in

Phage-mediated resistome dynamics in global aquifers


Abstract

While mobile genetic elements (MGEs) critically influence antibiotic resistance gene (ARG) dissemination, the regulatory role of bacteriophages as unique MGEs remains enigmatic in natural ecosystems. Through a global-scale phage-resistome interrogation spanning 840 groundwater metagenomes, we established a large aquifer resistome repository and uncovered three paradigm-shifting discoveries. First, phages harboured markedly fewer ARGs compared to plasmids and integrative elements, but their bacterial hosts paradoxically maintained the highest anti-phage defence gene inventories, showing an evolutionary equilibrium where investment in phage defence constrains ARG acquisition. Second, lytic phages demonstrated dual functionality characterized with directly suppressing ARG transmission through host lysis while indirectly enriching defence genes that inhibit horizontal gene transfer. Third, vertical inheritance sustained ARGs in 11.2% of MGE-free groundwater microbes. We further extended linkages between ARG profiles, phage defences and biogeochemical genes, revealing phage-mediated co-occurrence of ARGs and denitrification genes in shared hosts. These findings pioneer a phage-centric framework for resistome evolution, guiding phage-based ARG mitigation in groundwater ecosystems.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A global atlas of groundwater resistomes reveals expansive ARG landscapes.
Fig. 2: MGE-mediated ARG mobilization patterns in global groundwater.
Fig. 3: Interplay between phage infection, host defence systems and ARG dissemination.
Fig. 4: Vertical gene transfer sustains ARG persistence in aquifer microbiomes.
Fig. 5: Phage–host dynamics link microbial resistance, defence and aquifer ecosystem functions.

Similar content being viewed by others

Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes

Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments

Evidence for wastewaters as environments where mobile antibiotic resistance genes emerge

Data availability

Domestic groundwater data generated for this study have been deposited in the NCBI Sequence Read Archive under accession code PRJNA858913. Publicly available groundwater metagenomes are listed with their BioProject accession numbers in Supplementary Table 2. Source data are provided with the paper.

Code availability

The R scripts used are publicly available via Zenodo at https://doi.org/10.5281/zenodo.17540538 (ref. 76).

References

  1. Xue, S. et al. Pollution prediction for heavy metals in soil-groundwater systems at smelting sites. Chem. Eng J. 473, 145499 (2023).

    Article 
    CAS 

    Google Scholar 

  2. Evich, M. G. et al. Mineralogical controls on PFAS and anthropogenic anions in subsurface soils and aquifers. Nat. Commun. 16, 3118 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  3. Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  4. Wang, J. et al. Supercarriers of antibiotic resistome in a world’s large river. Microbiome 10, 111 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  5. Knapp, C. W., Dolfing, J., Ehlert, P. A. I. & Graham, D. W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580–587 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  6. Zhu, Y.-G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  7. Li, Y. et al. Engineered DNA scavenger for mitigating antibiotic resistance proliferation in wastewater treatment. Nat. Water 2, 758–769 (2024).

    Article 
    CAS 

    Google Scholar 

  8. Gao, Y. et al. The mystery of rich human gut antibiotic resistome in the Yellow River with hyper-concentrated sediment-laden flow. Water Res. 258, 121763 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  9. Zhu, C. et al. Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems. Nat. Commun. 16, 4006 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  10. Szekeres, E. et al. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ. Pollut. 236, 734–744 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  11. Herrmann, M. et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front. Microbiol. 10, 1407 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  12. Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshwater Sci. 34, 355–367 (2015).

    Article 

    Google Scholar 

  13. Retter, A., Karwautz, C. & Griebler, C. Groundwater microbial communities in times of climate change. Curr. Issues Mol. Biol. 41, 509–538 (2021).

    Article 
    PubMed 

    Google Scholar 

  14. Sonthiphand, P. et al. Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environ. Sci. Pollut. Res. 26, 26765–26781 (2019).

    Article 
    CAS 

    Google Scholar 

  15. Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol. Rev. 38, 761–778 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  16. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from One Health and global health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  17. Zhang, Y. et al. Comparison of microbiomes and resistomes in two karst groundwater sites in Chongqing, China. Groundwater 57, 807–818 (2019).

    Article 
    CAS 

    Google Scholar 

  18. Zaouri, N., Jumat, M. R., Cheema, T. & Hong, P.-Y. Metagenomics-based evaluation of groundwater microbial profiles in response to treated wastewater discharge. Environ. Res. 180, 108835 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  19. Sommer, M. O. A., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. Prediction of antibiotic resistance: time for a new preclinical paradigm?. Nat. Rev. Microbiol. 15, 689–696 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  20. Patangia, D. V., Ryan, C. A., Dempsey, E., Stanton, C. & Ross, R. P. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis. Trends Microbiol. 30, 47–56 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  21. Diebold, P. J. et al. Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide. Nat. Commun. 14, 7366 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Botelho, J. Defense systems are pervasive across chromosomally integrated mobile genetic elements and are inversely correlated to virulence and antimicrobial resistance. Nucleic Acids Res. 51, 4385–4397 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Ellabaan, M. M. H., Munck, C., Porse, A., Imamovic, L. & Sommer, M. O. A. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 12, 2435 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  24. Blanco-Picazo, P. et al. Dominance of phage particles carrying antibiotic resistance genes in the viromes of retail food sources. ISME J. 17, 195–203 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  25. Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11, 237–247 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  26. Shuai, X. et al. Bacteriophages: vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems?. Water Res. 248, 120833 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  27. LeGault, K., Hays, S., Angermeyer, A. & McKitterick, A. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 373, eabg2166 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Borodovich, T., Shkoporov, A. N., Ross, R. P. & Hill, C. Phage-mediated horizontal gene transfer and its implications for the human gut microbiome. Gastroenterol. Rep. 10, goac012 (2022).

    Article 

    Google Scholar 

  29. Moura De Sousa, J., Lourenço, M. & Gordo, I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 31, 513–527 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  30. Xia, R. et al. Bacterium-phage symbiosis facilitates the enrichment of bacterial pathogens and antibiotic-resistant bacteria in the plastisphere. Environ. Sci. Technol. 59, 2948–2960 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  31. Liao, H. et al. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat. Commun. 15, 8315 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  32. Pfeifer, E., Sousa, J. M., Touchon, M. & Rocha, E. P. When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Curr. Opin. Microbiol. 70, 102230 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  33. Correa, A. M. S. et al. Revisiting the rules of life for viruses of microorganisms. Nat. Rev. Microbiol. 19, 501–513 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  34. Wang, D. et al. Identifying ARG-carrying bacteriophages in a lake replenished by reclaimed water using deep learning techniques. Water Res. 248, 120859 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  35. Li, Z. et al. Metagenome sequencing reveals shifts in phage-associated antibiotic resistance genes from influent to effluent in wastewater treatment plants. Water Res. 253, 121289 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  36. Beavogui, A. et al. The defensome of complex bacterial communities. Nat. Commun. 15, 2146 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  37. Wei, Z. et al. High-throughput single-cell technology reveals the contribution of horizontal gene transfer to typical antibiotic resistance gene dissemination in wastewater treatment plants. Environ. Sci. Technol. 55, 11824–11834 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  38. Pfeifer, E., Bonnin, R. A. & Rocha, E. P. C. Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion. mBio 13, e0185122 (2022).

    Article 
    PubMed 

    Google Scholar 

  39. Shaw, L. P., Rocha, E. P. C. & MacLean, R. C. Restriction-modification systems have shaped the evolution and distribution of plasmids across bacteria. Nucleic Acids Res. 51, 6806–6818 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  40. Upreti, C., Kumar, P., Durso, L. M. & Palmer, K. L. CRISPR-Cas inhibits plasmid transfer and immunizes bacteria against antibiotic resistance acquisition in manure. Appl. Environ. Microbiol. 90, e0087624 (2024).

    Article 
    PubMed 

    Google Scholar 

  41. Xu, N. et al. A global atlas of marine antibiotic resistance genes and their expression. Water Res. 244, 120488 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  42. Zhao, Y. et al. Global soil antibiotic resistance genes are associated with increasing risk and connectivity to human resistome. Nat. Commun. 16, 7141 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  43. Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  44. Debroas, D. & Siguret, C. Viruses as key reservoirs of antibiotic resistance genes in the environment. ISME J. 13, 2856–2867 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  45. Yi, Y. et al. A systematic analysis of marine lysogens and proviruses. Nat. Commun. 14, 6013 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  46. Danko, D. et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 184, 3376–3393.e17 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  47. Wang, F. et al. Antibiotic resistance genes link to nitrogen removal potential via co-hosting preference for denitrification genes in a subtropical estuary. J. Hazard. Mater. 498, 139801 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  48. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  49. Langmüller, A. M. et al. Fitness effects of CRISPR endonucleases in Drosophila melanogaster populations. eLife 11, e71809 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  50. Dimitriu, T., Szczelkun, M. D. & Westra, E. R. Evolutionary ecology and interplay of prokaryotic innate and adaptive immune systems. Curr. Biol. 30, R1189–R1202 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  51. Wu, Z. et al. Unveiling the unknown viral world in groundwater. Nat. Commun. 15, 6788 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  52. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  53. Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  55. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    Article 
    CAS 

    Google Scholar 

  56. Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  57. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  58. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  59. Hockenberry, A. J. & Wilke, C. O. BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains. PeerJ 9, e11396 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  60. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  61. Lu, C. et al. Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19, 5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  62. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  63. Yin, X. et al. ARGs-OAP v2.0 with an expanded SARG database and hidden Markov models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 1, 2263–2270 (2018).

    Article 

    Google Scholar 

  64. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  65. Brown, C. L. et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl. Environ. Microbiol. 88, e00991-22 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  66. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  67. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  68. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  69. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  70. Adékambi, T., Drancourt, M. & Raoult, D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 17, 37–45 (2009).

    Article 
    PubMed 

    Google Scholar 

  71. Nagies, F. S. P., Brueckner, J., Tria, F. D. K. & Martin, W. F. A spectrum of verticality across genes. PLoS Genet. 16, e1009200 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  72. Ribeiro, G. M. & Lahr, D. J. G. A comparative study indicates vertical inheritance and horizontal gene transfer of arsenic resistance-related genes in eukaryotes. Mol. Phylogenet. Evol. 173, 107479 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  73. Holt, C. C. et al. Multiple parallel origins of parasitic Marine Alveolates. Nat. Commun. 14, 7049 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Goluch, T., Bogdanowicz, D. & Giaro, K. Visual TreeCmp: comprehensive comparison of phylogenetic trees on the web. Methods Ecol. Evol. 11, 494–499 (2020).

    Article 

    Google Scholar 

  75. Zhao, R. et al. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics. Water Res. 151, 388–402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  76. Cao, H. Phage-mediated resistome dynamics in global aquifers. Zenodo https://doi.org/10.5281/zenodo.17540538 (2025).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers U2240205 and 51721006 to J.R.N.).

Author information

Authors and Affiliations

Authors

Contributions

J.R.N. designed the research. H.Y.C., S.F.L. and P.G.C. conducted the statistical analysis with help of P.W.L. and J.W.W. H.Y.C. and J.R.N. wrote the paper. All the authors read and approved the final paper.

Corresponding author

Correspondence to
Jinren Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Liping Ma, Yanni Sun and Pingfeng Yu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Composition and geographic distribution of antibiotic resistance genes (ARGs) across global aquifer metagenomes.

a. Total abundance and prevalence of ARGs detected in all metagenomes. The majority of ARGs (6,935 of 9,681) are sparsely distributed, appearing in < 10% of samples (peripheral ARGs); whereas a core set of 392 ARGs occurs in > 75% of samples (core ARGs). b. Relative abundance of ARG types based on read-level profiling; MLS: macrolide-lincosamide-streptogramin. c. Upset plot showing ARG subtypes uniquely detected in specific continental combinations. d. Composition of ARGs by resistance mechanisms based on MAG-level analysis, reflecting host-associated ARG preferences.

Source data

Extended Data Fig. 2 Characterization of mobile genetic elements (MGEs) associated with transferable ARGs in groundwater.

a. Functional composition of annotated MGEs linked to ARGs in groundwater metagenomes. b. Distribution of transferable ARGs across different MGE types. Transferable ARGs were categorized as MGE-single if they were associated with only one type of MGE, and as MGE-multi if detected in association with more than one type of MGE. c. MGE repertoire associated with the most pervasive transferable ARGs (detected in > 100 MGE sequences). For each ARG, both the number and diversity of linked MGEs are shown.

Source data

Extended Data Fig. 3 Distribution and characteristics of bacterial defence systems in groundwater microbiomes.

a. Composition of defence gene families identified across all groundwater MAGs. b. Distribution of defence-encoding genomes across the ten most represented bacterial phyla. Bars indicate the proportion of genomes carrying defence systems, with the total number of unique DGs per phylum shown alongside. c. Defence gene (DG) counts in MAGs predicted to be phage-susceptible (P-phage, n = 1,458) versus those without phage-linked contigs (NP-phage, n = 1,452). Each point represents the number of DGs in an individual host genome. Statistical significance was evaluated using a two-sided Wilcoxon rank-sum test (p < 2 × 10−16). d. DG counts in L-phage (n = 908) versus NL-phage (n = 376) hosts. Each point represents an individual host genome. Box plots indicate the median (center line and red point), interquartile range (box), and 1.5 × the interquartile range (whiskers). Statistical significance was determined using a two-sided Wilcoxon rank-sum test. e. Number of ARG types associated with NP-phage, NL-phage, and L-phage hosts.

Source data

Extended Data Fig. 4 Defence system distribution between P-phage and NP-phage MAGs across aquatic ecosystems (freshwater, marine, wastewater).

P-phage MAGs consistently encoded more defence systems (DSs) than NP-phage MAGs, with significant differences detected across all ecosystems (two-sided Wilcoxon rank-sum test; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). The magnitude of phage–host antagonism decreased along the gradient from freshwater to marine and wastewater environments. Each point represents the number of DSs in an individual host genome. Box plots indicate the median (center line and red point), interquartile range (box), and 1.5 × the interquartile range (whiskers). Sample sizes and exact p values were as follows: Freshwater: NP-phage (n = 432) and P-phage (n = 249), p = 3.12 × 10⁻11; Marine: NP-phage (n = 252) and P-phage (n = 379), p = 6.82 × 10⁻4; Wastewater: NP-phage (n = 203) and P-phage (n = 210), p = 8.26 × 10⁻3.

Source data

Extended Data Fig. 5 Vertical gene transfer sustains ARG persistence in aquifer microbiomes.

Comparison between the MAG-based phylogenetic tree and the phylogeny of the rsmA resistance gene within two bacterial genera: 202FULL6113 (a) and JADFDG01 (b). Topological similarity between the two phylogenies was assessed using Robinson–Foulds (RF) distance.

Source data

Extended Data Fig. 6 Assessment of vertical and horizontal contributions to ARG dissemination in groundwater microbial communities.

Procrustes analysis at the phylum (a) and genus (b) levels compares microbial community composition (read-based) with ARG subtype profiles. Higher Procrustes m2 values indicate greater deviation from vertical inheritance, suggesting stronger influence of HGT on ARG distribution. Statistical significance was evaluated using a two-sided Procrustes permutation test (999 permutations; p < 0.001).

Source data

Extended Data Fig. 7 Phage–host interactions shape microbial nitrogen cycling potential in aquifer ecosystems.

a. Module completeness of functional gene markers associated with eight nitrogen cycling processes in P-phage (n = 1,458) and NP-phage (n = 1,452) genomes. Each bar represents the mean metabolic completeness for the corresponding nitrogen transformation process within each group, and error bars indicate the standard error of the mean (SEM). Statistical differences between groups were evaluated using a two-sided Wilcoxon rank-sum test; ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001. Exact p-values for A–H are: A, p = 1.36 × 10−2; B, p = 0.19; C, p = 8.37 × 10−7; D, p = 5.24 × 10−3; E, p = 2.39 × 10−3; F, p = 0.30; G, p = 2.73 × 10−12; H, p = 1.97 × 10−6. b. Contribution of lytic phages to nitrogen cycling in all phage-infected microbial hosts, illustrated by a metabolic pathway map highlighting their role in aquifer nitrogen transformations.

Source data

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–14.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Cao, H., Liu, S., Cai, P. et al. Phage-mediated resistome dynamics in global aquifers.
Nat Water (2026). https://doi.org/10.1038/s44221-025-00558-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44221-025-00558-w


Source: Ecology - nature.com

Quantitative assessment of ecological security and its influencing factors in the Danjiangkou Reservoir based on a health–risk–service framework

Integrating transformer-based learning and Sentinel-2 bare soil composites for soil organic carbon mapping in the black soil region of Northeast China