in

The first complete mitochondrial genome and phylogenetic analysis of Clypeaster virescens (Clypeasteroida, Clypeasteridae)


Abstract

The complete mitochondrial genome of Clypeaster virescens was sequenced and analyzed to clarify its genomic features and evolutionary placement within Echinoidea. The 15,781 bp circular mitogenome encoded 37 mitochondrial genes, including 13 protein-coding genes, 22 tRNA genes, and 2 rRNAs, along with one control region. The nucleotide composition of the mitochondrial genome exhibits a high A + T content, with negative A-T skew and G-C skew. Using a 35-taxon dataset (34 echinoids and one holothuroid outgroup), phylogenetic analyses based on the complete mitochondrial genome robustly placed C. virescens within a well-supported Clypeasteroida clade alongside S. mai and A. mannii. The recovered topology also resolved major echinoid orders with strong support, including the early divergence of Echinothurioida and Diadematoida and the close relationship between Clypeasteroida and Spatangoida. These findings provide the first complete mitogenome for C. virescens, expand available molecular resources for Clypeasteroida, and establish a stable phylogenetic framework for future evolutionary and comparative studies on irregular echinoids.

Data availability

The data that support the findings of this study are freely available in GenBank of NCBI (https://www.ncbi.nlm.nih.gov/), with accession number PQ838327.

References

  1. Liang, R., Zhu, L., Huang, Y., Chen, J. & Tang, Q. Mitochondria: fundamental characteristics, challenges, and impact on aging. Biogerontology 25, 923–941. https://doi.org/10.1007/s10522-024-10132-8 (2024).

    Google Scholar 

  2. Vakifahmetoglu-Norberg, H., Ouchida, A. T. & Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 482, 426–431. https://doi.org/10.1016/j.bbrc.2016.11.088 (2017).

    Google Scholar 

  3. Castellana, S., Vicario, S. & Saccone, C. Evolutionary patterns of the mitochondrial genome in metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biol. Evol. 3, 1067–1079. https://doi.org/10.1093/gbe/evr040 (2011).

    Google Scholar 

  4. Saccone, C., De Giorgi, C., Gissi, C., Pesole, G. & Reyes, A. Evolutionary genomics in metazoa: the mitochondrial DNA as a model system. Gene 238, 195–209. https://doi.org/10.1016/S0378-1119(99)00270-X (1999).

    Google Scholar 

  5. Saccone, C. et al. Mitochondrial DNA in metazoa: degree of freedom in a frozen event. Gene 286, 3–12. https://doi.org/10.1016/S0378-1119(01)00807-1 (2002).

    Google Scholar 

  6. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. 77, 6715–6719. https://doi.org/10.1073/pnas.77.11.6715 (1980).

  7. Parsons, T. J. et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat. Genet. 15, 363–368. https://doi.org/10.1038/ng0497-363 (1997).

    Google Scholar 

  8. Guo, X., Liu, S. & Liu, Y. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture 224, 25–38. https://doi.org/10.1016/S0044-8486(03)00168-6 (2003).

    Google Scholar 

  9. Formaggioni, A., Luchetti, A. & Plazzi, F. Mitochondrial genomic landscape: A portrait of the mitochondrial genome 40 years after the first complete sequence. Life 11, 663 (2021).

    Google Scholar 

  10. Mooi, R. & Paedomorphosis Aristotle’s lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology 16, 25–48. https://doi.org/10.1017/S0094837300009714 (1990).

    Google Scholar 

  11. Lee, H. et al. Phylogeny, ancestral ranges and reclassification of sand dollars. Sci. Rep. 13, 10199. https://doi.org/10.1038/s41598-023-36848-0 (2023).

    Google Scholar 

  12. Caso, M. E. Los Equinoideos del Pacífico de México Parte Tercera-Orden Clypeasteroida. Publicaciones Especiales Centro de Ciencias del Mar y Limnología, 1-276 (1980).

  13. Mihaljević, M., Jerjen, I. & Smith, A. The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance. Zootaxa 2983, 21–38 (2011).

    Google Scholar 

  14. Lee, H. et al. Young colonization history of a widespread sand dollar (Echinodermata; Clypeasteroida) in Western Taiwan. Quatern. Int. 528, 120–129. https://doi.org/10.1016/j.quaint.2018.12.003 (2019).

    Google Scholar 

  15. Grun, T. B. & Kowalewski, M. Spatial distribution, diversity, and taphonomy of clypeasteroid and spatangoid echinoids of the central Florida keys. PeerJ 10, e14245. https://doi.org/10.7717/peerj.14245 (2022).

    Google Scholar 

  16. Döderlein, L. Seeigel von Japan und Den Liu-Kiu-Inseln. Archiv für Naturgeschichte. 51, 73–112. https://doi.org/10.5962/bhl.part.1569 (1885).

    Google Scholar 

  17. Zhang, F. Zhongguo Dongwu Tupu:jipi Dongwu[Atlas of the Animals of China:Echinodermata] (Kexue chubanshe, 1964).

  18. Pespeni,M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl. Acad. Sci. 110, 6937–6942. https://doi.org/10.1073/pnas.1220673110 (2013).

  19. Li, R. et al. Developmental validation of the MGIEasy signature identification library Prep Kit, an all-in-one multiplex system for forensic applications. Int. J. Legal Med. 135, 739–753. https://doi.org/10.1007/s00414-021-02507-0 (2021).

    Google Scholar 

  20. Andrews, S. A Quality Control Tool for High Throughput Sequence Data., https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Accessed 28 Nov 2025).

  21. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    Google Scholar 

  22. Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de Novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18. https://doi.org/10.1093/nar/gkw955 (2017).

    Google Scholar 

  23. Bernt, M. et al. Improved de Novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319. https://doi.org/10.1016/j.ympev.2012.08.023 (2013).

    Google Scholar 

  24. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86. https://doi.org/10.1186/gb-2010-11-8-r86 (2010).

    Google Scholar 

  25. Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–W57. https://doi.org/10.1093/nar/gkw413 (2016).

    Google Scholar 

  26. Darty, K., Denise, A. & Ponty, Y. V. A. R. N. A. Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975. https://doi.org/10.1093/bioinformatics/btp250 (2009).

    Google Scholar 

  27. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2 (1990).

    Google Scholar 

  28. Boratyn, G. M. et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33. https://doi.org/10.1093/nar/gkt282 (2013).

    Google Scholar 

  29. Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–9. https://doi.org/10.1093/nar/gkn201 (2008).

    Google Scholar 

  30. Denman, R. B. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques 15, 1090–1095 (1993).

    Google Scholar 

  31. Chang, W. J. & Coppola, T. W. Submitting a Sequence to GenBank. Current Protocols Essential Laboratory Techniques 1, 11.12. 11-11.12. 20 (2009).

  32. Greiner, S., Lehwark, P. & Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59–w64. https://doi.org/10.1093/nar/gkz238 (2019).

    Google Scholar 

  33. Xia, X. & Xie, Z. D. A. M. B. E. Software package for data analysis in molecular biology and evolution. J. Hered. 92, 371–373. https://doi.org/10.1093/jhered/92.4.371 (2001).

    Google Scholar 

  34. Zhang, D. et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355. https://doi.org/10.1111/1755-0998.13096 (2020).

    Google Scholar 

  35. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).

    Google Scholar 

  36. Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582–2584. https://doi.org/10.1093/molbev/msy159 (2018).

    Google Scholar 

  37. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589. https://doi.org/10.1038/nmeth.4285 (2017).

    Google Scholar 

  38. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82. https://doi.org/10.1093/nar/gkae268 (2024).

    Google Scholar 

  39. Bronstein, O., Kroh, A. & Haring, E. Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids. BMC Evol. Biol. 18, 80. https://doi.org/10.1186/s12862-018-1198-x (2018).

    Google Scholar 

  40. Taanman, J. W. & Kroon, A. M. in Mitochondria in Obesity and Type 2 Diabetes (eds Béatrice Morio, Luc Pénicaud, & Michel Rigoulet) 127–152Academic Press, (2019).

  41. Jia, W. & Higgs, P. G. Codon usage in mitochondrial genomes: distinguishing Context-Dependent mutation from translational selection. Mol. Biol. Evol. 25, 339–351. https://doi.org/10.1093/molbev/msm259 (2008).

    Google Scholar 

  42. Barbhuiya, P. A., Uddin, A. & Chakraborty, S. Understanding the codon usage patterns of mitochondrial CO genes among amphibians. Gene 777, 145462. https://doi.org/10.1016/j.gene.2021.145462 (2021).

    Google Scholar 

  43. Montaña-Lozano, P., Balaguera-Reina, S. A. & Prada-Quiroga, C. F. Comparative analysis of codon usage of mitochondrial genomes provides evolutionary insights into reptiles. Gene 851, 146999. https://doi.org/10.1016/j.gene.2022.146999 (2023).

    Google Scholar 

  44. Min, X. J. & Hickey, D. A. DNA asymmetric strand bias affects the amino acid composition of mitochondrial proteins. DNA Res. 14, 201–206. https://doi.org/10.1093/dnares/dsm019 (2007).

    Google Scholar 

  45. Gibson, A., Gowri-Shankar, V., Higgs, P. G. & Rattray, M. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol. Biol. Evol. 22, 251–264 (2005).

    Google Scholar 

  46. Nam, S. E., Park, H. S. & Rhee, J. S. Complete mitochondrial genome of the crinoid echinoderm, florometra species (Echinodermata, Crinoidea). Mitochondrial DNA Part. B-Resources. 5, 852–853. https://doi.org/10.1080/23802359.2020.1717390 (2020).

    Google Scholar 

  47. Sun, Y. Y., Liao, X. M., Dong, Y., Xia, S. D. & Xu, Q. Z. The complete mitochondrial genome of comaster schlegelii (Crinoidea, Comatulida). Mitochondrial DNA Part. B-Resources. 7, 314–316. https://doi.org/10.1080/23802359.2021.2008819 (2022).

    Google Scholar 

  48. Zhong, S. P., Zhao, L. Y., Huang, G. Q., Liu, Y. H. & Huang, L. H. The first complete mitochondrial genome of phyrella fragilis (Mitsukuri & Ohshima in Ohshima, 1912) (Dendrochirotida: Phyllophoridae). Mitochondrial DNA Part. B-Resources. 6, 2979–2980. https://doi.org/10.1080/23802359.2021.1976687 (2021).

    Google Scholar 

  49. Agmon, I., Fayerverker, I. & Mor, T. Coding triplets in the tRNA acceptor-TΨC arm and their role in present and past tRNA recognition. FEBS Lett. 595, 913–924. https://doi.org/10.1002/1873-3468.14044 (2021).

    Google Scholar 

  50. Hu, L., Zhang, M., Sun, Y. & Bu, Y. Characterization and phylogenetic analysis of the first complete mitochondrial genome of cylicocyclus radiatus. Vet. Parasitol. 281, 109097. https://doi.org/10.1016/j.vetpar.2020.109097 (2020).

    Google Scholar 

  51. Pons, J., Bover, P., Bidegaray-Batista, L. & Arnedo, M. A. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genom. 20, 665. https://doi.org/10.1186/s12864-019-6026-1 (2019).

    Google Scholar 

  52. Yong, H. S., Song, S. L., Eamsobhana, P., Goh, S. Y. & Lim, P. E. Complete mitochondrial genome reveals genetic diversity of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae). Acta Trop. 152, 157–164. https://doi.org/10.1016/j.actatropica.2015.09.001 (2015).

    Google Scholar 

  53. Frazer-Abel, A. A. & Hagerman, P. J. Determination of the angle between the acceptor and anticodon stems of a truncated mitochondrial tRNA11Edited by I. Tinoco. J. Mol. Biol. 285, 581–593. https://doi.org/10.1006/jmbi.1998.2320 (1999).

    Google Scholar 

  54. Ojala, D., Montoya, J. & Attardi, G. tRNA Punctuation model of RNA processing in human mitochondria. Nature 290, 470–474. https://doi.org/10.1038/290470a0 (1981).

    Google Scholar 

  55. Paris, Z., Fleming, I. M. & Alfonzo, J. D. Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Semin Cell. Dev. Biol. 23, 269–274. https://doi.org/10.1016/j.semcdb.2011.10.009 (2012).

    Google Scholar 

  56. Sloan, K. E. et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 14, 1138–1152. https://doi.org/10.1080/15476286.2016.1259781 (2017).

    Google Scholar 

  57. Noller, H. F. R. N. A. & Structure Reading the ribosome. Science 309, 1508–1514. https://doi.org/10.1126/science.1111771 (2005).

    Google Scholar 

  58. Mongiardino Koch, N. et al. A phylogenomic resolution of the sea urchin tree of life. BMC Evol. Biol. 18, 189. https://doi.org/10.1186/s12862-018-1300-4 (2018).

    Google Scholar 

  59. Lin, J. P. et al. The first complete mitochondrial genome of the sand dollar Sinaechinocyamus Mai (Echinoidea: Clypeasteroida). Genomics 112, 1686–1693. https://doi.org/10.1016/j.ygeno.2019.10.007 (2020).

    Google Scholar 

  60. Mongiardino Koch, N. et al. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. eLife 11, e72460. https://doi.org/10.7554/eLife.72460 (2022).

  61. Sun, S., Xiao, N. & Sha, Z. Complete mitochondrial genomes of four deep-sea echinoids: conserved mitogenome organization and new insights into the phylogeny and evolution of Echinoidea. PeerJ 10, e13730. https://doi.org/10.7717/peerj.13730 (2022).

    Google Scholar 

  62. Frank, A. C. & Lobry, J. R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65–77. https://doi.org/10.1016/S0378-1119(99)00297-8 (1999).

    Google Scholar 

  63. Iliushchenko, D. et al. Deciphering the foundations of mitochondrial mutational spectra: Replication-Driven and Damage-Induced signatures across chordate classes. Mol. Biol. Evol. 42 https://doi.org/10.1093/molbev/msae261 (2025).

  64. Chen, C. & Chen, C. W. Quantitative analysis of mutation and selection pressures on base composition skews in bacterial chromosomes. BMC Genom. 8, 286. https://doi.org/10.1186/1471-2164-8-286 (2007).

    Google Scholar 

  65. Tillier, E. R. M. & Collins, R. A. The contributions of replication Orientation, gene Direction, and signal sequences to Base-Composition asymmetries in bacterial genomes. J. Mol. Evol. 50, 249–257. https://doi.org/10.1007/s002399910029 (2000).

    Google Scholar 

  66. Bohlin, J. & Pettersson, J. H. O. Evolution of genomic base composition: from single cell microbes to multicellular animals. Comput. Struct. Biotechnol. J. 17, 362–370. https://doi.org/10.1016/j.csbj.2019.03.001 (2019).

    Google Scholar 

  67. Kroh, A. & Smith, A. B. The phylogeny and classification of post-Palaeozoic echinoids. J. Syst. Paleontol. 8, 147–212. https://doi.org/10.1080/14772011003603556 (2010).

    Google Scholar 

Download references

Funding

The study was supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (2024J002); National Natural Science Foundation of China (NSFC) (NO.42576115); Zhejiang Provincial Natural Science Foundation of China (LY22D060001&LY20C190008); Key research and development projects in Xizang (XZ202301ZY0012N).

Author information

Authors and Affiliations

Authors

Contributions

JHW, BJL and TMW conceived and designed the research. JHW, MZH, LXG, SSK, XYN, BJL and TMW conducted experiments, analyzed data, and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to
Bingjian Liu or Tianming Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Wu, J., Han, M., Gao, L. et al. The first complete mitochondrial genome and phylogenetic analysis of Clypeaster virescens (Clypeasteroida, Clypeasteridae).
Sci Rep (2026). https://doi.org/10.1038/s41598-025-33261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33261-7

Keywords

  • Clypeasteroida

  • Clypeaster virescens
  • Mitogenome
  • Phylogenetic


Source: Ecology - nature.com

Influence of different diets on biological characteristics and life table parameters of the predatory mite, Neoseiulus baraki Hughes (Acari: Phytoseiidae)

Bringing marine microbiome research into the classroom is an essential step toward a climate literate society

Back to Top