in

Ontogeny and caudal autotomy fracture planes in a large scincid lizard, Egernia kingii

  • Emberts, Z., Escalante, I. & Bateman, P. W. The ecology and evolution of autotomy. Biol. Rev. 94, 1881–1896. https://doi.org/10.1111/brv.12539 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Dunoyer, L. A., Seifert, A. W. & Van Cleve, J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 336, 94–115. https://doi.org/10.1002/jez.b.22974 (2021).

    Article 

    Google Scholar 

  • Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: function and energetics of postautotomy tail movement in Scincella lateralis. Science https://doi.org/10.1126/science.219.4583.391 (1983).

    Article 
    PubMed 

    Google Scholar 

  • Arnold, E. Caudal autotomy as a defense. Biol. Reptil. 16, 235–273 (1988).

    Google Scholar 

  • Bateman, P. W. & Fleming, P. A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. (Lond.) 277, 1–14 (2009).

    Article 

    Google Scholar 

  • Woodland, W. Memoirs: Some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rüppel), with notes on the tails of Sphenodon and Pygopus. J. Cell Sci. 2, 63–100 (1920).

    Article 

    Google Scholar 

  • Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals (Springer, 2010).

    Book 

    Google Scholar 

  • Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).

    Article 

    Google Scholar 

  • Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317. https://doi.org/10.1007/bf00540899 (1981).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Vitt, L. J., Congdon, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in Lizards. Ecology 58, 326–337. https://doi.org/10.2307/1935607 (1977).

    Article 

    Google Scholar 

  • Clause, A. R. & Capaldi, E. A. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 305, 965–973 (2006).

    Article 

    Google Scholar 

  • Barr, J. I., Boisvert, C. A. & Bateman, P. W. At what cost? Trade-offs and influences on energetic investment in tail regeneration in lizards following autotomy. J. Dev. Biol. 9, 53 (2021).

    Article 

    Google Scholar 

  • Etheridge, R. Lizard caudal vertebrae. Copeia, 699–721 (1967).

  • Arnold, E. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169 (1984).

    Article 

    Google Scholar 

  • Zani, P. A. Patterns of caudal-autotomy evolution in lizards. J. Zool. (Lond.) 240, 201–220 (1996).

    Article 

    Google Scholar 

  • Russell, A. & Bauer, A. The m. caudifemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). J. Zool. (Lond.) 227, 127–143. https://doi.org/10.1111/j.1469-7998.1992.tb04349.x (1992).

    Article 

    Google Scholar 

  • Arnold, E. Investigating the evolutionary effects of one feature on another: Does muscle spread suppress caudal autotomy in lizards?. J. Zool. (Lond.) 232, 505–523. https://doi.org/10.1111/j.1469-7998.1994.tb01591.x (1994).

    Article 

    Google Scholar 

  • Bellairs, A. & Bryant, S. Autotomy and regeneration in reptiles. Biol. Reptil. 15, 301–410 (1985).

    Google Scholar 

  • Hoffstetter, R. & Gasc, J. P. Vertebrae and ribs of modern reptiles. Biol. Reptil. 1, 201–310 (1969).

    Google Scholar 

  • Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autotomy. Behav. Ecol. 21, 91–96. https://doi.org/10.1093/beheco/arp151 (2009).

    Article 

    Google Scholar 

  • Fleming, P. A., Valentine, L. E. & Bateman, P. W. Telling tails: Selective pressures acting on investment in lizard tails. Physiol. Biochem. Zool. 86, 645–658 (2013).

    Article 

    Google Scholar 

  • Bateman, P. W., Fleming, P. A. & Rolek, B. Bite me: Blue tails as a ‘risky-decoy’defense tactic for lizards. Curr. Zool. 60, 333–337 (2014).

    Article 

    Google Scholar 

  • Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. Blue tail and striped body: Why do lizards change their infant costume when growing up?. Behav. Ecol. 17, 889–896. https://doi.org/10.1093/beheco/arl023 (2006).

    Article 

    Google Scholar 

  • Barr, J. I., Somaweera, R., Godfrey, S. S. & Bateman, P. W. Increased tail length in the King’s skink, Egernia kingii (Reptilia: Scincidae): An anti-predation tactic for juveniles?. Biol. J. Linn. Soc. 126, 268–275 (2019).

    Article 

    Google Scholar 

  • Pafilis, P. & Valakos, E. D. Loss of caudal autotomy during ontogeny of Balkan Green Lizard, Lacerta trilineata. J. Nat. Hist. 42, 409–419 (2008).

    Article 

    Google Scholar 

  • Masters, C. & Shine, R. Sociality in lizards: family structure in free-living King’s Skinks Egernia kingii from southwestern Australia. Aust. Zool. 32, 377–380 (2003).

    Article 

    Google Scholar 

  • Cury de Barros, F., Eduardo de Carvalho, J., Abe, A. S. & Kohlsdorf, T. Fight versus flight: The interaction of temperature and body size determines antipredator behaviour in tegu lizards. Anim. Behav. 79, 83–88. https://doi.org/10.1016/j.anbehav.2009.10.006 (2010).

    Article 

    Google Scholar 

  • Storr, G. The genus Egernia (Lacertilia, Scincidae) in Western Australia. Rec. West. Aust. Mus. 6, 147–187 (1978).

    Google Scholar 

  • Cogger, H. G. Reptiles and Amphibians of Australia. 7th edn, (CSIRO Publishing, 2014).

  • Arena, P. C. & Wooller, R. D. The reproduction and diet of Egernia kingii (Reptilia : Scincidae) on Penguin Island, Western Australia. Aust. J. Zool. 51, 495–504. https://doi.org/10.1071/ZO02040 (2003).

    Article 

    Google Scholar 

  • Dilly, M. L. Factors Affecting the Distribution and Variation in Abundance of the King’s Skink (Egernia kingii) (Gray) in Western Australia, Murdoch University (2000).

  • Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).

    Article 

    Google Scholar 

  • Chapple, D. G. Ecology, life-history, and behaviour in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 17, 145–180. https://doi.org/10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2 (2003).

    Article 

    Google Scholar 

  • Itescu, Y., Schwarz, R., Meiri, S., Pafilis, P. & Clegg, S. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 86, 66–74. https://doi.org/10.1111/1365-2656.12591 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Siliceo-Cantero, H., Zúñiga-Vega, J., Renton, K. & Garcia, A. Assessing the relative importance of intraspecific and interspecific interactions on the ecology of Anolis nebulosus lizards from an island vs. a mainland population. Herpetol. Conserv. Biol. 12, 673–682 (2017).

    Google Scholar 

  • Langkilde, T. & Shine, R. Interspecific conflict in lizards: Social dominance depends upon an individual’s species not its body size. Austral Ecol. 32, 869–877 (2007).

    Article 

    Google Scholar 

  • Pafilis, P., Pérez-Mellado, V. & Valakos, E. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi. Naturwissenschaften 95, 217–221 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Browne, C. King’s Skinks (Egernia kingii) Abundance and Juvenile Survival Unaffected by Temporal Change or Presence of Invasive BLACK Rats (Rattus rattus) on Penguin Island, Western Australia, The University of Western Australia (2014).

  • Langton, J. Population Biology of the King’s Skink (Egernia kingii) (Gray) on Penguin Island, Western Australia, Murdoch University (2000).

  • Arena, P. Aspects of the Biology of the King’s Skink Egernia kingii (Gray), Murdoch University (1986).

  • Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113. https://doi.org/10.1007/s00114-009-0564-3 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Martín, J. & Salvador, A. Tail loss reduces mating success in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 32, 185–189 (1993).

    Article 

    Google Scholar 

  • Salvador, A., Martin, J. & López, P. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav. Ecol. 6, 382–387. https://doi.org/10.1093/beheco/6.4.382 (1995).

    Article 

    Google Scholar 

  • Smyth, M. Changes in the fat scores of the skinks Morethia boulengeri and Hemiergis peronii (Lacertilia). Aust. J. Zool. 22, 135–145. https://doi.org/10.1071/ZO9740135 (1974).

    Article 

    Google Scholar 

  • Wilson, R. S. & Booth, D. Effect of tail loss on reproductive output and its ecological significance in the skink Eulamprus quoyii. J. Herpetol. 32, 128–131 (1998).

    Article 

    Google Scholar 

  • Fox, S. F. & McCoy, J. K. The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122, 327–334. https://doi.org/10.1007/s004420050038 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dial, B. E. & Fitzpatrick, L. C. Predator escape success in tailed versus tailless Scinella lateralis (Sauria: Scincidae). Anim. Behav. 32, 301–302 (1984).

    Article 

    Google Scholar 

  • Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).

    Article 

    Google Scholar 

  • Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).

    Article 

    Google Scholar 

  • Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Biol. Sci. Ser. B 272, 2627–2634. https://doi.org/10.1098/rspb.2005.3251 (2005).

    Article 

    Google Scholar 

  • Steindler, L. A., Blumstein, D. T., West, R., Moseby, K. E. & Letnic, M. Exposure to a novel predator induces visual predator recognition by naïve prey. Behav. Ecol. Sociobiol. 74, 102. https://doi.org/10.1007/s00265-020-02884-3 (2020).

    Article 

    Google Scholar 

  • Blumstein, D. T. Moving to suburbia: Ontogenetic and evolutionary consequences of life on predator-free islands. J. Biogeogr. 29, 685–692. https://doi.org/10.1046/j.1365-2699.2002.00717.x (2002).

    Article 

    Google Scholar 

  • Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).

    Article 

    Google Scholar 

  • Cooper, J. W. E.; Blumstein, D. T. Escaping From Predators: An Integrative View of Escape Decisions. (Cambridge University Press, 2015).

  • Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).

    Article 

    Google Scholar 

  • Blumstein, D. T. & Daniel, J. C. The loss of anti-predator behaviour following isolation on islands. Proc. R. Soc. Biol. Sci. Ser. B 272, 1663–1668 (2005).

    Article 

    Google Scholar 

  • Blumstein, D. T., Daniel, J. C. & Springett, B. P. A test of the multi-predator hypothesis: Rapid loss of antipredator behavior after 130 years of isolation. Ethology 110, 919–934 (2004).

    Article 

    Google Scholar 

  • Jolly, C. J., Webb, J. K. & Phillips, B. L. The perils of paradise: An endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol. Lett. 14, 20180222 (2018).

    Article 

    Google Scholar 

  • Cooper, W. E., Pérez-Mellado, V. & Vitt, L. J. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J. Zool. 262, 243–255 (2004).

    Article 

    Google Scholar 

  • Elwood, C., Pelsinski, J. & Bateman, B. Anolis sagrei (Brown Anole). Voluntary autotomy. Herpetol. Rev. 43, 642–642 (2012).

    Google Scholar 

  • Slotopolsky, B. Beiträge zur Kenntnis der Verstümmelungs-und Regenerationsvorgänge am Lacertilierschwanze. Zool. Jahrb. Abt. Anat. Ontog. Tiere 43, 39–48 (1922).

    Google Scholar 


  • Source: Ecology - nature.com

    How can we reduce the carbon footprint of global computing?

    Material designed to improve power plant efficiency wins 2022 Water Innovation Prize