in

Local biophysical climate feedback from vegetation responses to lower aerosol pollution


Abstract

Aerosols can influence vegetation through multiple processes, yet the resulting biophysical climate feedback from the vegetation response remains poorly understood. Here, using an ensemble of Earth system models and an observation-based empirical model, we show that the vegetation response to complete removal of anthropogenic aerosols can either cool or warm the local climate by up to 0.039 ± 0.020 °C (multimodel mean ± intermodel standard deviation) through altering albedo and evapotranspiration. This feedback exhibits distinct latitudinal asymmetry, resulting, on average, in cooling (–0.0083 ± 0.0070 °C) in boreal regions, moderate cooling (–0.0036 ± 0.0017 °C) in temperate zones, and slight warming (0.0007 ± 0.0011 °C) in the tropics (excluding the Amazon). Future projections suggest that stringent aerosol control could amplify the local cooling effect of vegetation across most vegetated areas. These findings reveal a previously overlooked pathway by which aerosols influence vegetation climate effects, highlighting the need for integrated policies on air quality control and vegetation-based climate solutions.

Similar content being viewed by others

Widespread reduction of ozone extremes in storylines of future climate

Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models

Vegetation-based climate mitigation in a warmer and greener World

Data availability

The historical simulation of the Coupled Model Intercomparison Project Phase 6, the hist-piNTCF, hist-piAer and ssp370-lowNTCF simulations of the Aerosol Chemistry Model Intercomparison Project, and the ssp370 simulation of the Scenario Model Intercomparison Project are available at https://esgf-node.llnl.gov/search/cmip6/.

Code availability

The processing MATLAB codes are available at https://box.nju.edu.cn/f/6c15cf6a125e4a7eb0d4/.

References

  1. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896 (2021).

  2. Grantz, D. A., Garner, J. H. B. & Johnson, D. W. Ecological effects of particulate matter. Environ. Int. 29, 213–239 (2003).

    Google Scholar 

  3. Kanniah, K. D., Beringer, J., North, P. & Hutley, L. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: a review. Prog. Phys. Geogr. Earth Environ. 36, 209–237 (2012).

    Google Scholar 

  4. Zhou, H. et al. Aerosol radiative and climatic effects on ecosystem productivity and evapotranspiration. Curr. Opin. Environ. Sci. Health 19, 100218 (2021).

    Google Scholar 

  5. Gu, L. H. et al. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–2038 (2003).

    Google Scholar 

  6. Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    Google Scholar 

  7. Rap, A. et al. Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. Nat. Geosci. 11, 640–644 (2018).

    Google Scholar 

  8. Unger, N., Yue, X. & Harper, K. L. Aerosol climate change effects on land ecosystem services. Faraday Discuss. 200, 121–142 (2017).

    Google Scholar 

  9. Yue, X. et al. Ozone and haze pollution weakens net primary productivity in China. Atmos. Chem. Phys. 17, 6073–6089 (2017).

    Google Scholar 

  10. Zhang, Y. et al. Increased global land carbon sink due to aerosol-induced cooling. Glob. Biogeochem. Cycles 33, 439–457 (2019).

    Google Scholar 

  11. Allen, R. J., Samset, B. H., Wilcox, L. J. & Fisher, R. A. Are Northern Hemisphere boreal forest fires more sensitive to future aerosol mitigation than to greenhouse gas–driven warming? Sci. Adv. 10, eadl4007 (2024).

    Google Scholar 

  12. Mahowald, N. M. et al. Aerosol deposition impacts on land and ocean carbon cycles. Curr. Clim. Change Rep. 3, 16–31 (2017).

    Google Scholar 

  13. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J. & Emberson, L. D. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 63, 637–661 (2012).

    Google Scholar 

  14. Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 33, 317–345 (1982).

    Google Scholar 

  15. Piao, S. L. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2021).

    Google Scholar 

  16. Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1140–1144 (2017).

    Google Scholar 

  17. Zeng, Z. Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).

    Google Scholar 

  18. Chen, C. et al. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv. 6, eabb1981 (2020).

    Google Scholar 

  19. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Google Scholar 

  20. Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl. Acad. Sci. USA 115, 4093–4098 (2018).

    Google Scholar 

  21. Yang, Y. T., Roderick, M. L., Zhang, S. L., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Google Scholar 

  22. Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).

    Google Scholar 

  23. He, M. Z. et al. Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation. Commun. Earth Environ. 3, 160 (2022).

    Google Scholar 

  24. Allen, R. J. The biogeophysical effects of carbon fertilization of the terrestrial biosphere. Atmos. Chem. Phys. 25, 10361–10378 (2025).

    Google Scholar 

  25. Cui, J. P. et al. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 11, 5184 (2020).

    Google Scholar 

  26. Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).

    Google Scholar 

  27. Park, S. W., Kim, J. S. & Kug, J. S. The intensification of Arctic warming as a result of CO2 physiological forcing. Nat. Commun. 11, 2098 (2020).

    Google Scholar 

  28. Li, B. G. et al. The contribution of China’s emissions to global climate forcing. Nature 531, 357–361 (2016).

    Google Scholar 

  29. Allen, R. J. et al. Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmos. Chem. Phys. 20, 9641–9663 (2020).

    Google Scholar 

  30. Samset, B. H. et al. East Asian aerosol cleanup has likely contributed to the recent acceleration in global warming. Commun. Earth Environ. 6, 543 (2025).

    Google Scholar 

  31. Li, L. F. et al. Terrestrial carbon sink and clean air co-benefits from China’s carbon neutrality policy. Earth’s. Future 12, e2024EF004631 (2024).

    Google Scholar 

  32. Zhou, H. et al. Recovery of ecosystem productivity in China due to the Clean Air Action plan. Nat. Geosci. 17, 1233–1239 (2024).

    Google Scholar 

  33. Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104, 6550–6555 (2007).

    Google Scholar 

  34. Pongratz, J., Reick, C. H., Raddatz, T. & Claussen, M. Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett. 37, L08702 (2010).

    Google Scholar 

  35. Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    Google Scholar 

  36. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci.c Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  37. Collins, W. J. et al. AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev. 10, 585–607 (2017).

    Google Scholar 

  38. Alkama, R. et al. Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13, 606 (2022).

    Google Scholar 

  39. Li, Y. T. et al. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nat. Commun. 14, 121 (2023).

    Google Scholar 

  40. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Google Scholar 

  41. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Google Scholar 

  42. Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Google Scholar 

  43. Winckler, J. et al. Different response of surface temperature and air temperature to deforestation in climate models. Earth Syst. Dyn. 10, 473–484 (2019).

    Google Scholar 

  44. Cao, Y. P. et al. Greening vegetation cools mean and extreme near-surface air temperature in China. Environ. Res. Lett. 19, 014040 (2024).

    Google Scholar 

  45. Li, Y. T. et al. Observed different impacts of potential tree restoration on local surface and air temperature. Nat. Commun. 16, 2335 (2025).

    Google Scholar 

  46. Ge, J. et al. Local surface cooling from afforestation amplified by lower aerosol pollution. Nat. Geosci. 16, 781–788 (2023).

    Google Scholar 

  47. Sitch, S., Cox, P. M., Collins, W. J. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007).

    Google Scholar 

  48. Yue, X. & Unger, N. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 9, 5413 (2019).

    Google Scholar 

  49. Ma, Y. M. et al. Implementation of trait-based ozone plant sensitivity in the Yale Interactive terrestrial Biosphere model v1.0 to assess global vegetation damage. Geosci. Model Dev. 16, 2261–2276 (2023).

    Google Scholar 

  50. Yue, X. et al. Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0. Geosci. Model Dev. 17, 4621–4642 (2024).

    Google Scholar 

  51. Winckler, J., Reick, C. H. & Pongratz, J. Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Climate 30, 1159–1176 (2017).

    Google Scholar 

  52. Chen, L. & Dirmeyer, P. A. Reconciling the disagreement between observed and simulated temperature responses to deforestation. Nat. Commun. 11, 202 (2020).

    Google Scholar 

  53. Chen, C. R. et al. The biophysical impacts of idealized afforestation on surface temperature in China: local and nonlocal effects. J. Climate 35, 4233–4253 (2023).

    Google Scholar 

  54. Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 8, 14065 (2017).

    Google Scholar 

  55. Duveiller, G. et al. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 12, 4337 (2021).

    Google Scholar 

  56. Xu, R. et al. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun. 13, 670 (2022).

    Google Scholar 

  57. Ge, J. et al. Deforestation intensifies daily temperature variability in the northern extratropics. Nat. Commun. 13, 5955 (2022).

    Google Scholar 

  58. Portmann, R. et al. Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation. Nat. Commun. 13, 5569 (2022).

    Google Scholar 

  59. Zan, B. L. et al. Spatiotemporal inequality in land water availability amplified by global tree restoration. Nat. Water 2, 863–874 (2024).

    Google Scholar 

  60. Bonan, G. B. Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evolut. Syst. 47, 97–121 (2016).

    Google Scholar 

  61. Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Google Scholar 

  62. Gomez, J. et al. The projected future degradation in air quality is caused by more abundant natural aerosols in a warmer world. Commun. Earth Environ. 4, 22 (2023).

    Google Scholar 

  63. Zhu, J. L. et al. Reforestation-induced aerosol cooling effects divergently modulated by various types of biogeophysical feedback. Natl. Sci. Rev. 12, nwaf323 (2025).

    Google Scholar 

  64. Unger, N. Human land-use-driven reduction of forest volatiles cools global climate. Nat. Clim. Change 4, 907–910 (2014).

    Google Scholar 

  65. Scott, C. E. et al. Impact on short-lived climate forcers increases projected warming due to deforestation. Nat. Commun. 9, 157.

  66. Allen, R. J. et al. Atmospheric chemistry enhances the climate mitigation potential of tree restoration. Commun. Earth Environ. 6, 367 (2025).

    Google Scholar 

  67. Zhao, Q., Zhu, Z. C., Zeng, H., Zhao, W. Q. & Myneni, R. B. Future greening of the Earth may not be as large as previously predicted. Agric. For. Meteorol. 292, 108111 (2020).

    Google Scholar 

  68. Song, X., Wang, D. Y., Li, F. & Zeng, X. D. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Adv. Clim. Change Res. 12, 584–595 (2021).

    Google Scholar 

  69. Wu, J., Wang, D. S., Li, L. Z. X. & Zeng, Z. Z. Hydrological feedback from projected Earth greening in the 21st century. Sustain. Horiz. 1, 100007 (2022).

    Google Scholar 

  70. Boysen, L. R. et al. Global climate response to idealized deforestation in CMIP6 models. Biogeosciences 17, 5615–5638 (2020).

    Google Scholar 

  71. Luo, X. et al. An evaluation of CMIP6 models in representing the biophysical effects of deforestation with satellite-based observations. J. Geophys. Res. Atmos. 128, e2022JD038198 (2023).

    Google Scholar 

  72. Luo, X. et al. Local and nonlocal biophysical effects of historical land use and land cover changes in CMIP6 models and the intermodel uncertainty. Earth’s. Future 12, e2023EF004220 (2024).

    Google Scholar 

  73. Ganguly, D., Rasch, P. J., Wang, H. L. & Yoon, J. H. Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett. 39, L18804 (2012).

    Google Scholar 

  74. Samset, B. H. et al. Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett. 43, 2782–2791 (2016).

    Google Scholar 

  75. Gao, J. Y. et al. Climate responses in China to domestic and foreign aerosol changes due to clean air actions during 2013-2019. npj Clim. Atmos. Sci. 6, 160 (2023).

    Google Scholar 

  76. Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 110, 52–57 (2013).

    Google Scholar 

  77. Wu, D. H. et al. Time-lag effects of global vegetation responses to climate change. Glob. Change Biol. 21, 3520–3531 (2015).

    Google Scholar 

  78. Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    Google Scholar 

  79. Hoesly, R. M. et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Google Scholar 

  80. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2015).

    Google Scholar 

  81. Winckler, J., Reick, C. H., Bright, R. M. & Pongratz, J. Importance of surface roughness for the local biogeophysical effects of deforestation. J. Geophys. Res. Atmos. 124, 8605–8618 (2019).

    Google Scholar 

  82. Bright, R. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296–302 (2017).

    Google Scholar 

  83. Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    Google Scholar 

  84. Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Google Scholar 

  85. Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of China (42375115 and 42130602), the Basic Research Program of Jiangsu Province (BK20240170), the ‘GeoX’ Interdisciplinary Project of Frontiers Science Center for Critical Earth Material Cycling (20250104), and the Jiangsu Collaborative Innovation Center of Climate Change. The authors thank Dr. Ramdane Alkama for providing assistance in using the empirical model to estimate biophysical feedback from vegetation changes.

Author information

Authors and Affiliations

Authors

Contributions

J.G. conceived and designed the overall study. J.G. performed the data analysis with help from X.Y., M.M., X.M., X.H., B.Q., and W.G. in the interpretation of the results. J.G. drafted the manuscript. All the authors discussed and revised the manuscript.

Corresponding author

Correspondence to
Jun Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Ge, J., Yue, X., Mu, M. et al. Local biophysical climate feedback from vegetation responses to lower aerosol pollution.
npj Clim Atmos Sci (2026). https://doi.org/10.1038/s41612-025-01310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41612-025-01310-7


Source: Ecology - nature.com

Multi-omics comparison of two emerging storage pests (Necrobia rufipes and Tribolium castaneum) of dried black soldier fly larvae product

Population structure of Hawksbill turtles (Eretmochelys imbricata) nesting along the Persian Gulf coastline revealed by inter-simple sequence repeat (ISSR) markers

Back to Top