in

Plant diversity enhances ecosystem resistance to increasing grazing pressure in global drylands


Abstract

Understanding the mechanisms that shape ecosystem resistance to increasing livestock grazing pressure, a major driver of land degradation, is essential for predicting its impacts and informing sustainable land management strategies. This issue is particularly relevant in drylands, which host half of the world’s livestock production and are highly vulnerable to desertification caused by overgrazing. Here we conduct a standardized field survey across 73 dryland sites in 25 countries to simultaneously evaluate how climatic, edaphic, vegetation and grazing-related factors influence ecosystem resistance—defined here as the capacity to maintain vegetation cover under increasing grazing pressure. We found that increasing grazing pressure reduced vegetation cover in 80% of sites, with an average decline of 35%. Plant species richness emerged as the strongest predictor of ecosystem resistance, with higher richness associated with lower vegetation cover loss. Functional trait data indicated that this positive effect was mainly explained by complementarity in trait values among plants, rather than by functional redundancy. Our results indicate that conserving plant diversity is key to strengthening ecosystem resistance and sustaining dryland functioning under intensifying grazing pressure.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Response of vegetation cover to increasing grazing pressure (resistance) across global drylands and latitudinal zones.
Fig. 2: Drivers of changes in vegetation cover to increasing grazing pressure (resistance).
Fig. 3: Relationships between vegetation cover responses to increasing grazing pressure (resistance) and functional dispersion and redundancy.

Similar content being viewed by others

Unforeseen plant phenotypic diversity in a dry and grazed world

Climate-driven ecological thresholds in China’s drylands modulated by grazing

Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

Data availability

The dataset needed to reproduce our results are available via Figshare at https://doi.org/10.6084/m9.figshare.29132654 (ref. 90).

Code availability

The R script used is available via Figshare at https://doi.org/10.6084/m9.figshare.29132654 (ref. 90).

References

  1. Middleton, N., Stringer, L., Goudie, A. & Thomas, D. The Forgotten Billion: MDG Achievement in the Drylands (United Nations Development Programme, 2011).

  2. United Nations. Global Drylands: A UN System-Wide Response. (United Nations Environment Programme, 2011).

  3. Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science (1979) 378, 915–920 (2022).

    CAS 

    Google Scholar 

  4. Yahdjian, L., Sala, O. E. & Havstad, K. M. Rangeland ecosystem services: shifting focus from supply to reconciling supply and demand. Front Ecol. Environ. 13, 44–51 (2015).

    Article 

    Google Scholar 

  5. Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E. & Harris, A. T. Grazing systems, ecosystem responses and global change. Annu Rev. Environ. Resour. 29, 261–299 (2004).

    Article 

    Google Scholar 

  6. D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).

    Article 

    Google Scholar 

  7. Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science (1979) 247, 1043–1048 (1990).

    CAS 

    Google Scholar 

  8. Biancari, L. et al. Drivers of woody dominance across global drylands. Sci. Adv. 10, eadn6007 (2024).

    Article 
    PubMed Central 

    Google Scholar 

  9. Van Meerbeek, K., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132 (2021).

    Article 

    Google Scholar 

  10. Wolf, J., Chen, M. & Asrar, G. R. Global rangeland primary production and its consumption by livestock in 2000–2010. Remote Sens. 13, 3430 (2021).

    Article 

    Google Scholar 

  11. Gaitán, J. J. et al. Aridity and overgrazing have convergent effects on ecosystem structure and functioning in patagonian rangelands. Land Degrad. Dev. 29, 210–218 (2018).

    Article 

    Google Scholar 

  12. Li, C. et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nat. Sustain 6, 1363–1372 (2023).

    Article 

    Google Scholar 

  13. Oñatibia, G. R., Amengual, G., Boyero, L. & Aguiar, M. R. Aridity exacerbates grazing-induced rangeland degradation: a population approach for dominant grasses. J. Appl. Ecol. 57, 1999–2009 (2020).

    Article 

    Google Scholar 

  14. Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).

    Article 

    Google Scholar 

  15. Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004).

    Article 

    Google Scholar 

  16. Adler, P. B., Milchunas, D. G., Sala, O. E., Burke, I. C. & Lauenroth, W. K. Plant traits and ecosystem grazing effects: comparison of U.S. sagebrush steppe and patagonian steppe. Ecol. Appl. 15, 774–792 (2005).

    Article 

    Google Scholar 

  17. Oñatibia, G. R. & Aguiar, M. R. On the early warning signal of degradation in drylands: patches or plants?. J. Ecol. 111, 428–435 (2023).

    Article 

    Google Scholar 

  18. Flombaum, P. & Sala, O. E. Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proc. Natl Acad. Sci. USA 105, 6087–6090 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  19. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  20. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and Ecosystem Functioning. Annu Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 

    Google Scholar 

  21. Binder, S., Isbell, F., Polasky, S., Catford, J. A. & Tilman, D. Grassland biodiversity can pay. Proc. Natl Acad. Sci. USA 115, 3876–3881 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 768 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Schaub, S., Buchmann, N., Lüscher, A. & Finger, R. Economic benefits from plant species diversity in intensively managed grasslands. Ecol. Econ. 168, 106488 (2020).

    Article 

    Google Scholar 

  24. McNaughton, S. J. Ecology of a grazing ecosystem: the serengeti. Ecol. Monogr. 55, 259–294 (1985).

    Article 

    Google Scholar 

  25. Pillar, V. D. et al. Functional redundancy and stability in plant communities. J. Veg. Sci. 24, 963–974 (2013).

    Article 

    Google Scholar 

  26. Hempson, G. P., Archibald, S. & Bond, W. J. The consequences of replacing wildlife with livestock in Africa. Sci. Rep. 7, 17196 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Manier, D. J. & Hobbs, N. T. Large herbivores in sagebrush steppe ecosystems: livestock and wild ungulates influence structure and function. Oecologia 152, 739–750 (2007).

    Article 
    PubMed 

    Google Scholar 

  28. Maestre, F. T. et al. The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands. Web. Ecol. 22, 75–96 (2022).

    Article 

    Google Scholar 

  29. McNaughton, S. J., Oesterheld, M. & Sala, O. E. Large herbivores in rangelands. Nature 364, 293 (1993).

    Article 

    Google Scholar 

  30. Oesterheld, M., Loreti, J., Semmartin, M. & Paruelo, J. M. Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In Ecosystems of the World 16: Ecosystems of Disturbed Grounds (ed. Walker, L. R.) 287–306 (Elsevier, 1999).

  31. Fensham, R. J. & Fairfax, R. J. Water-remoteness for grazing relief in Australian arid-lands. Biol. Conserv. 141, 1447–1460 (2008).

    Article 

    Google Scholar 

  32. Schrama, M. et al. Cessation of grazing causes biodiversity loss and homogenization of soil food webs. Proc. R. Soc. B 290, 20231345 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  33. Gross, N. et al. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature 632, 808–814 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  34. Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  35. Ludwig, J. A. & Tongway, D. J. Spatial organisation of landscapes and its function in semi-arid woodlands. Aust. Landsc. Ecol. 10, 51–63 (1995).

    Article 

    Google Scholar 

  36. Bartoń, K. MuMIn: multi-model inference. MuMIn https://doi.org/10.32614/CRAN.package (2023).

  37. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  38. Wagg, C. et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 13, 7752 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  39. Bailey, D. W. et al. Synthesis paper: targeted livestock grazing: prescription for healthy rangelands. Rangel. Ecol. Manag 72, 865–877 (2019).

    Article 

    Google Scholar 

  40. Li, Y. et al. Adaptive grazing enhances plant species richness and density in the soil seed bank in a semi-arid grassland. Ecol. Indic. 163, 112113 (2024).

    Article 

    Google Scholar 

  41. Teague, R. & Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Syst. 4, 34187 (2020).

    Article 

    Google Scholar 

  42. Su, J., Xu, F. & Zhang, Y. Grassland biodiversity and ecosystem functions benefit more from cattle than sheep in mixed grazing: A meta-analysis. J. Environ. Manag. 337, 117769 (2023).

    Article 

    Google Scholar 

  43. Deraison, H., Badenhausser, I., Loeuille, N., Scherber, C. & Gross, N. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecol. Lett. 18, 1346–1355 (2015).

    Article 
    PubMed 

    Google Scholar 

  44. Gross, N., Suding, K. N., Lavorel, S. & Roumet, C. Complementarity as a mechanism of coexistence between functional groups of grasses. J. Ecol. 95, 1296–1305 (2007).

    Article 

    Google Scholar 

  45. Strauss, S. Y. & Agrawal, A. A. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 14, 179–185 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  46. Valencia, E. et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. N. Phytol. 206, 660–671 (2015).

    Article 

    Google Scholar 

  47. Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 
    PubMed 

    Google Scholar 

  48. Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).

    Article 

    Google Scholar 

  49. Biancari, L., Oñatibia, G. R., Gaitán, J. J. & Aguiar, M. R. Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?. J. Veg. Sci. 34, e13177 (2023).

    Article 

    Google Scholar 

  50. Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  51. Eldridge, D. J., Soliveres, S., Bowker, M. A. & Val, J. Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi-arid woodland. J. Appl. Ecol. 50, 1028–1038 (2013).

    Article 

    Google Scholar 

  52. Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Chang 3, 833–837 (2013).

    Article 
    CAS 

    Google Scholar 

  53. Maestre, F. T. et al. Biogeography of global drylands. N. Phytol. 231, 540–558 (2021).

    Article 

    Google Scholar 

  54. Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).

    Article 

    Google Scholar 

  55. Graff, P. & Aguiar, M. R. Testing the role of biotic stress in the stress gradient hypothesis. Process. Patterns Arid Rangel. Oikos 120, 1023–1030 (2011).

    Google Scholar 

  56. Brooker, R. W. et al. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96, 18–34 (2008).

    Article 

    Google Scholar 

  57. Callaway, R. M., Kikodze, D., Chiboshvili, M. & Khetsuriani, L. Unpalatable plants protect neighbors from grazing and increase plant community diversity. Ecology 86, 1856–1862 (2005).

    Article 

    Google Scholar 

  58. Milchunas, D. G. & Noy-Meir, I. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99, 113–130 (2002).

    Article 

    Google Scholar 

  59. Biancari, L., Aguiar, M. R. & Cipriotti, P. A. Influence of plant neighborhood on patch dynamics. Oikos e11307 (2025); https://doi.org/10.1002/oik.11307

  60. Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).

    Article 
    PubMed 

    Google Scholar 

  61. Isbell, F. I. & Wilsey, B. J. Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands. Oecologia 165, 771–781 (2011).

    Article 
    PubMed 

    Google Scholar 

  62. Jawuoro, S. O., Koech, O. K., Karuku, G. N. & Mbau, J. S. Plant species composition and diversity depending on piospheres and seasonality in the southern rangelands of Kenya. Ecol. Process 6, 16 (2017).

    Article 

    Google Scholar 

  63. Eldridge, D. J. et al. Dung predicts the global distribution of herbivore grazing pressure in drylands. Nat. Food 6, 253–259 (2025).

    Article 
    PubMed 

    Google Scholar 

  64. Lee, M. A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 131, 641–654 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  65. McIntyre, S. The role of plant leaf attributes in linking land use to ecosystem function in temperate grassy vegetation. Agric. Ecosyst. Environ. 128, 251–258 (2008).

    Article 

    Google Scholar 

  66. Pontes, L. D. S., Sousanna, J.-F., Louault, F., Andueza, D. & Carrère, P. Leaf traits affect the above-ground productivity and quality of pasture grasses. Funct. Ecol. 21, 844–853 (2007).

    Article 

    Google Scholar 

  67. Yeoh, H.-H. & Wee, Y.-C. Leaf protein contents and nitrogen-to-protein conversion factors for 90 plant species. Food Chem. 49, 245–250 (1994).

    Article 
    CAS 

    Google Scholar 

  68. Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Chang Biol. 13, 313–341 (2007).

    Article 

    Google Scholar 

  69. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article 
    PubMed 

    Google Scholar 

  70. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  71. Waterman, P. G. & Mole, S. Analysis of Phenolic Plant Metabolites (Wiley-Blackwell, 1994).

  72. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  73. Wang, L. et al. Dryland productivity under a changing climate. Nat. Clim. Chang 12, 981–994 (2022).

    Article 

    Google Scholar 

  74. Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).

    Article 
    CAS 

    Google Scholar 

  75. Abanda, P. A., Compton, J. S. & Hannigan, R. E. Soil nutrient content, above-ground biomass and litter in a semi-arid shrubland, South Africa. Geoderma 164, 128–137 (2011).

    Article 
    CAS 

    Google Scholar 

  76. Begon, M., Townsend, C. R. & Harper, J. L. Ecology: From Individuals to Ecosystems (Blackwell Publishing, 2006).

  77. Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).

    Article 

    Google Scholar 

  78. Pavoine, S. adiv: an R package to analyse biodiversity in ecology. Methods Ecol. Evol. 11, 1106–1112 (2020).

    Article 

    Google Scholar 

  79. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002); https://doi.org/10.1007/b97636

  80. Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Article 

    Google Scholar 

  81. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  82. GraphPad Prism Software (GraphPad, 2025); https://www.graphpad.com

  83. Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article 

    Google Scholar 

  84. Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  85. Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article 

    Google Scholar 

  86. Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013); https://doi.org/10.1007/978-1-4614-7618-4

  87. Bivand, R. R. Packages for analyzing spatial data: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).

    Article 

    Google Scholar 

  88. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2024); https://www.r-project.org

  89. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article 

    Google Scholar 

  90. Biancari, L. et al. Plant diversity enhances ecosystem resistance to increasing grazing pressure in global drylands. Figshare https://doi.org/10.6084/m9.figshare.29132654 (2025).

Download references

Acknowledgements

We thank all participants of the BIODESERT global field survey. This survey was funded by the European Research Council (ERC grant agreement 647038), awarded to F.T.M. F.T.M., L.B. and E.G. acknowledge support by the King Abdullah University of Science and Technology (KAUST). M.R.A., G.R.O. and L.Y. acknowledge support by the University of Buenos Aires and CONICET. E.V. was supported by the Spanish Ministry of Science, Innovation and Universities (grant nos. PID2022-140398NA-I00 and CNS2024-154579).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.B., F.T.M., Y.L.B.P., N.G., G.R.O., L.Y. and M.R.A. Methodology: F.T.M., N.G., Y.L.B.P., D.J.E. and H.S. Investigation: F.T.M., Y.L.B.P., N.G., H.S., D.J.E., E.V., X.M., V.O., B.G., S.A., C.P., E.G., M.G.G., J.J.G., J.M.V., B.J.M., G.R.O. and L.Y. Formal analysis: L.B., G.R.O., H.S., Y.L.B.P. and N.G. Writing—original draft: L.B., F.T.M., G.R.O., L.Y. and M.R.A. Writing—review and editing: L.B., F.T.M., G.R.O., M.R.A., L.Y., X.M., E.V., H.S., D.J.E., C.P., N.G., Y.L.B.P., J.M.V., V.O., B.G., S.A., E.G., M.G.G., J.J.G. and B.J.M. Supervision: F.T.M.

Corresponding author

Correspondence to
Lucio Biancari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Yongfei Bai, Timm Döbert and Dafeng Hui for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Location of the 73 experimental sites surveyed.

Background colors represent aridity index for drylands (areas with an aridity index [mean annual precipitation/potential evapotranspiration] lower than 0.65). Pictures illustrate examples of low grazing plots (left) and high grazing plots (right) across four sites. Photo credits: Matthew Bowker (USA), Juan J. Gaitan (Argentina), Alice Nunes (Portugal), David J. Eldridge (Australia).

Extended Data Fig. 2 Effects of grazing pressure on species richness (A), Shannon diversity index (B), and Pielou evenness index (C).

Mean and 95% confidence intervals are shown (n = 73 sites, each representing a pair of low- and high-grazing plots). Differences between grazing pressures were evaluated using paired t tests (two-sided). For panel A (richness): t = 1.19, P = 0.238, mean difference = −0.99 [95 % CI = −2.64 to 0.67]. For panel B (diversity): t = 1.34, P = 0.183, mean difference = −0.096 [95 % CI = −0.237 to 0.046]. For panel C (evenness): t = 0.90, P = 0.373, mean difference = −0.022 [95 % CI = −0.070 to 0.027]. None of the tests were statistically significant (P > 0.05).

Extended Data Fig. 3 Importance of predictor variables to explain the response of vegetation cover to increasing grazing pressure (resistance) including (A) Shannon’s diversity index, and (B) Pielou’s evenness index.

Importance is based on the sum of Akaike weights of all models where each predictor is present using a multimodel inference approach. MAP = mean annual precipitation, MAT = mean annual temperature, SF = soil fertility, SAC = soil sand content, DIV = Shannon’s diversity index, EVE = Pielou’s evenness index, RWC = relative woody cover, FQ = forage quality, HR = herbivore richness, and LS = dominant livestock species.

Extended Data Fig. 4 Effects of key predictors on the response to increasing grazing pressure (resistance).

Structural equation model showing the relationships among aridity (estimated as 1-Aridity Index), herbivore richness, soil sand content, relative woody cover, latitude, plant species richness, and resistance (estimated as a log response ratio: ln[vegetation cover high grazing pressure/vegetation cover low grazing pressure]). Numbers on arrows are fully standardized path coefficients. Blue and red arrows indicate positive and negative relationships, respectively. Asterisks indicate significance level: ** p<0.01 and *** p<0.001.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1 and 2.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Biancari, L., Oñatibia, G.R., Le Bagousse-Pinguet, Y. et al. Plant diversity enhances ecosystem resistance to increasing grazing pressure in global drylands.
Nat Ecol Evol (2026). https://doi.org/10.1038/s41559-025-02952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41559-025-02952-9


Source: Ecology - nature.com

Optimizing boron and zinc supplementation for cane growth and its residual effect on the ratoon crop

New research may help scientists predict when a humid heat wave will break