in

Multi-omics comparison of two emerging storage pests (Necrobia rufipes and Tribolium castaneum) of dried black soldier fly larvae product


Abstract

The black soldier fly (BSF) larvae is a rich and promising source of alternative protein that continues to increasingly gain global traction as a functional ingredient for sustainable livestock and fish production. The key setback to postharvest processing of stored BSF larvae (BSFL) products is the significant damage caused by two notable storage pests (Tribolium castaneum and Necrobia rufipes). Here, we present a comparative analysis of the complete mitochondrial genomes and gut microbiome profiles of T. castaneum and N. rufipes. The study mitogenomes were similar in size and structure to other coleopteran mitogenomes. The gut microbiome profiles of the two pests showed a high abundance of bacteria in the Proteobacteria and Firmicutes phyla. However, T. castaneum had 78% more phyla represented within its microbiome than N. rufipes. The most abundant genera in T. castaneum were Staphylococcus and Streptococcus, while in N. rufipes, the dominant genera were Klebsiella and Synechococcus. We also identified the presence of potentially clinically harmful microbial genera (Stenotrophomonas maltophilia) in the gut of T. castaneum and N. rufipes in relatively high abundance. These results provide insight into potential harmful associations in the gut of the storage pest, picked from contaminated, poorly processed BSFL products.

Similar content being viewed by others

Absence of microbiome triggers extensive changes in the transcriptional profile of Hermetia illucens during larval ontogeny

Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies

Chromosome-level genome assembly of cotton thrips Thrips tabaci (Thysanoptera: Thripidae)

Data availability

All sequences generated in this study were deposited in the GenBank database ( [www.ncbi.nlm.nih.gov/genbank](http:/www.ncbi.nlm.nih.gov/genbank) ) under the BioProject number: PRJNA995429 and accession number: OR450807.1.

References

  1. Rumpold, B. A. & Schlüter, O. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Anim. Front. 5, 20–24 (2015).

    Google Scholar 

  2. Chia, S. Y. et al. Nutritional composition of black soldier fly larvae feeding on agro-industrial by‐products. Entomol. Exp. Appl. 168, 472–481 (2020).

    Google Scholar 

  3. Khamis, F. M. et al. Insights in the global genetics and gut microbiome of black soldier fly, Hermetia illucens: Implications for animal feed safety control. Front. Microbiol. 11, 1538 (2020).

    Google Scholar 

  4. Zamri, M. Z. A. et al. Potential use of black soldier fly, Hermetia illucens larvae in chicken feed as a protein replacer: A review. J. Anim. Feed Sci. 32, 341–353 (2023).

    Google Scholar 

  5. Ndotono, E. W., Khamis, F. M., Bargul, J. L. & Tanga, C. M. Gut microbiota shift in layer pullets fed on black soldier fly larvae-based feeds towards enhancing healthy gut microbial community. Sci. Rep. 12, 16714 (2022).

    Google Scholar 

  6. Zhao, J. et al. Long-term dietary fish meal substitution with the black soldier fly larval meal modifies the caecal microbiota and microbial pathway in laying hens. Animals 13, 2629 (2023).

    Google Scholar 

  7. Mohan, K. et al. Use of black soldier fly (Hermetia illucens L.) larvae meal in Aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture 553, 738095 (2022).

    Google Scholar 

  8. Hong, J. & Kim, Y. Y. Insect as feed ingredients for pigs. Anim. Biosci. 35, 347–355 (2022).

    Google Scholar 

  9. Joosten, L. et al. Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production. Entomol. Exp. Appl. 168, 432–447 (2020).

    Google Scholar 

  10. Bala, B. K. Fungi, Insects and Other Organisms Associated with Stored Grain in Drying and Storage of Cereal Grains 263–272 (Wiley, 2016).

  11. Tanga, C. M. & Nakimbugwe, D. insfeed2: Insect feed for poultry, fish, and pig production in sub-Saharan Africa- phase 2. Technical Report at https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/60979/IDL%20-%2060979.pdf (2021).

  12. Friedrich, M. & Muqim, N. Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. Mol. Phylogenet. Evol. 26, 502–512 (2003).

    Google Scholar 

  13. Agarwal, A. & Agashe, D. The red flour beetle Tribolium castaneum: A model for host-microbiome interactions. PLoS One. 15, e0239051 (2020).

    Google Scholar 

  14. Singh, N., Kaur, A., Shevkani, K. & Maize Grain Structure, Composition, Milling, and Starch Characteristics in Maize: Nutrition Dynamics and Novel Uses 65–76 (Springer India, New Delhi 2014).

  15. Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949–955 (2008).

    Google Scholar 

  16. Ebeling, W. Pests of stored food products. In Urban Entomology 1st E.D. University of California, Division of Agricultural Sciences vol. 7, 275–309 (1975).

  17. Subramanyam, B., Campbell, J. & Kemp, K. It’s in the detail for retail: A study is underway to determine the best management methods in the retail environment. Pest Control. 69, 26–31 (2001).

    Google Scholar 

  18. Koç, N., Arslanbaş, M., Tiftikçioğlu, C., Nalbantoğlu, S. & Çakmak, A. Evaluation of relation with pet food and first record of necrobia rufipes (De Geer, 1775) (Coleoptera: Cleridae) associated with pet clinic in Turkey. Vet. Hekim Der Derg. 91, 44–48 (2019).

    Google Scholar 

  19. dos Santos, A. T., Pereira, T. N. & CL, B. Necrobia rufipes (Degeer, 1775) (Coleoptera: Cleridae) infesting industrialized foods for pet animals in campina Grande, Paraiba State, Brazil. Entomol. News. 129, 81–85 (2020).

    Google Scholar 

  20. Gredilha, R. & Lima A. F. First record of Necrobia rufipes (De Geer, 1775) (Coleoptera; Cleridae) associated with pet food in Brazil. Braz J. Biol. 67, 187 (2007).

    Google Scholar 

  21. Simmons, P. & Ellington, G. W. The Ham Beetle Necrobia rufipes De Geer. J. Agric. Res. 30, 845–863 (1925).

    Google Scholar 

  22. Hasan, M. M., Athanassiou, C. G., Schilling, M. W. & Phillips, T. W. Biology and management of the red-legged ham beetle, Necrobia rufipes DeGeer (Coleoptera: cleridae. J. Stored Prod. Res. 88, 101635 (2020).

    Google Scholar 

  23. Curole, J. P. & Kocher, T. D. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends Ecol. Evol. 14, 394–398 (1999).

    Google Scholar 

  24. Ballard, J. W. O. & Towarnicki, S. G. Mitochondria, the gut microbiome and ROS. Cell. Signal. 75, 109737 (2020).

    Google Scholar 

  25. Wu, C., Zhou, Y., Tian, T., Li, T. & Chen, B. First report of complete mitochondrial genome in the subfamily alleculinae and mitochondrial genome-based phylogenetics in Tenebrionidae (Coleoptera: Tenebrionoidea). Insect Sci. 29, 1226–1238 (2022).

    Google Scholar 

  26. Sheffield, N. C., Song, H., Cameron, S. L. & Whiting, M. F. A comparative analysis of mitochondrial genomes in coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol. Biol. Evol. 25, 2499–2509 (2008).

    Google Scholar 

  27. Meng, F. et al. The complete mitochondria genome of a forensic related beetle, Necrobia ruficollis (Fabricius, 1775). Mitochondrial DNA Part. B. 4, 1396–1397 (2019).

    Google Scholar 

  28. Liu, Q. N. et al. The complete mitochondrial genome of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Mitochondrial DNA Part. A. 27, 1525–1527 (2016).

    Google Scholar 

  29. Lee, W. J. & Brey, P. T. How microbiomes influence metazoan development:insights from history and Drosophila modeling of gut-microbe interactions. Annu. Rev. Cell. Dev. Biol. 29, 571–592 (2013).

    Google Scholar 

  30. Johnson, K. V. A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).

    Google Scholar 

  31. Kim, M. J., Wan, X. & Kim, I. Complete mitochondrial genome of the seven-spotted lady beetle, Coccinella septempunctata (Coleoptera: Coccinellidae). Mitochondrial DNA. 23, 179–181 (2012).

    Google Scholar 

  32. Liu, Q. N., Zhu, B. J., Dai, L. S. & Liu, C. L. The complete mitogenome of Bombyx Mori strain Dazao (Lepidoptera: Bombycidae) and comparison with other lepidopteran insects. Genomics 101, 64–73 (2013).

    Google Scholar 

  33. Liu, Q. N., Zhu, B. J., Dai, L. S., Wei, G. Q. & Liu, C. L. The complete mitochondrial genome of the wild silkworm moth, Actias selene. Gene 505, 291–299 (2012).

    Google Scholar 

  34. Ou, J., Liu, J. B., Yao, F. J., Wang, X. G. & Wei, Z. M. The complete mitochondrial genome of the American black flour beetle Tribolium audax (Coleoptera: Tenebrionidae). Mitochondrial DNA Part. A. 27, 958–959 (2016).

    Google Scholar 

  35. Masta, S. E. & Boore, J. L. The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Mol. Biol. Evol. 21, 893–902 (2004).

    Google Scholar 

  36. Xu, M., Zhou, S. & Wan, X. Phylogenetic implication of large intergenic spacers: Insights from a mitogenomic comparison of Prosopocoilus stag beetles (Coleoptera: Lucanidae). Animals 12, 1595 (2022).

    Google Scholar 

  37. Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).

    Google Scholar 

  38. Yang, Z. On the best evolutionary rate for phylogenetic analysis. Syst. Biol. 47, 125–133 (1998).

    Google Scholar 

  39. Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

    Google Scholar 

  40. Deb, R., Nair, A. & Agashe, D. Host dietary specialization and neutral assembly shape gut bacterial communities of wild dragonflies. PeerJ 7, e8058 (2019).

    Google Scholar 

  41. Phalnikar, K., Kunte, K. & Agashe, D. Dietary and developmental shifts in butterfly-associated bacterial communities. R. Soc. Open Sci. 5, 171559 (2018).

    Google Scholar 

  42. Jing, T. Z., Qi, F. H. & Wang, Z. Y. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome 8, 38 (2020).

    Google Scholar 

  43. Gutiérrez-García, K. et al. Gut microbiomes of cycad-feeding insects tolerant to β-methylamino-L-alanine (BMAA) are rich in siderophore biosynthesis. ISME Commun. 3, 122 (2023).

    Google Scholar 

  44. Morales-Jiménez, J., Zúñiga, G., Ramírez-Saad, H. C. & Hernández-Rodríguez, C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 64, 268–278 (2012).

    Google Scholar 

  45. Sevim, A., Sevim, E., Demirci, M. & Sandalli, C. The internal bacterial diversity of stored product pests. Ann. Microbiol. 66, 749–764 (2016).

    Google Scholar 

  46. Moldovan, O. T. et al. The gut microbiome mediates adaptation to scarce food in coleoptera. Environ. Microbiome. 18, 80 (2023).

    Google Scholar 

  47. McFarlane, D. J., Aitken, E. A. B., Ridley, A. W. & Walter, G. H. The dietary relationships of Tribolium castaneum (Herbst) with microfungi. J. Appl. Entomol. 145, 158–169 (2021).

    Google Scholar 

  48. Janson, E. M., Stireman, J. O., Singer, M. S. & Abbot, P. Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62, 997–1012 (2008).

    Google Scholar 

  49. Hirose, M. et al. Mitochondrial gene polymorphism is associated with gut microbial communities in mice. Sci. Rep. 7, 15293 (2017).

    Google Scholar 

  50. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Google Scholar 

  51. Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 225–IN6 (1967).

    Google Scholar 

  52. Swanson, P. A. et al. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc. Natl. Acad. Sci. 108, 8803–8808 (2011).

    Google Scholar 

  53. Dong, Z., Wang, Y., Li, C., Li, L. & Men, X. Mitochondrial DNA as a molecular marker in insect ecology: Current status and future prospects. Ann. Entomol. Soc. Am. 114, 470–476 (2021).

    Google Scholar 

  54. Frézal, L. & Leblois, R. Four years of DNA barcoding: Current advances and prospects. Infect. Genet. Evol. 8, 727–736 (2008).

    Google Scholar 

  55. Girard, M., Luis, P., Valiente Moro, C. & Minard, G. Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol. 31, 181–196 (2023).

    Google Scholar 

  56. Mason, C. J. Complex relationships at the intersection of insect gut microbiomes and plant defenses. J. Chem. Ecol. 46, 793–807 (2020).

    Google Scholar 

  57. Yuning, L. et al. The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Sci. Rep. 12, 13063 (2022).

    Google Scholar 

  58. Lange, C. et al. Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. ISME J. 17, 1798–1807 (2023).

    Google Scholar 

  59. Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect Species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, 1005 (2016).

    Google Scholar 

  60. Youle, R. J. Mitochondria—Striking a balance between host and endosymbiont. Science 365, eaaw9855 (2019).

    Google Scholar 

  61. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Google Scholar 

  62. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Google Scholar 

  63. Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Google Scholar 

  64. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  65. Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 1–9 (2009).

    Google Scholar 

  66. Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Google Scholar 

  67. Laslett, D., Canbäck, B. & ARWEN. A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 172–175 (2008).

    Google Scholar 

  68. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Google Scholar 

  69. Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  70. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    Google Scholar 

  71. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 9, 772 (2012).

    Google Scholar 

  72. R Development Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org (2008).

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this research by the following organizations and agencies: Australian Centre for International Agricultural Research (ACIAR) (ProteinAfrica: LS/2020/154), Rockefeller Foundation (WAVE-IN: 2021 FOD 030); IKEA Foundation (G-2204-02144); European Commission (NESTLER Project: 101060762 and INNOECOFOOD project: 101136739), the Curt Bergfors Foundation Food Planet Prize Award; the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Australian Centre for International Agricultural Research (ACIAR); the Government of Norway; the German Federal Ministry for Economic Cooperation and Development (BMZ); and the Government of the Republic of Kenya. The views expressed herein do not necessarily reflect the official opinion of the donors. We thank Mr Fidelis Levi Ombura, Ms Maureen Adhiambo, and Mr Eric Rachami for their technical assistance.

Funding

This research was funded by the following organizations and agencies: Australian Centre for International Agricultural Research (ACIAR) (ProteinAfrica: LS/2020/154), Rockefeller Foundation (WAVE-IN: 2021 FOD 030); IKEA Foundation (G-2204-02144); European Commission (NESTLER Project: 101060762 and INNOECOFOOD project: 101136739), the Curt Bergfors Foundation Food Planet Prize Award.

Author information

Authors and Affiliations

Authors

Contributions

IJA: Conceptualization; data curation; investigation; formal analysis; methodology; validation; visualization; writing—original draft; writing— review and editing. CMT: Conceptualization; funding acquisition; resources; project administration; supervision; writing—original draft; writing—review and editing. KSA: Data curation; resources; validation; writing—review and editing. SWK: Data curation; investigation; formal analysis; methodology; writing—review and editing. FMK: Conceptualization; methodology; resources; supervision; validation; writing—review and editing. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to
Inusa Jacob Ajene or Fathiya M. Khamis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Ajene, I.J., Tanga, C.M., Akutse, K.S. et al. Multi-omics comparison of two emerging storage pests (Necrobia rufipes and Tribolium castaneum) of dried black soldier fly larvae product.
Sci Rep (2026). https://doi.org/10.1038/s41598-025-34902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-34902-7

Keywords

  • Gut microbiome
  • Mitogenome
  • Postharvest storage pest
  • Red flour beetle
  • Red-legged ham beetle


Source: Ecology - nature.com

Assessing mining impacts in the deep sea

Local biophysical climate feedback from vegetation responses to lower aerosol pollution

Back to Top