in

Traits of a mussel transmissible cancer are reminiscent of a parasitic life style

  • 1.

    Aktipis, A. The Cheating Cell: How Evolution Helps Us Understand and Treat Cancer (Princeton University Press, 2020).

    Book 

    Google Scholar 

  • 2.

    Martinez-Outschoorn, U. E. et al. Stromal–epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell. B. 43(7), 1045–1051. https://doi.org/10.1016/j.biocel.2011.01.023 (2011).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Ujvari, B. et al. Cancer and life-history traits: lessons from host-parasite interactions. Parasitology 143, 533–541. https://doi.org/10.1017/S0031182016000147 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Overstreet, R. M. & Lotz, J. M. Host-symbiont relationships: understanding the change from guest to pest. In The Rasputin Effect: Why Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology (ed. Hurst, C.) (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28170-4_2.

    Chapter 

    Google Scholar 

  • 5.

    Combes, C. Parasitism: The Ecology and Evolution of Intimate Inter-actions (University of Chicago Press, 2001).

    Google Scholar 

  • 6.

    Dujon, A. M. et al. Transmissible cancers in an evolutionary Perspective. iScience 23(7), 101269. https://doi.org/10.1016/j.isci.2020.101269 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126(3), 477–487. https://doi.org/10.1016/j.cell.2006.05.051 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Rebbeck, C. A., Thomas, R., Breen, M., Leroi, A. M. & Burt, A. Origins and evolution of a transmissible cancer. Evolution 63(9), 2340–2349. https://doi.org/10.1111/j.1558-5646.2009.00724.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Pearse, A. M. & Swift, K. Allograft theory: transmission of devil facial-tumor disease. Nature 439(7076), 549. https://doi.org/10.1038/439549a (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113(2), 374–379. https://doi.org/10.1073/pnas.1519691113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161(2), 255–263. https://doi.org/10.1016/j.cell.2015.02.042 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534(7609), 705–709. https://doi.org/10.1038/nature18599 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. ELife 8, 1029. https://doi.org/10.7554/eLife.47788 (2019).

    Article 

    Google Scholar 

  • 14.

    Garcia-Souto, D. et al. Mitochondrial genome sequencing of marine leukemias reveals cancer contagion between clam species in the Seas of Southern Europe. BioRxiv https://doi.org/10.1101/2021.03.10.434714 (2021).

    Article 

    Google Scholar 

  • 15.

    Hammel, M. et al. Prevalence and polymorphism of a mussel transmissible cancer in Europe. Mol. Ecol. 2, 1–16. https://doi.org/10.1111/mec.16052 (2021).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Skazina, M. et al. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci. Rep. 11(5809), 56930 (2021).

    Google Scholar 

  • 17.

    Burioli, E. A. V. et al. Implementation of various approaches to study the prevalence, incidence and progression of disseminated neoplasia in mussel stocks. J. Invertebr. Patho. 168, 107271. https://doi.org/10.1016/j.jip.2019.107271 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Murray, M., James, Z. H. & Martin, W. B. A study of the cytology and karyotype of the canine transmissible venereal tumour. Res. Vet. Sci. 10(6), 565–572. https://doi.org/10.1016/50034-5288(18)34394-7 (1969).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Hamede, R. K., McCallum, H. & Jones, M. Biting injuries and transmission of Tasmanian devil facial tumour disease. J. Anim. Ecol. 82(1), 182–190 (2013).

    Article 

    Google Scholar 

  • 20.

    Sunila, I. & Farley, C. Environmental limits for survival of sarcoma cells from the soft-shell clam Mya arenaria. Dis. Aquat. Organ. 7, 111–115. https://doi.org/10.3354/dao007111 (1989).

    Article 

    Google Scholar 

  • 21.

    Carballal, M. J., Barber, B. J., Iglesias, D. & Villalba, A. Neoplastic diseases of marine bivalves. J. Invertebr. Pathol. 131, 83–106. https://doi.org/10.1016/J.JIP.2015.06.004 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Carella, F., Figueras, A., Novoa, B. & De Vico, G. Cytomorphology and PCNA expression pattern in bivalves Mytilus galloprovincialis and Cerastoderma edule with haemic neoplasia. Dis. Aquat. Org. 105, 81–87. https://doi.org/10.3354/dao02612 (2013).

    Article 

    Google Scholar 

  • 23.

    Baudoin, M. Host castration as a parasitic strategy. Evolution 29, 335–352. https://doi.org/10.1111/j.1558-5646.1975.tb00213.x (1975).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Alderman, D. J., Van Banning, P. & Perez-Colomer, A. Two abnormal European oyster (Ostrea edulis) mortalities associated with an abnormal haemocytic condition. Aquaculture 10(4), 335–340. https://doi.org/10.1016/0044-8486(77)90124-7 (1977).

    Article 

    Google Scholar 

  • 25.

    Cosson-Mannevy, M. A., Wong, C. S. & Cretney, W. J. Putative neoplastic disorders in mussels (Mytilus edulis) from southern Vancouver Island waters, British Columbia. J. Invertebr. Pathol. 44(2), 151–160. https://doi.org/10.1016/0022-2011(84)90006-5 (1984).

    Article 

    Google Scholar 

  • 26.

    Brousseau, D. J. Seasonal aspects of sarcomatous neoplasia in Mya arenaria (soft-shell clam) from Long Island Sound. J. Invertebr. Pathol. 50(3), 269–276. https://doi.org/10.1016/0022-2011(87)90092-9 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Peters, E. C. Recent investigations on the disseminated sarcomas of marine bivalve molluscs. In: W. S. Fisher, editor. Diseases processes in marine bivalve mollusc. Washington, DC: special publication No. 18, American Fisheries Society. pp. 74–92 (1988).

  • 28.

    Ford, S. E., Barber, B. J. & Marks, E. Disseminated neoplasia in juvenile Eastern oyster Crassostrea virginica, and its relationship to the reproductive cycle. Dis. Aquat. Org. 28, 73–77. https://doi.org/10.3354/dao028073 (1997).

    Article 

    Google Scholar 

  • 29.

    Barber, B. J. Neoplastic diseases of commercially important marine bivalves. Aquat. Living Resour. 17, 449–466. https://doi.org/10.1051/alr:2004052 (2004).

    Article 

    Google Scholar 

  • 30.

    Randriananja, G. Evolution de la maturation de Mytilus edulis sur deux sites d’élevage du pertuis Breton : bouchots et filières. https://archimer.ifremer.fr/doc/00446/55762/57424.pdf (2006).

  • 31.

    Levitan, D. R. Sperm limitation, gamete competition and sexual selection in external fertilizers (eds. Birkhead, T. R., Moller, A. P.) 175–217. Sperm competition and sexual selection (Academic Press, 1998).

  • 32.

    Arzul, I. et al. Effects of temperature and salinity on the survival of Bonamia ostreae, a parasite infecting flat oysters Ostrea edulis. Dis. Aquat. Organ. 85, 67–75. https://doi.org/10.3354/dao02047 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481(7381), 306–313. https://doi.org/10.1038/nature10762 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Scott, J. & Marusyk, A. Somatic clonal evolution: a selection-centric perspective. Biochim. Biophys. Acta Rev. Cancer 1867(2), 139–150 (2017).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Moore, M. N. & Lowe, D. M. The cytology and cytochemistry of the hemocytes of Mytilus edulis and their response to experimentally injected carbon particles. J. Invertebr. Pathol. 29, 18–30. https://doi.org/10.1016/0022-2011(77)90167-7 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Rasmussen, L. P. D., Hage, E. & Karlog, O. An electron microscope study of the circulating leucocytes of the marine mussel, Mytilus edulis. J. Invertebr. Pathol. 45, 158–167. https://doi.org/10.1016/0022-2011(85)90005-9 (1985).

    Article 

    Google Scholar 

  • 37.

    Carballal, M. J., López, M. C., Azevedo, C. & Villalba, A. Hemolymph cell types of the mussel Mytilus galloprovincialis. Dis. Aquat. Org. 29, 127–135. https://doi.org/10.3354/dao029127 (1997).

    Article 

    Google Scholar 

  • 38.

    Frei, E. 3rd. & Freireich, E. J. Progress and perspectives in the chemotherapy of acute leukemia. Adv. Chemother. 2, 269–298. https://doi.org/10.1016/b978-1-4831-9930-6.50011-3 (1965).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Ellison, R. R. & Murphy, M. L. “Apparent doubling time” of leukemic cells in marrow. Clin. Res. 12, 284 (1964).

    Google Scholar 

  • 40.

    Hirt, A., Schmid, A. M., Ammann, R. & Leibungut, K. In pediatric lymphoblastic leukemia of B-Cell origin, a small population of primitive blast cells is noncycling, suggesting them to be leukemia stem cell candidates. Pediatr. Res. 69, 194–199. https://doi.org/10.1203/PDR.0b013e3182092716 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Shimomatsuya, T., Tanigawa, N. & Muraoka, R. Proliferative activity of human tumors: assessment using bromodeoxyuridine and flow cytometry. Jpn. J. Cancer Res. 82(3), 357–362. https://doi.org/10.1111/j.1349-7006.1991.tb01854.x (1991).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Ford, S., Schotthoefer, A. & Spruck, C. In vivo dynamics of the microparasite Perkinsus marinus during progression and regression of infections in Eastern oysters. J. Parasitol. 85(2), 273–282. https://doi.org/10.2307/3285632 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Caza, F., Bernet, E., Veyrier, F. J., Betoulle, S. & St-Pierre, Y. Hemocytes released in seawater act as Troyan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 19696 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    McCallum, H. I. et al. Does terrestrial epidemiology apply to marine systems?. Trends Ecol. Evol. 19(11), 585–591. https://doi.org/10.1016/j.tree.2004.08.009 (2004).

    Article 

    Google Scholar 

  • 45.

    Ewald, P. W. Evolutionary biology and the treatment of signs and symptoms of infectious disease. J. Theor. Biol. 86(1), 169–176. https://doi.org/10.1016/0022-5193(80)90073-9 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Poulin, R. Chapter 5-Parasite Manipulation of Host Behavior: An Update and Frequently Asked Questions (eds: Brockmann, H. J., Roper, T. J., Naguib, M., Wynne-Edwards, K. E., Mitani, J. C., Simmons, L. W.). Advances in the Study of Behavior, Academic Press 41, 151–186. https://doi.org/10.1016/S0065-3454(10)41005-0 (2010).

  • 47.

    Cremonte, F., Vázquez, N. & Silva, M. R. Gonad atrophy caused by disseminated neoplasia in Mytilus chilensis cultured in the Beagle Channel, Tierra Del Fuego Province, Argentina. J. Shellfish Res. 30, 845–849. https://doi.org/10.2983/035.030.0325 (2011).

    Article 

    Google Scholar 

  • 48.

    Tissot, T. et al. Host manipulation by cancer cells: expectations, facts, and therapeutic implications. BioEssays 38(3), 276–285. https://doi.org/10.1002/bies/201500163 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Thomas, F., Guégan, J. F., Michalakis, Y. & Renaud, F. Parasites and host life-history traits: implications for community ecology and species co-existence. Int. J. Parasitol. 30(5), 669–674. https://doi.org/10.1016/s0020-7519(00)00040-0 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Charles, M. Etude des pathogènes, des conditions physiologiques et pathologiques impliqués dans les mortalités anormales de moules (Mytilus sp.). Biologie animale. Normandie Université. https://tel.archives-ouvertes.fr/tel-0.053331 (2019).

  • 51.

    Anderson, R. M. & May, R. M. Population biology of infectious diseases: part I. Nature 280, 361–367. https://doi.org/10.1038/280361a0 (1979).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Kuris, A. M. Trophic interactions: similarity of parasitic castrators to parasitoids. Q. Rev. Biol. 49, 129–148 (1974).

    Article 

    Google Scholar 

  • 53.

    Faure, M. F., David, P., Bonhomme, F. & Bierne, N. Genetic hitchhiking in a subdivided population of Mytilus edulis. BMC Evol. Biol. 8, 164. https://doi.org/10.1186/1471-2148-8-164 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Bierne, N. The distinctive footprints of local hitchhiking in a varied environment and global hitchhiking in a subdivided population. Evolution 64(11), 3254–3272. https://doi.org/10.1111/j.1558-5646.2010.01050.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Suquet, M. et al. Anesthesia in Pacific oyster Crassostrea gigas. Aquat. Living Resour. 22, 29–34. https://doi.org/10.1051/alr/2009006 (2009).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Lubet, P. Recherches sur le cycle sexuel et l’émission des gamètes chez les Mytilidés et les Pectinidés. Rev Trav Inst Pêches marit. 23(4), 390–548 (1959).

    Google Scholar 

  • 57.

    Bierne, N. et al. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M galloprovincialis. Mol. Ecol. 12(2), 447–61. https://doi.org/10.1046/j.1365-294x.2003.01730.x (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    New visions for better transportation

    The power of economics to explain and shape the world