Abstract
The complete mitochondrial genome of Clypeaster virescens was sequenced and analyzed to clarify its genomic features and evolutionary placement within Echinoidea. The 15,781 bp circular mitogenome encoded 37 mitochondrial genes, including 13 protein-coding genes, 22 tRNA genes, and 2 rRNAs, along with one control region. The nucleotide composition of the mitochondrial genome exhibits a high A + T content, with negative A-T skew and G-C skew. Using a 35-taxon dataset (34 echinoids and one holothuroid outgroup), phylogenetic analyses based on the complete mitochondrial genome robustly placed C. virescens within a well-supported Clypeasteroida clade alongside S. mai and A. mannii. The recovered topology also resolved major echinoid orders with strong support, including the early divergence of Echinothurioida and Diadematoida and the close relationship between Clypeasteroida and Spatangoida. These findings provide the first complete mitogenome for C. virescens, expand available molecular resources for Clypeasteroida, and establish a stable phylogenetic framework for future evolutionary and comparative studies on irregular echinoids.
Data availability
The data that support the findings of this study are freely available in GenBank of NCBI (https://www.ncbi.nlm.nih.gov/), with accession number PQ838327.
References
Liang, R., Zhu, L., Huang, Y., Chen, J. & Tang, Q. Mitochondria: fundamental characteristics, challenges, and impact on aging. Biogerontology 25, 923–941. https://doi.org/10.1007/s10522-024-10132-8 (2024).
Vakifahmetoglu-Norberg, H., Ouchida, A. T. & Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 482, 426–431. https://doi.org/10.1016/j.bbrc.2016.11.088 (2017).
Castellana, S., Vicario, S. & Saccone, C. Evolutionary patterns of the mitochondrial genome in metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biol. Evol. 3, 1067–1079. https://doi.org/10.1093/gbe/evr040 (2011).
Saccone, C., De Giorgi, C., Gissi, C., Pesole, G. & Reyes, A. Evolutionary genomics in metazoa: the mitochondrial DNA as a model system. Gene 238, 195–209. https://doi.org/10.1016/S0378-1119(99)00270-X (1999).
Saccone, C. et al. Mitochondrial DNA in metazoa: degree of freedom in a frozen event. Gene 286, 3–12. https://doi.org/10.1016/S0378-1119(01)00807-1 (2002).
Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. 77, 6715–6719. https://doi.org/10.1073/pnas.77.11.6715 (1980).
Parsons, T. J. et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat. Genet. 15, 363–368. https://doi.org/10.1038/ng0497-363 (1997).
Guo, X., Liu, S. & Liu, Y. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture 224, 25–38. https://doi.org/10.1016/S0044-8486(03)00168-6 (2003).
Formaggioni, A., Luchetti, A. & Plazzi, F. Mitochondrial genomic landscape: A portrait of the mitochondrial genome 40 years after the first complete sequence. Life 11, 663 (2021).
Mooi, R. & Paedomorphosis Aristotle’s lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology 16, 25–48. https://doi.org/10.1017/S0094837300009714 (1990).
Lee, H. et al. Phylogeny, ancestral ranges and reclassification of sand dollars. Sci. Rep. 13, 10199. https://doi.org/10.1038/s41598-023-36848-0 (2023).
Caso, M. E. Los Equinoideos del Pacífico de México Parte Tercera-Orden Clypeasteroida. Publicaciones Especiales Centro de Ciencias del Mar y Limnología, 1-276 (1980).
Mihaljević, M., Jerjen, I. & Smith, A. The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance. Zootaxa 2983, 21–38 (2011).
Lee, H. et al. Young colonization history of a widespread sand dollar (Echinodermata; Clypeasteroida) in Western Taiwan. Quatern. Int. 528, 120–129. https://doi.org/10.1016/j.quaint.2018.12.003 (2019).
Grun, T. B. & Kowalewski, M. Spatial distribution, diversity, and taphonomy of clypeasteroid and spatangoid echinoids of the central Florida keys. PeerJ 10, e14245. https://doi.org/10.7717/peerj.14245 (2022).
Döderlein, L. Seeigel von Japan und Den Liu-Kiu-Inseln. Archiv für Naturgeschichte. 51, 73–112. https://doi.org/10.5962/bhl.part.1569 (1885).
Zhang, F. Zhongguo Dongwu Tupu:jipi Dongwu[Atlas of the Animals of China:Echinodermata] (Kexue chubanshe, 1964).
Pespeni,M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl. Acad. Sci. 110, 6937–6942. https://doi.org/10.1073/pnas.1220673110 (2013).
Li, R. et al. Developmental validation of the MGIEasy signature identification library Prep Kit, an all-in-one multiplex system for forensic applications. Int. J. Legal Med. 135, 739–753. https://doi.org/10.1007/s00414-021-02507-0 (2021).
Andrews, S. A Quality Control Tool for High Throughput Sequence Data., https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Accessed 28 Nov 2025).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de Novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18. https://doi.org/10.1093/nar/gkw955 (2017).
Bernt, M. et al. Improved de Novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319. https://doi.org/10.1016/j.ympev.2012.08.023 (2013).
Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86. https://doi.org/10.1186/gb-2010-11-8-r86 (2010).
Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–W57. https://doi.org/10.1093/nar/gkw413 (2016).
Darty, K., Denise, A. & Ponty, Y. V. A. R. N. A. Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975. https://doi.org/10.1093/bioinformatics/btp250 (2009).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2 (1990).
Boratyn, G. M. et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33. https://doi.org/10.1093/nar/gkt282 (2013).
Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–9. https://doi.org/10.1093/nar/gkn201 (2008).
Denman, R. B. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques 15, 1090–1095 (1993).
Chang, W. J. & Coppola, T. W. Submitting a Sequence to GenBank. Current Protocols Essential Laboratory Techniques 1, 11.12. 11-11.12. 20 (2009).
Greiner, S., Lehwark, P. & Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59–w64. https://doi.org/10.1093/nar/gkz238 (2019).
Xia, X. & Xie, Z. D. A. M. B. E. Software package for data analysis in molecular biology and evolution. J. Hered. 92, 371–373. https://doi.org/10.1093/jhered/92.4.371 (2001).
Zhang, D. et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355. https://doi.org/10.1111/1755-0998.13096 (2020).
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).
Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582–2584. https://doi.org/10.1093/molbev/msy159 (2018).
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589. https://doi.org/10.1038/nmeth.4285 (2017).
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82. https://doi.org/10.1093/nar/gkae268 (2024).
Bronstein, O., Kroh, A. & Haring, E. Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids. BMC Evol. Biol. 18, 80. https://doi.org/10.1186/s12862-018-1198-x (2018).
Taanman, J. W. & Kroon, A. M. in Mitochondria in Obesity and Type 2 Diabetes (eds Béatrice Morio, Luc Pénicaud, & Michel Rigoulet) 127–152Academic Press, (2019).
Jia, W. & Higgs, P. G. Codon usage in mitochondrial genomes: distinguishing Context-Dependent mutation from translational selection. Mol. Biol. Evol. 25, 339–351. https://doi.org/10.1093/molbev/msm259 (2008).
Barbhuiya, P. A., Uddin, A. & Chakraborty, S. Understanding the codon usage patterns of mitochondrial CO genes among amphibians. Gene 777, 145462. https://doi.org/10.1016/j.gene.2021.145462 (2021).
Montaña-Lozano, P., Balaguera-Reina, S. A. & Prada-Quiroga, C. F. Comparative analysis of codon usage of mitochondrial genomes provides evolutionary insights into reptiles. Gene 851, 146999. https://doi.org/10.1016/j.gene.2022.146999 (2023).
Min, X. J. & Hickey, D. A. DNA asymmetric strand bias affects the amino acid composition of mitochondrial proteins. DNA Res. 14, 201–206. https://doi.org/10.1093/dnares/dsm019 (2007).
Gibson, A., Gowri-Shankar, V., Higgs, P. G. & Rattray, M. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol. Biol. Evol. 22, 251–264 (2005).
Nam, S. E., Park, H. S. & Rhee, J. S. Complete mitochondrial genome of the crinoid echinoderm, florometra species (Echinodermata, Crinoidea). Mitochondrial DNA Part. B-Resources. 5, 852–853. https://doi.org/10.1080/23802359.2020.1717390 (2020).
Sun, Y. Y., Liao, X. M., Dong, Y., Xia, S. D. & Xu, Q. Z. The complete mitochondrial genome of comaster schlegelii (Crinoidea, Comatulida). Mitochondrial DNA Part. B-Resources. 7, 314–316. https://doi.org/10.1080/23802359.2021.2008819 (2022).
Zhong, S. P., Zhao, L. Y., Huang, G. Q., Liu, Y. H. & Huang, L. H. The first complete mitochondrial genome of phyrella fragilis (Mitsukuri & Ohshima in Ohshima, 1912) (Dendrochirotida: Phyllophoridae). Mitochondrial DNA Part. B-Resources. 6, 2979–2980. https://doi.org/10.1080/23802359.2021.1976687 (2021).
Agmon, I., Fayerverker, I. & Mor, T. Coding triplets in the tRNA acceptor-TΨC arm and their role in present and past tRNA recognition. FEBS Lett. 595, 913–924. https://doi.org/10.1002/1873-3468.14044 (2021).
Hu, L., Zhang, M., Sun, Y. & Bu, Y. Characterization and phylogenetic analysis of the first complete mitochondrial genome of cylicocyclus radiatus. Vet. Parasitol. 281, 109097. https://doi.org/10.1016/j.vetpar.2020.109097 (2020).
Pons, J., Bover, P., Bidegaray-Batista, L. & Arnedo, M. A. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genom. 20, 665. https://doi.org/10.1186/s12864-019-6026-1 (2019).
Yong, H. S., Song, S. L., Eamsobhana, P., Goh, S. Y. & Lim, P. E. Complete mitochondrial genome reveals genetic diversity of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae). Acta Trop. 152, 157–164. https://doi.org/10.1016/j.actatropica.2015.09.001 (2015).
Frazer-Abel, A. A. & Hagerman, P. J. Determination of the angle between the acceptor and anticodon stems of a truncated mitochondrial tRNA11Edited by I. Tinoco. J. Mol. Biol. 285, 581–593. https://doi.org/10.1006/jmbi.1998.2320 (1999).
Ojala, D., Montoya, J. & Attardi, G. tRNA Punctuation model of RNA processing in human mitochondria. Nature 290, 470–474. https://doi.org/10.1038/290470a0 (1981).
Paris, Z., Fleming, I. M. & Alfonzo, J. D. Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Semin Cell. Dev. Biol. 23, 269–274. https://doi.org/10.1016/j.semcdb.2011.10.009 (2012).
Sloan, K. E. et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 14, 1138–1152. https://doi.org/10.1080/15476286.2016.1259781 (2017).
Noller, H. F. R. N. A. & Structure Reading the ribosome. Science 309, 1508–1514. https://doi.org/10.1126/science.1111771 (2005).
Mongiardino Koch, N. et al. A phylogenomic resolution of the sea urchin tree of life. BMC Evol. Biol. 18, 189. https://doi.org/10.1186/s12862-018-1300-4 (2018).
Lin, J. P. et al. The first complete mitochondrial genome of the sand dollar Sinaechinocyamus Mai (Echinoidea: Clypeasteroida). Genomics 112, 1686–1693. https://doi.org/10.1016/j.ygeno.2019.10.007 (2020).
Mongiardino Koch, N. et al. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. eLife 11, e72460. https://doi.org/10.7554/eLife.72460 (2022).
Sun, S., Xiao, N. & Sha, Z. Complete mitochondrial genomes of four deep-sea echinoids: conserved mitogenome organization and new insights into the phylogeny and evolution of Echinoidea. PeerJ 10, e13730. https://doi.org/10.7717/peerj.13730 (2022).
Frank, A. C. & Lobry, J. R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65–77. https://doi.org/10.1016/S0378-1119(99)00297-8 (1999).
Iliushchenko, D. et al. Deciphering the foundations of mitochondrial mutational spectra: Replication-Driven and Damage-Induced signatures across chordate classes. Mol. Biol. Evol. 42 https://doi.org/10.1093/molbev/msae261 (2025).
Chen, C. & Chen, C. W. Quantitative analysis of mutation and selection pressures on base composition skews in bacterial chromosomes. BMC Genom. 8, 286. https://doi.org/10.1186/1471-2164-8-286 (2007).
Tillier, E. R. M. & Collins, R. A. The contributions of replication Orientation, gene Direction, and signal sequences to Base-Composition asymmetries in bacterial genomes. J. Mol. Evol. 50, 249–257. https://doi.org/10.1007/s002399910029 (2000).
Bohlin, J. & Pettersson, J. H. O. Evolution of genomic base composition: from single cell microbes to multicellular animals. Comput. Struct. Biotechnol. J. 17, 362–370. https://doi.org/10.1016/j.csbj.2019.03.001 (2019).
Kroh, A. & Smith, A. B. The phylogeny and classification of post-Palaeozoic echinoids. J. Syst. Paleontol. 8, 147–212. https://doi.org/10.1080/14772011003603556 (2010).
Funding
The study was supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (2024J002); National Natural Science Foundation of China (NSFC) (NO.42576115); Zhejiang Provincial Natural Science Foundation of China (LY22D060001&LY20C190008); Key research and development projects in Xizang (XZ202301ZY0012N).
Author information
Authors and Affiliations
Contributions
JHW, BJL and TMW conceived and designed the research. JHW, MZH, LXG, SSK, XYN, BJL and TMW conducted experiments, analyzed data, and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
All international, national, and institutional guidelines for the care and use of animals were followed.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Wu, J., Han, M., Gao, L. et al. The first complete mitochondrial genome and phylogenetic analysis of Clypeaster virescens (Clypeasteroida, Clypeasteridae).
Sci Rep (2026). https://doi.org/10.1038/s41598-025-33261-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-33261-7
Keywords
- Clypeasteroida
Clypeaster virescens
- Mitogenome
- Phylogenetic
Source: Ecology - nature.com
