LA, & VZ. Manual for BLUPF90 family of programs. Athens (2014).

  33. NRC. A guide to environmental research on animals. Washington, DC (1971).

  34. Bohmanova, J., Misztal, I., Tsuruta, S., Norman, H. D. & Lawlor, T. J. Short communication: genotype by environment interaction due to heat stress. J. Dairy. Sci. 91, 840–846. https://doi.org/10.3168/jds.2006-142 (2008).

    Google Scholar 

  35. Santana, M. L., Bignardi, A. B., Eler, J. P. & Ferraz, J. B. S. Genetic variation of the weaning weight of beef cattle as a function of accumulated heat stress. J. Anim. Breed. Genet. 133, 92–104. https://doi.org/10.1111/jbg.12169 (2016).

    Google Scholar 

  36. Menéndez-Buxadera, A., Pereira, R. J., El Faro, L. & Santana, M. L. Genotype by environment interaction due to heat stress during gestation and postpartum for milk production of Holstein cattle. Animal 14, 2014–2022. https://doi.org/10.1017/S1751731120001068 (2020).

    Google Scholar 

  37. Wang, H., Misztal, I., Aguilar, I., Legarra, A. & Muir, W. M. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. (Camb). 94, 73–83. https://doi.org/10.1017/S0016672312000274 (2012).

    Google Scholar 

  38. Aguilar, I. et al. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy. Sci. 93, 743–752. https://doi.org/10.3168/jds.2009-2730 (2010).

    Google Scholar 

  39. VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy. Sci. 91, 4414–4423. https://doi.org/10.3168/jds.2007-0980 (2008).

    Google Scholar 

  40. Aguilar, I. et al. Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle. Genet. Sel. Evol. 51, 28. https://doi.org/10.1186/s12711-019-0469-3 (2019).

    Google Scholar 

  41. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004. https://doi.org/10.1111/j.0006-341X.1999.00997.x (1999).

    Google Scholar 

  42. Armstrong, R. A. When to use the bonferroni correction. Ophthalmic Physiol. Opt. 34, 502–508. https://doi.org/10.1111/opo.12131 (2014).

    Google Scholar 

  43. Goddard, M. E., Hayes, B. J. & Meuwissen, T. H. E. Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128, 409–421. https://doi.org/10.1111/j.1439-0388.2011.00964.x (2011).

    Google Scholar 

  44. Yin, L. et al. rMVP: A Memory-efficient, visualization-enhanced, and parallel-accelerated tool for Genome-wide association study. Genomics Proteom. Bioinf. 19, 619–628. https://doi.org/10.1016/j.gpb.2020.10.007 (2021).

    Google Scholar 

  45. Fonseca, P. A. S., Suárez-Vega, A., Marras, G. & Cánovas, Á. GALLO: an R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. Gigascience. https://doi.org/10.1093/gigascience/giaa149 (2020).

    Google Scholar 

  46. Rosen, B. D. et al. De Novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience. https://doi.org/10.1093/gigascience/giaa021 (2020).

    Google Scholar 

  47. Yu, G., Wang, L. G., Han, Y., He, Q. Y. & ClusterProfiler An R package for comparing biological themes among gene clusters. OMICS 16, 284–287. https://doi.org/10.1089/omi.2011.0118 (2012).

    Google Scholar 

  48. Szklarczyk, D. et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 447–452. https://doi.org/10.1093/nar/gku1003 (2015).

    Google Scholar 

  49. Brunes, L. C. et al. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J. Anim. Breed. Genet. 138, 23–44. https://doi.org/10.1111/jbg.12496 (2021).

    Google Scholar 

  50. Mota, L. F. M. et al. Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits. BMC Genomics. https://doi.org/10.1186/s12864-022-08671-w (2022).

    Google Scholar 

  51. Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13. https://doi.org/10.1534/genetics.120.303163 (2020).

    Google Scholar 

  52. Hiraike, Y. et al. NFIA differentially controls adipogenic and myogenic gene program through distinct pathways to ensure brown and beige adipocyte differentiation. PLoS Genet. 16, e1009044. https://doi.org/10.1371/journal.pgen.1009044 (2020).

    Google Scholar 

  53. Hiraike, Y. et al. NFIA in adipocytes reciprocally regulates mitochondrial and inflammatory gene program to improve glucose homeostasis. Proc. Natl. Acad. Sci. U S A. 120, e2308750120. https://doi.org/10.1073/pnas.2308750120 (2023).

    Google Scholar 

  54. Natarajan, S. K., Muthukrishnan, E., Khalimonchuk, O., Mott, J. L. & Becker, D. F. Evidence for pipecolate oxidase in mediating protection against hydrogen peroxide stress. J. Cell. Biochem. 118, 1678–1688. https://doi.org/10.1002/jcb.25825 (2017).

    Google Scholar 

  55. Cao, J. M. et al. Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Sci. Rep. 6, 36768. https://doi.org/10.1038/srep36768 (2016).

    Google Scholar 

  56. Farhang-Fallah, J. et al. The pleckstrin homology (PH) domain-Interacting protein couples the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to mitogenesis and GLUT4 translocation. Mol. Cell. Biol. 22, 7325–7336. https://doi.org/10.1128/mcb.22.20.7325-7336.2002 (2002).

    Google Scholar 

  57. Conner, J. R., Smirnova, I. I., Moseman, A. P. & Poltorak, A. IRAK1BP1 inhibits inflammation by promoting nuclear translocation of NF-κB p50. Proc. Natl. Acad. Sci. U S A. 107, 11477–11482. https://doi.org/10.1073/pnas.1006894107 (2010).

    Google Scholar 

  58. Yang, Z. et al. Tmem178 negatively regulates store-operated calcium entry in myeloid cells via association with STIM1. J. Autoimmun. 101, 94–108. https://doi.org/10.1016/j.jaut.2019.04.015 (2019).

    Google Scholar 

  59. Ahmed Mohamed, Z., Yang, J., Wen, J., Jia, F. & Banerjee, S. SEPHS1 gene: A new master key for neurodevelopmental disorders. Clin. Chim. Acta. 562, 119844. https://doi.org/10.1016/j.cca.2024.119844 (2024).

    Google Scholar 

  60. Van Veldhoven, P. P. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 51, 2863–2895. https://doi.org/10.1194/jlr.R005959 (2010).

    Google Scholar 

  61. Luján, R. Organisation of potassium channels on the neuronal surface. J. Chem. Neuroanat. 40, 1–20. https://doi.org/10.1016/j.jchemneu.2010.03.003 (2010).

    Google Scholar 

  62. Yeon, J. T. et al. KCNK1 inhibits osteoclastogenesis by blocking the Ca2 + oscillation and JNK-NFATc1 signaling axis. J. Cell. Sci. 128, 3411–3419. https://doi.org/10.1242/jcs.170738 (2015).

    Google Scholar 

  63. Zhang, K. et al. Genetic implication of a novel thiamine transporter in human hypertension. J. Am. Coll. Cardiol. 63, 1542–1555. https://doi.org/10.1016/j.jacc.2014.01.007 (2014).

    Google Scholar 

  64. Seo, J. & Choi, J-H. Genetic variations in Thiamin transferase SLC35F3 and the risk of hypertension in Koreans. Clin. Nutr. Res. 10, 140. https://doi.org/10.7762/cnr.2021.10.2.140 (2021).

    Google Scholar 

  65. Maridas, D. E., DeMambro, V. E., Le, P. T., Mohan, S. & Rosen, C. J. IGFBP4 is required for adipogenesis and influences the distribution of adipose depots. Endocrinology 158, 3488–3500. https://doi.org/10.1210/en.2017-00248 (2017).

    Google Scholar 

  66. Mense, K. et al. Increased concentrations of insulin-like growth factor binding protein (IGFBP)-2, IGFBP-3, and IGFBP-4 are associated with fetal mortality in pregnant cows. Front. Endocrinol. (Lausanne). 9, JUN310. https://doi.org/10.3389/fendo.2018.00310 (2018).

    Google Scholar 

  67. Liu, J., Zhang, X., Cheng, Y. & Cao, X. Dendritic cell migration in inflammation and immunity. Cell. Mol. Immunol. 18, 2461–2471. https://doi.org/10.1038/s41423-021-00726-4 (2021).

    Google Scholar 

  68. Cassim Bawa, F. N. et al. Adipocyte retinoic acid receptor α prevents obesity and steatohepatitis by regulating energy expenditure and lipogenesis. Obesity 32, 120–130. https://doi.org/10.1002/oby.23929 (2024).

    Google Scholar 

  69. Hoshiba, H. et al. Comparison of the effects explained by variations in the bovine PLAG1 and NCAPG genes on daily body weight gain, linear skeletal measurements and carcass traits in Japanese black steers from a progeny testing program. Anim. Sci. J. 84, 529–534. https://doi.org/10.1111/asj.12033 (2013).

    Google Scholar 

  70. Lindholm-Perry, A. K. et al. Adipose and muscle tissue gene expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain. PLoS One. 8, e80882. https://doi.org/10.1371/journal.pone.0080882 (2013).

    Google Scholar 

  71. Setoguchi, K. et al. The SNP c.1326T > G in the non-SMC condensin i complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle. Anim. Genet. 42, 650–655. https://doi.org/10.1111/j.1365-2052.2011.02196.x (2011).

    Google Scholar 

  72. Zhang, W. et al. Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle. Sci. Rep. 6, 38073. https://doi.org/10.1038/srep38073 (2016).

    Google Scholar 

  73. Widmann, P. et al. Systems biology analysis merging phenotype, metabolomic and genomic data identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and cellular maintenance processes as major contributors to genetic variability in Bovine feed efficiency. PLoS One. 10, e0124574. https://doi.org/10.1371/journal.pone.0124574 (2015)

    Google Scholar 

  74. Utsunomiya, Y. T. et al. Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet. 14, 52. https://doi.org/10.1186/1471-2156-14-52 (2013).

    Google Scholar 

  75. Al-Mamun, H. A. et al. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet. Selection Evol. 47, 66. https://doi.org/10.1186/s12711-015-0142-4 (2015).

    Google Scholar 

  76. Lindholm-Perry, A. K. et al. Association, effects and validation of polymorphisms within the NCAPG – LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genet. 12, 103. https://doi.org/10.1186/1471-2156-12-103 (2011).

    Google Scholar 

  77. Pryce, J. E., Hayes, B. J., Bolormaa, S. & Goddard, M. E. Polymorphic regions affecting human height also control stature in cattle. Genetics 187, 981–984. https://doi.org/10.1534/genetics.110.123943 (2011).

    Google Scholar 

  78. Song, Z., Wang, Y., Zhang, F., Yao, F. & Sun, C. Calcium signaling pathways: key pathways in the regulation of obesity. Int. J. Mol. Sci. 20, 2768. https://doi.org/10.3390/ijms20112768 (2019).

    Google Scholar 

  79. Santistevan, N. J. et al. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold. PLoS One. 17 (7 July), e0270903. https://doi.org/10.1371/journal.pone.0270903 (2022).

    Google Scholar 

  80. Gyetvai, B. M. & Vadasz, C. Pleiotropic effects of Grm7/GRM7 in shaping neurodevelopmental pathways and the neural substrate of complex behaviors and disorders. Biomolecules 15, 392. https://doi.org/10.3390/biom15030392 (2025).

    Google Scholar 

  81. Shekarabi, M. et al. WNK kinase signaling in ion homeostasis and human disease. Cell. Metab. 25, 285–299. https://doi.org/10.1016/j.cmet.2017.01.007 (2017).

    Google Scholar 

  82. Meisenberg, C. et al. Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability. Nucleic Acids Res. 40, 701–711. https://doi.org/10.1093/nar/gkr744 (2012).

    Google Scholar 

  83. Kwon, Y. T. & Ciechanover, A. The ubiquitin code in the ubiquitin-Proteasome system and autophagy. Trends Biochem. Sci. 42, 873–886. https://doi.org/10.1016/j.tibs.2017.09.002 (2017).

    Google Scholar 

  84. Belhadj Slimen, I., Najar, T., Ghram, A. & Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. (Berl). 100, 401–412. https://doi.org/10.1111/jpn.12379 (2016).

    Google Scholar 

  85. Raybould, H. E. Mechanisms of CCK signaling from gut to brain. Curr. Opin. Pharmacol. 7, 570–574. https://doi.org/10.1016/j.coph.2007.09.006 (2007).

    Google Scholar 

  86. Maruoka, M. et al. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Mol. Cell. 81, 1397–1410e9. https://doi.org/10.1016/j.molcel.2021.02.025 (2021).

    Google Scholar 

  87. Suzuki, J., Imanishi, E. & Nagata, S. Exposure of phosphatidylserine by Xkrelated protein family members during apoptosis. J. Biol. Chem. 289, 30257–30267. https://doi.org/10.1074/jbc.M114.583419 (2014).

    Google Scholar 

  88. Edea, Z. et al. Signatures of positive selection underlying beef production traits in Korean cattle breeds. J. Anim. Sci. Technol. 62, 293–305. https://doi.org/10.5187/JAST.2020.62.3.293 (2020).

    Google Scholar 

  89. Lindholm-Perry, A. K. et al. A region on BTA14 that includes the positional candidate genes LYPLA1, XKR4 and TMEM68 is associated with feed intake and growth phenotypes in cattle. Anim. Genet. 43, 216–219. https://doi.org/10.1111/j.1365-2052.2011.02232.x (2012).

    Google Scholar 

  90. Schweizer, J. et al. New consensus nomenclature for mammalian keratins. J. Cell Biol. 174, 169–174. https://doi.org/10.1083/jcb.200603161 (2006).

    Google Scholar 

  91. Shi, P. et al. Loss-of-function mutations in keratin 32 gene disrupt skin immune homeostasis in pityriasis rubra pilaris. Nat. Commun. 15, 6259. https://doi.org/10.1038/s41467-024-50481-z (2024).

    Google Scholar 

  92. Nair, J. M. et al. Uncovering novel regulatory variants in carbohydrate metabolism: a comprehensive multi-omics study of glycemic traits in the Indian population. Mol. Genet. Genomics. 299, 85. https://doi.org/10.1007/s00438-024-02176-9 (2024).

    Google Scholar 

  93. Jansen, G. A., Waterham, H. R. & Wanders, R. J. A. Molecular basis of refsum disease: sequence variations in Phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum. Mutat. 23, 209–218. https://doi.org/10.1002/humu.10315 (2004).

    Google Scholar 

  94. Lesage, F. & Lazdunski, M. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiology-Renal Physiol. 279, F793–801 (2000).

    Google Scholar 

  95. Shaddox, L. M. et al. Epigenetic regulation of inflammation in localized aggressive periodontitis. Clin. Epigenetics. 9, 94. https://doi.org/10.1186/s13148-017-0385-8 (2017).

    Google Scholar 

  96. Marenne, G. et al. Exome sequencing identifies genes and gene sets contributing to severe childhood Obesity, linking PHIP variants to repressed POMC transcription. Cell. Metab. 31, 1107–1119e12. https://doi.org/10.1016/j.cmet.2020.05.007 (2020).

    Google Scholar 

  97. Purrello, M. et al. Genetic characterization of general transcription factors TFIIF and TFIIB of Hom o sapiens sapiens. Cytogenel Cell. Genet. 69, 75–80 (1995).

    Google Scholar 

  98. Nie, R., Niu, W., Tang, T., Zhang, J. & Zhang, X. Integrating MicroRNA expression, miRNA-mRNA regulation network and signal pathway: A novel strategy for lung cancer biomarker discovery. PeerJ 9, e12369. https://doi.org/10.7717/peerj.12369 (2021).

    Google Scholar 

  99. Zhang, C. et al. Polypeptide 2: A novel therapeutic target for depression identified using an integrated bioinformatic analysis. Front. Aging Neurosci. 14, 918217. https://doi.org/10.3389/fnagi.2022.918217 (2022).

    Google Scholar 

  100. Zheng, C. et al. KCTD4 interacts with CLIC1 to disrupt calcium homeostasis and promote metastasis in esophageal cancer. Acta Pharm. Sin B. 13, 4217–4233. https://doi.org/10.1016/j.apsb.2023.07.013 (2023).

    Google Scholar 

  101. Kim, S. et al. Effects of mitochondrial transplantation on transcriptomics in a polymicrobial sepsis model. Int. J. Mol. Sci. 24, 15326. https://doi.org/10.3390/ijms242015326 (2023).

    Google Scholar 

  102. Toro, S., Wegner, J., Muller, M., Westerfield, M. & Varga, Z. M. Identification of differentially expressed genes in the zebrafish hypothalamic-pituitary axis. Gene Expr. Patterns. 9, 200–208. https://doi.org/10.1016/j.gep.2008.12.007 (2009).

    Google Scholar 

  103. Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl. Acad. Sci. 103, 3781–3786 (2006).

    Google Scholar 

  104. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death Gene-1 high germinal Center-Associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Google Scholar 

  105. Förster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 8, 362–371. https://doi.org/10.1038/nri2297 (2008).

    Google Scholar 

  106. Lufkin, T. et al. High postnatal lethality and testis degeneration in retinoic acid receptor a mutant mice (vitamin A/gene targeting/spermatogenesis). Proc. Natl. Acad. Sci. USA. 90, 7225–7229 (1993).

    Google Scholar 

  107. De Braekeleer, E., Douet-Guilbert, N. & De Braekeleer, M. RARA fusion genes in acute promyelocytic leukemia: A review. Expert Rev. Hematol. 7, 347–357. https://doi.org/10.1586/17474086.2014.903794 (2014).

    Google Scholar 

  108. Hu, C. et al. Retinoic acid promotes formation of chicken (Gallus gallus) spermatogonial stem cells by regulating the ECM-receptor interaction signaling pathway. Gene 820, 146227. https://doi.org/10.1016/j.gene.2022.146227 (2022).

    Google Scholar 

  109. Cao, Q. et al. Phenotype and functional analyses in a Transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int. Heart J. 58, 939–947. https://doi.org/10.1536/ihj.16-019 (2017).

    Google Scholar 

  110. Tsoumpra, M. K. et al. Dystrobrevin alpha gene is a direct target of the vitamin D receptor in muscle. J. Mol. Endocrinol. 64, 195–208. https://doi.org/10.1530/JME-19-0229 (2020).

    Google Scholar 

  111. Malakootian, M. et al. Whole-exome sequencing reveals a rare missense variant in DTNA in an Iranian pedigree with early-onset atrial fibrillation. BMC Cardiovasc. Disord. 22, 37. https://doi.org/10.1186/s12872-022-02485-0 (2022).

    Google Scholar 

  112. Zazzi, H., Nikoshkov, A., Hall, K. & Luthman, H. Structure and transcription regulation of the human Insulin-like growth factor binding protein 4 gene (IGFBP4). Genomics 49, 401–410 (1998).

    Google Scholar 

  113. Awede, B., Thissen, J. P., Gailly, P. & Lebacq, J. Regulation of IGF-I, IGFBP-4 and IGFBP-5 gene expression by loading in mouse skeletal muscle. FEBS Lett. 461, 263–267. https://doi.org/10.1016/S0014-5793(99)01469-6 (1999).

    Google Scholar 

  114. Zhang, W. et al. IGF2/IGFBP4 reduces apoptosis and increases free cholesterol of chicken granulosa cells in vitro. Poult. Sci. 103, 104416. https://doi.org/10.1016/j.psj.2024.104416 (2024).

    Google Scholar 

  115. Lu, Y. et al. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64, 885–897. https://doi.org/10.1016/j.neuron.2009.11.007 (2009).

    Google Scholar 

  116. Kim, S. H., Liu, M., Jin, H. S. & Park, S. High genetic risk scores of ASIC2, MACROD2, CHRM3, and C2orf83 genetic variants associated with polycystic ovary syndrome impair insulin sensitivity and interact with energy intake in Korean women. Gynecol. Obstet. Invest. 84, 225–236. https://doi.org/10.1159/000493131 (2019).

    Google Scholar 

  117. Price, M. P. et al. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav. 13, 179–194. https://doi.org/10.1111/gbb.12108 (2014).

    Google Scholar 

  118. Majeres, L. E., Dilger, A. C., Shike, D. W., McCann, J. C. & Beever, J. E. Defining a haplotype encompassing the LCORL-NCAPG locus associated with increased lean growth in beef cattle. Genes (Basel). 15, 576. https://doi.org/10.3390/genes15050576 (2024).

    Google Scholar 

  119. Alam, M. Z. et al. Genome-Wide association study to identify QTL for carcass traits in Korean Hanwoo cattle. Animals 13, 2737. https://doi.org/10.3390/ani13172737 (2023).

    Google Scholar 

  120. Li, C. et al. Genomic selection for live weight in the 14th month in alpine Merino sheep combining GWAS information. Animals 13, 3516. https://doi.org/10.3390/ani13223516 (2023).

    Google Scholar 

  121. Jin, C. F., Chen, Y. J., Yang, Z. Q., Shi, K. & Chen, C. K. A genome-wide association study of growth trait-related single nucleotide polymorphisms in Chinese Yancheng chickens. Genet. Mol. Res. 14, 15783–15792. https://doi.org/10.4238/2015.December.1.30 (2015).

    Google Scholar 

  122. Fathzadeh, M. et al. FAM13A affects body fat distribution and adipocyte function. Nat. Commun. 11, 1465. https://doi.org/10.1038/s41467-020-15291-z (2020).

    Google Scholar 

  123. Lundbäck, V. et al. FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study. Diabetologia 61, 1112–1123. https://doi.org/10.1007/s00125-018-4572-8 (2018).

    Google Scholar 

  124. Tang, J. et al. Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity. Int. J. Obes. 43, 1269–1280. https://doi.org/10.1038/s41366-018-0222-y (2019).

    Google Scholar 

  125. Cruz, C., Ventura, F., Bartrons, R. & Rosa, J. L. HERC3 binding to and regulation by ubiquitin. FEBS Lett. 488, 74–80 (2001).

    Google Scholar 

  126. Garcia-Gonzalo, F. R. & Rosa, J. L. The HERC proteins: functional and evolutionary insights. Cell. Mol. Life Sci. 62, 1826–1838. https://doi.org/10.1007/s00018-005-5119-y (2005).

    Google Scholar 

  127. Dolegowska, K., Marchelek-Mysliwiec, M., Nowosiad-Magda, M., Slawinski, M. & Dolegowska, B. FGF19 subfamily members: FGF19 and FGF21. J. Physiol. Biochem. 75, 229–240. https://doi.org/10.1007/s13105-019-00675-7 (2019).

    Google Scholar 

  128. Kir, S., Kliewer, S. A. & Mangelsdorf, D. J. Roles of FGF19 in liver metabolism. Cold Spring Harb Symp. Quant. Biol. 76, 139–144. https://doi.org/10.1101/sqb.2011.76.010710 (2011).

    Google Scholar 

  129. Chennamsetty, I., Claudel, T., Kostner, K. M., Trauner, M. & Kostner, G. M. FGF19 signaling cascade suppresses APOA gene expression. Arterioscler. Thromb. Vasc Biol. 32, 1220–1227 (2012).

    Google Scholar 

  130. Cicatiello, L. et al. Estrogens and progesterone promote persistent CCND1 gene activation during G 1 by inducing transcriptional derepression via c- Jun /c- Fos /Estrogen receptor (Progesterone receptor) complex assembly to a distal regulatory element and recruitment of Cyclin D1 to its own gene promoter. Mol. Cell. Biol. 24, 7260–7274. https://doi.org/10.1128/mcb.24.16.7260-7274.2004 (2004).

    Google Scholar 

  131. Röhrs, S. et al. Chronological expression of Wnt target genes Ccnd1, Myc, Cdkn1a, Tfrc, Plf1 and Ramp3. Cell. Biol. Int. 33, 501–508. https://doi.org/10.1016/j.cellbi.2009.01.016 (2009).

    Google Scholar 

  132. Thun, G. A., Imboden, M., Berger, W., Rochat, T. & Probst-Hensch, N. M. The association of a variant in the cell cycle control gene CCND1 and obesity on the development of asthma in the Swiss SAPALDIA study. J. Asthma. 50, 147–154. https://doi.org/10.3109/02770903.2012.757776 (2013).

    Google Scholar 

  133. Heithaus, J. L., Davenport, S., Twyman, K. A., Torti, E. E. & Batanian, J. R. An intragenic deletion of the gene MNAT1 in a family with pectus deformities. Am. J. Med. Genet. A. 164, 1293–1297. https://doi.org/10.1002/ajmg.a.36445 (2014).

    Google Scholar 

  134. Zamani-Ahmadmahmudi, M., Najafi, A. & Nassiri, S. M. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes. J. Comp. Pathol. 152, 119–130. https://doi.org/10.1016/j.jcpa.2014.11.008 (2015).

    Google Scholar 

  135. Ma, J. et al. The positive effect of chick embryo and nutrient mixture on bone marrow- derived mesenchymal stem cells from aging rats. Sci. Rep. 8, 7051. https://doi.org/10.1038/s41598-018-25563-w (2018).

    Google Scholar 

  136. Wang, J. et al. The regulatory effect of has-circ-0001146/miR-26a-5p/MNAT1 network on the proliferation and invasion of osteosarcoma. Biosci. Rep. 40, BSR20201232. https://doi.org/10.1042/BSR20201232 (2020).

    Google Scholar 

  137. Christensen, K. L., Patrick, A. N., McCoy, E. L. & Ford, H. L. Chapter 5 the six family of homeobox genes in development and cancer. Adv. Cancer Res. 101, 93–126. https://doi.org/10.1016/S0065-230X(08)00405-3 (2008).

    Google Scholar 

  138. Yajima, H. et al. Six family genes control the proliferation and differentiation of muscle satellite cells. Exp. Cell. Res. 316, 2932–2944. https://doi.org/10.1016/j.yexcr.2010.08.001 (2010).

    Google Scholar 

  139. Niro, C. et al. Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome. Dev. Biol. 338, 168–182. https://doi.org/10.1016/j.ydbio.2009.11.031 (2010).

    Google Scholar 

  140. Gaufichon, L., Rothstein, S. J. & Suzuki, A. Asparagine metabolic pathways in Arabidopsis. Plant. Cell. Physiol. 57, 675–689. https://doi.org/10.1093/pcp/pcv184 (2016).

    Google Scholar 

  141. Massel, K. et al. Whole genome sequencing reveals potential new targetsfor improving nitrogen uptakeand utilization in sorghumbicolor sorghumbicolor. Front. Plant. Sci. 7, 1544. https://doi.org/10.3389/fpls.2016.01544 (2016).

    Google Scholar 

  142. Ohara, Y. et al. Genetic background-dependent abnormalities of the enteric nervous system and intestinal function in Kif26a-deficient mice. Sci. Rep. 11, 3191. https://doi.org/10.1038/s41598-021-82785-1 (2021).

    Google Scholar 

  143. Porto Neto, L. R., Bunch, R. J., Harrison, B. E. & Barendse, W. Variation in the XKR4 gene was significantly associated with subcutaneous rump fat thickness in indicine and composite cattle. Anim. Genet. 43, 785–789. https://doi.org/10.1111/j.1365-2052.2012.02330.x (2012).

    Google Scholar 

  144. Bastin, B. C. et al. A polymorphism in XKR4 is significantly associated with serum prolactin concentrations in beef cows grazing tall fescue. Anim. Genet. 45, 439–441. https://doi.org/10.1111/age.12134 (2014).

    Google Scholar 

  145. Jia, Y. et al. Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene. Mech. Dev. 129, 193–207. https://doi.org/10.1016/j.mod.2012.08.002 (2012).

    Google Scholar 

  146. Edwin, R. K. et al. PIMT/TGS1: an evolving metabolic molecular switch with conserved Methyl transferase activity. Drug Discov Today. 27, 2386–2393. https://doi.org/10.1016/j.drudis.2022.04.018 (2022).

    Google Scholar 

  147. Challa, N. L. et al. TGS1/PIMT regulates pro-inflammatory macrophage mediated paracrine insulin resistance: crosstalk between macrophages and skeletal muscle cells. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 166878. https://doi.org/10.1016/j.bbadis.2023.166878 (2024).

    Google Scholar 

  148. Wang, Y. et al. Transmembrane protein 68 functions as an MGAT and DGAT enzyme for triacylglycerol biosynthesis. Int. J. Mol. Sci. 24, 2012. https://doi.org/10.3390/ijms24032012 (2023).

    Google Scholar 

  149. McLelland, G. L. et al. Identification of an alternative triglyceride biosynthesis pathway. Nature 621, 171–178. https://doi.org/10.1038/s41586-023-06497-4 (2023).

    Google Scholar 

  150. Zhang, C. et al. Loss of the acyltransferase TMEM68 leads to growth delay and dysregulation of triacylglycerol and glycerophospholipid homeostasis in the mouse brain. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 1870, 159622. https://doi.org/10.1016/j.bbalip.2025.159622 (2025).

    Google Scholar 

  151. Lacourse, K. A., Lay, J. M., Swanberg, L. J., Jenkins, C. & Samuelson, L. C. Molecular structure of the mouse CCK-A receptor gene. Biochem. Biophys. Res. Commun. 236, 630–635 (1997).

    Google Scholar 

  152. Yi, Z. et al. Feed conversion ratio, residual feed intake and cholecystokinin type A receptor gene polymorphisms are associated with feed intake and average daily gain in a Chinese local chicken population. J. Anim. Sci. Biotechnol. 9, 50. https://doi.org/10.1186/s40104-018-0261-1 (2018).

    Google Scholar 

  153. Wang, H. H., Portincasa, P., Liu, M., Tso, P. & Wang, D. Q. H. An update on the lithogenic mechanisms of cholecystokinin a receptor (Cckar), an important gallstone gene for lith13. Genes (Basel). 11, 1–21. https://doi.org/10.3390/genes11121438 (2020).

    Google Scholar 

  154. Takiguchi, S. et al. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene 197, 169–175 (1997).

    Google Scholar 

  155. Takiguchi, S. et al. A disrupted cholecystokinin A receptor gene induces diabetes in obese rats synergistically with ODB1 gene. Endocrinol. Metab. 274, 265–270 (1998).

    Google Scholar 

  156. Clutter, A. C., Sasaki, S. & Pomp, D. Rapid communication: the cholecystokinin Type-A receptor (CCKAR) gene maps to Porcine chromosome 8. J. Anim. Sci. 76, 1983–1984 (1998).

    Google Scholar 

  157. Brandman, O., Liou, J., Park, W. S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and Endoplasmic reticulum Ca2 + Levels. Cell 131, 1327–1339. https://doi.org/10.1016/j.cell.2007.11.039 (2007).

    Google Scholar 

  158. Oh-hora, M. et al. Dual functions for the Endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443. https://doi.org/10.1038/ni1574 (2008).

    Google Scholar 

  159. Berna-Erro, A., Jardin, I., Salido, G. M. & Rosado, J. A. Role of STIM2 in cell function and physiopathology. J. Physiol. 595, 3111–3128. https://doi.org/10.1113/JP273889 (2017).

    Google Scholar 

  160. McIlwraith, E. K., Belsham, D. D. & Phoenixin Uncovering its receptor, signaling and functions. Acta Pharmacol. Sin. 39, 774–778. https://doi.org/10.1038/aps.2018.13 (2018).

    Google Scholar 

  161. Qin, X., Ye, C., Chan, Y. W. & Wong, A. O. L. Goldfish phoenixin: (I) structural characterization, tissue distribution, and novel function as a feedforward signal for feeding-induced food intake in fish model. Front. Endocrinol. (Lausanne). 16, 1570716. https://doi.org/10.3389/fendo.2025.1570716 (2025).

    Google Scholar 

  162. Kras, K., Ropka-Molik, K., Muszyński, S. & Arciszewski, M. B. Expression of genes encoding selected orexigenic and anorexigenic peptides and their receptors in the organs of the Gastrointestinal tract of calves and adult domestic cattle (Bos Taurus Taurus). Int. J. Mol. Sci. 25, 533. https://doi.org/10.3390/ijms25010533 (2024).

    Google Scholar 

  163. Xerxa, E. et al. Whole blood gene expression profiling in preclinical and clinical cattle infected with atypical bovine spongiform encephalopathy. PLoS One. 11, e0153425. https://doi.org/10.1371/journal.pone.0153425 (2016).

    Google Scholar 

  164. Murphy, A. et al. Dietary interventions and molecular mechanisms for healthy musculoskeletal aging. Biogerontology 23, 681–698. https://doi.org/10.1007/s10522-022-09970-1 (2022).

    Google Scholar 

  165. Hou, C. et al. Screening of biomarkers for diagnosing chronic kidney disease and heart failure with preserved ejection fraction through bioinformatics analysis. Biochem. Biophys. Rep. 41, 101911. https://doi.org/10.1016/j.bbrep.2024.101911 (2025).

    Google Scholar 

  166. Schoenmakers, E. & Chatterjee, K. Human disorders affecting the selenocysteine incorporation pathway cause systemic Selenoprotein deficiency. Antioxid. Redox Signal. 33, 481–497. https://doi.org/10.1089/ars.2020.8097 (2020).

    Google Scholar 

  167. Li, J. L. et al. Priority in selenium homeostasis involves regulation of sepsecs transcription in the chicken brain. PLoS One. 7, e35761. https://doi.org/10.1371/journal.pone.0035761 (2012).

    Google Scholar 

  168. Cao, J., Liu, X., Cheng, Y., Wang, Y. & Wang, F. Selenium-enriched polysaccharide: an effective and safe selenium source of C57 mice to improve growth Performance, regulate selenium Deposition, and promote antioxidant capacity. Biol. Trace Elem. Res. 200, 2247–2258. https://doi.org/10.1007/s12011-021-02832-w (2022).

    Google Scholar 

  169. Hosseinzadeh, S. & Hasanpur, K. Gene expression networks and functionally enriched pathways involved in the response of domestic chicken to acute heat stress. Front. Genet. 14, 1102136. https://doi.org/10.3389/fgene.2023.1102136 (2023).

    Google Scholar 

  170. Brown-Brandl, T. M., Eigenberg, R. A., Nienaber, J. A. & Hahn, G. L. Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, part 1: analyses of indicators. Biosyst Eng. 90, 451–462. https://doi.org/10.1016/j.biosystemseng.2004.12.006 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Association of Breeders and Researchers (ANCP, Ribeirão Preto, SP, Brazil) for providing the datasets for the research.

Funding

The authors thank the São Paulo Research Foundation (FAPESP, Brazil) for financial support through a PhD scholarship in Brazil and an international research internship (BEPE), both granted to the first author (Grant Numbers #2022/15385-4 and #2023/13417-9). This study was also partially financed by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

J.B. Silva Neto: Conceptualization, formal analysis, investigation, methodology, validation, writing—original draft and editing; L.F. Brito: Conceptualization, formal analysis, supervision, validation, writing—original draft and review; L.F.M. Mota: Conceptualization, Formal analysis, writing—review; G.R.D. Rodrigues: Visualization, writing—original draft and review; F. Baldi: Conceptualization, Data curation, formal analysis, project administration, supervision, validation, writing—original draft and review.

Corresponding author

Correspondence to
João B. Silva Neto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The collection of the phenotypes was restricted to routine on-farm procedures that did not cause any inconvenience or stress to the animals. Therefore, no specific ethical approval was required. In accordance with national legislation and institutional guidelines, ethical review was not necessary for this study, as all data were obtained from an existing database and no additional animal procedures were conducted.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Neto, J.B.S., Brito, L.F., Mota, L.F.M. et al. Modeling genotype-by-environment interactions across climatic conditions reveals environment-specific genomic regions and candidate genes underlying feed efficiency traits in tropical beef cattle.
Sci Rep (2026). https://doi.org/10.1038/s41598-025-33952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33952-1

Keywords

  • Climate resilience
  • Dry matter intake
  • Functional enrichment
  • Nellore cattle
  • Residual feed intake
  • Temperature-humidity index
  • Tropical environments


Source: Ecology - nature.com

Synergistic effects of biochar and nitrogen fertilizer enhance soil carbon emissions and microbial diversity in acidic orchard soils

The visual system of the longest-living vertebrate, the Greenland shark

Back to Top