in

Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol

  • 1.

    Yang, W. Y. et al. Soil properties and geography shape arbuscular mycorrhizal fungal communities in black land of China. Appl. Soil Ecol. 167, 104109. https://doi.org/10.1016/j.apsoil.2021.104109 (2021).

    Article 

    Google Scholar 

  • 2.

    Li, H. Y. et al. Effects of different slopes and fertilizer types on the grey water footprint of maize production in the black soil region of China. J. Clean. Prod. 246, 119077. https://doi.org/10.1016/j.jclepro.2019.119077 (2020).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Mao, L. G. et al. Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Crop. Prot. 83, 90–94. https://doi.org/10.1016/j.cropro.2016.02.002 (2016).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Rasool, M. et al. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 11, 6092. https://doi.org/10.1038/s41598-021-85633-4 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Solorzano, C. D. & Malvick, D. K. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens. Field. Crop. Res. 122(3), 173–178. https://doi.org/10.1016/j.fcr.2011.02.011 (2011).

    Article 

    Google Scholar 

  • 7.

    An-le, H. E. et al. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18(3), 599–606. https://doi.org/10.1016/S2095-3119(18)62089-1 (2019).

    Article 

    Google Scholar 

  • 8.

    Xu, X. G. et al. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control 130, 108259. https://doi.org/10.1016/j.foodcont.2021.108259 (2021).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Bonanomi, G., Antignani, V. & Scala, C. P. Suppression of soilborne fungal diseases with organic amendments. J. Plant. Pathol. 89(3), 311–324 (2007).

    Google Scholar 

  • 10.

    Shafique, H. A., Sultana, V., Ehteshamul-Haque, S. & Athar, M. Management of soil-borne diseases of organic vegetables. J. Plan. Protect. Res. https://doi.org/10.1515/jppr-2016-0043 (2016).

    Article 

    Google Scholar 

  • 11.

    Li, H. et al. Evaluation on the production of food crop straw in China from 2006 to 2014. Bioenerg. Res. 10, 949–957. https://doi.org/10.1007/s12155-017-9845-4 (2017).

    Article 

    Google Scholar 

  • 12.

    Zhang, P., Wei, T., Jia, Z. K., Han, Q. F. & Ren, X. L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 230–231, 41–49. https://doi.org/10.1016/j.geoderma.2014.04.007 (2014).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Yang, H. S. et al. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil. Till. Res. 202, 146656. https://doi.org/10.1016/j.still.2020.104656 (2020).

    Article 

    Google Scholar 

  • 14.

    Song, X. Y. et al. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials. Sci. Total. Environ. 740, 140202. https://doi.org/10.1016/j.scitotenv.2020.140202 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Mi, Y. Z. et al. Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains. Eur. J. Soil. Biol. 105, 103329. https://doi.org/10.1016/j.ejsobi.2021.103329 (2021).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Guo, X. X., Liu, H. T. & Wu, S. B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total. Environ. 662, 501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31(7–8), 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8 (2000).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils. 48(5), 489–499. https://doi.org/10.1007/s00374-012-0691-4 (2012).

    Article 

    Google Scholar 

  • 19.

    Hu, Y. et al. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold. Sci. Rep. 11, 16360. https://doi.org/10.1038/s41598-021-95741-w (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Hyder, S. et al. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10, 13859. https://doi.org/10.1038/s41598-020-69410-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Paterson, E., Sim, A., Osborne, S. & Murray, P. J. Long-term exclusion of plant-inputs to soil reduces the functional capacity of microbial communities to mineralise recalcitrant root-derived carbon sources. Soil. Biol. Biochem. 43(9), 1873–1880. https://doi.org/10.1016/j.soilbio.2011.05.006 (2011).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Wang, H., Guo, Q., Li, X., Li, X. & Zhang, C. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens. Appl. Soil. Ecol. 148, 103488. https://doi.org/10.1016/j.apsoil.2019.103488 (2020).

    Article 

    Google Scholar 

  • 23.

    Ndzelu, B. S., Dou, S. & Zhang, X. W. Changes in soil humus composition and humic acid structural characteristics under different corn straw returning modes. Soil. Res. 58, 452–460. https://doi.org/10.1071/SR20025 (2020).

    CAS 
    Article 

    Google Scholar 

  • 24.

    De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total. Environ. 738, 139840. https://doi.org/10.1016/j.scitotenv.2020.139840 (2021).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Wong, M. & Swift, R. S. Role of organic matter in alleviating soil acidity. in Handbook of Soil Acidity. http://espace.library.uq.edu.au/view/UQ:191317 (2003).

  • 26.

    Xie, W. J. et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil. Till. Res. 198, 104535. https://doi.org/10.1016/j.still.2019.104535 (2020).

    Article 

    Google Scholar 

  • 27.

    Cathal, N. et al. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil. Biol. Biochem. 48, 151–161. https://doi.org/10.1016/j.soilbio.2012.01.010 (2012).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Lou, Y. L., Xu, M. G., Wang, W., Sun, X. L. & Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil. Till. Res. 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007 (2011).

    Article 

    Google Scholar 

  • 29.

    Loffredo, E., Berloco, M. & Senesi, N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol. Environ. Saf. 69(3), 350–357. https://doi.org/10.1016/j.ecoenv.2007.11.005 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Bhatia, A. et al. Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag. 33(7), 1595–1601. https://doi.org/10.1016/j.wasman.2013.03.019 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Dou, S., Zhang, J. J. & Li, K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. Eur. J. Soil. Sci. 59(3), 532–539. https://doi.org/10.1111/j.1365-2389.2007.01012.x (2008).

    CAS 
    Article 

    Google Scholar 

  • 32.

    De, V. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Sanaullah, M. et al. How do microbial communities in top and subsoil respond to root litter addition under field conditions?. Soil Biol. Biochem. 103, 28–38. https://doi.org/10.1016/j.soilbio.2016.07.017 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Song, Y. et al. Identification of the produced volatile organic compounds and the involved soil bacteria during decomposition of watermelon plant residues in a Fusarium-infested soil. Geoderma 315, 178–187. https://doi.org/10.1016/j.geoderma.2017.11.021 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Vida, C., Cazorla, F. M. & Vicente, A. D. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res. Microbiol. 168(6), 583–593. https://doi.org/10.1016/j.resmic.2017.03.007 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Liu, J. G., Li, X. G., Jia, Z. J., Zhang, T. L. & Wang, X. X. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Appl. Soil. Ecol. 110, 34–42. https://doi.org/10.1016/j.apsoil.2016.11.001 (2017).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Zhao, S. C. et al. Ciampitti dynamic of fungal community composition during maize residue decomposition process in north-central China. Appl. Soil Ecol. 167, 104057. https://doi.org/10.1016/j.apsoil.2021.104057 (2021).

    Article 

    Google Scholar 

  • 38.

    Zhang, J., Xu, Y., Liang, S., Ma, X. & Sun, F. Synergistic effect of klebsiella sp. fh-1 and arthrobacter sp. nj-1 on the growth of the microbiota in the black soil of northeast china. Ecotox. Environ. Safe 190, 110079. https://doi.org/10.1016/j.ecoenv.2019.110079 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Wang, X. W. et al. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84, 145–224. https://doi.org/10.1016/j.simyco.2016.11.005 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Chen, W. H. et al. High-throughput sequencing analysis of endophytic fungal diversity in cynanchum sp.. S. Afr. J. Bot. 134, 349–358. https://doi.org/10.1016/j.sajb.2020.04.010 (2020).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Voriskova, J. & Baldrain, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7(3), 477–486. https://doi.org/10.1038/ismej.2012.116 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Kerdraon, L., Laval, V. & Suffert, F. Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. Phytobiomes J. 3, 246–255. https://doi.org/10.1094/pbiomes-02-19-0010-rvw (2019).

    Article 

    Google Scholar 

  • 43.

    Rahman, S. F. S. A. et al. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Wachowska, U., Irzykowski, W., Jedryczka, M., Stasiulewicz-Paluch, A. D. & Glowacka, K. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol. Sci. Technol. 23, 1110–1122. https://doi.org/10.1080/09583157.2013.812185 (2013).

    Article 

    Google Scholar 

  • 45.

    Liu, J. J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83(0038–0017), 29–39. https://doi.org/10.1016/j.soilbio.2015.01.009 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424. https://doi.org/10.1146/annurev-phyto-081211-172908 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Deng, X. H. et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 147, 103364. https://doi.org/10.1016/j.apsoil.2019.103364 (2020).

    Article 

    Google Scholar 

  • 49.

    Li, C. N. et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresour. Technol. 289, 121653. https://doi.org/10.1016/j.biortech.2019.121653 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Lydia, S., Tymon, P. M., Gundersen, B. & Inglis, D. A. Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiol. Res. 240, 126535. https://doi.org/10.1016/j.micres.2020.126535 (2020).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Mehmood, M. A. et al. Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. J. Environ. Manag. 259, 109857. https://doi.org/10.1016/j.jenvman.2019.109857 (2020).

    Article 

    Google Scholar 

  • 52.

    Ding, J. L. et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil. Ecol. 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003 (2017).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Zhao, Y. Y. et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol. Res. 242, 126624. https://doi.org/10.1016/j.micres.2020.126624 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Liu, X. S. et al. Organic amendment improves rhizosphere environment and shapes soil bacterial community in black and red soil under lead stress. J. Hazard. Mater. 416, 125805. https://doi.org/10.1016/j.jhazmat.2021.125805 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Qiao, J. Q., Tian, D. W., Huo, R., Wu, H. J. & Gao, X. W. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ–PhrQ system in Bacillus amyloliquefaciens B3. Plasmid 65(2), 141–149. https://doi.org/10.1016/j.plasmid.2010.11.008 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Coutte, F. et al. Effect of pps disruption and constitutive expression of srfa on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl. Microbiol. 109(2), 480–491. https://doi.org/10.1111/j.1365-2672.2010.04683.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Leclere, V. et al. Mycosubtilin overproduction by Bacillus subtilis bbg100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microb. 71(8), 4577. https://doi.org/10.1128/AEM.71.8.4577-4584.2005 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 58.

    Choi, S. K., Jeong, H., Kloepper, J. W. & Ryu, C. M. Genome sequence of Bacillus amyloliquefaciens GB03, an active ingredient of the first commercial biological control product. Genome Announc. 2(5), 1092–1106. https://doi.org/10.1128/genomeA.01092-14 (2014).

    Article 

    Google Scholar 

  • 59.

    Kim, S. Y., Lee, S. Y., Weon, H. Y., Sang, M. K. & Song, J. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J. Biotechnol. 241, 112–115. https://doi.org/10.1016/j.jbiotec.2016.11.023 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Abbasi, S. et al. Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci. Rep. 11, 9317. https://doi.org/10.1038/s41598-021-88495-y (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Saravanakumar, K. et al. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Sci. Rep. 7, 1771. https://doi.org/10.1038/s41598-017-01680-w (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Yan, F., Li, C., Ye, X., Lian, Y. & Wang, X. Antifungal activity of lipopeptides from Bacillus amyloliquefaciens mg3 against colletotrichum gloeosporioides in loquat fruits. Biol. Control 146, 104281. https://doi.org/10.1016/j.biocontrol.2020.104281 (2020).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Qi, Y., Liu, H., Wang, J. & Wang, Y. Effects of different straw biochar combined with microbial inoculants on soil environment of ginseng. Sci. Rep. 11, 14685. https://doi.org/10.21203/rs.3.rs-189319/v1 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Wang, Y. et al. Evaluation and spatial variability of paddy soil fertility in typical county of northeast China. J. Plant Nutr. Fertil. 26(2), 256–266. https://doi.org/10.11674/zwyf.19128 (2020).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Cambardella, C. A. & Elliott, E. T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 57(4), 1071–1076. https://doi.org/10.2136/sssaj1993.03615995005700040032x (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 66.

    Zhang, X., Dou, S., Ndzelu, B. S., Guan, X. W. & Bai, Y. Effects of different corn straw amendments on humus composition and structural characteristics of humic acid in black soil. Commun. Soil. Sci. Plan. 51(1), 1–11. https://doi.org/10.1080/00103624.2019.1695827 (2019).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Edgar, R. C. Uparse: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10(10), 996. https://doi.org/10.1038/NMETH.2604 (2021).

    Article 

    Google Scholar 

  • 68.

    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353. https://doi.org/10.1038/ismej (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Lourenço, K. S. et al. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome 6, 142. https://doi.org/10.1186/s40168-018-0525-1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    J-PAL North America announces five new partnerships with state and local governments

    Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages