in

Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species

  • D’Amen, M., Zimmermann, N. E. & Pearman, P. B. Conservation of phylogeographic lineages under climate change. Glob. Ecol. Biogeogr. 22, 93–104. https://doi.org/10.1111/j.1466-8238.2012.00774.x (2013).

    Article 

    Google Scholar 

  • Espíndola, A. et al. Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol. Lett. 15, 649–657. https://doi.org/10.1111/j.1461-0248.2012.01779.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Tr. Ecol. Evolut. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).

    Article 

    Google Scholar 

  • Fontaine, C., Lovett, P., Sanou, H., Maley, J. & Bouvet, J. M. Genetic diversity of the shea tree (Vitellaria paradoxa CF Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93, 639 (2004).

    CAS 
    Article 

    Google Scholar 

  • Hampe, A., El Masri, L. & Petit, R. J. Origin of spatial genetic structure in an expanding oak population. Mol. Ecol. 19, 459–471. https://doi.org/10.1111/j.1365-294X.2009.04492.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Omondi, S. F., Odee, D. W., Ongamo, G. O., Kanya, J. I. & Khasa, D. P. Genetic consequences of anthropogenic disturbances and population fragmentation in Acacia senegal. Conserv. Genet. 17, 1235–1244. https://doi.org/10.1007/s10592-016-0854-1 (2016).

    Article 

    Google Scholar 

  • Hewitt, G. Postglacial recolonization of European biota. Biol. J. Lin. Soc. 68, 87–112 (1999).

    Article 

    Google Scholar 

  • Donkpegan, A. S. L. et al. Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am. J. Bot. 107, 498–509. https://doi.org/10.1002/ajb2.1449 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154. https://doi.org/10.1126/science.1063656 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Holderegger, R. & Wagner, H. Landscape genetics. Bioscience 58, 199–207. https://doi.org/10.1641/B580306 (2008).

    Article 

    Google Scholar 

  • Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).

    Article 
    PubMed 

    Google Scholar 

  • Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946. https://doi.org/10.1111/mec.12152 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Arnell, N. W. & Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Ch. 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4 (2014).

    ADS 
    Article 

    Google Scholar 

  • Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Ch. 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z (2011).

    ADS 
    Article 

    Google Scholar 

  • Prather, M. et al. Annex II: climate system scenario tables. Climate Ch. 1395–1445 (2013).

  • Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Synthesis report (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014).

  • Müller, C. Climate change impact on Sub-Saharan Africa. An overview and analysis of scenarios and models (Dt. Inst. für Entwicklungspolitik, Bonn, 2009).

  • Serdeczny, O. et al. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Ch. 17, 1585–1600. https://doi.org/10.1007/s10113-015-0910-2 (2016).

    Article 

    Google Scholar 

  • Linder, H. P. et al. The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205. https://doi.org/10.1111/j.1365-2699.2012.02728.x (2012).

    Article 

    Google Scholar 

  • Sexton, G. J. et al. Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss. Tree Genet. Genomes https://doi.org/10.1007/s11295-015-0933-3 (2015).

    Article 

    Google Scholar 

  • Linder, H. P. et al. Numerical re-evaluation of the sub-Saharan phytopchoria of mainland Africa. Biologiske Skrifter 55, 229–252 (2005).

    ADS 

    Google Scholar 

  • Ruiz Guajardo, J. C. et al. Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)- the importance of the Kenyan Rift Valley. Mol. Ecol. 19, 5126–5139. https://doi.org/10.1111/j.1365-294X.2010.04833.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kebede, M., Enrich, D., Taberlet, P., Nemomissa, S. & Brochmann, C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol. Ecol. 16, 1233–1243. https://doi.org/10.1111/j.1365-294x.2007.03232.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kadu, C. et al. Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol. Ecol. 20, 165–178. https://doi.org/10.1111/j.1365-294X.2010.04931.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lyam, P. T., Duque-Lazo, J., Schnitzler, J., Hauenschild, F. & Müllner-Riehl, A. N. Testing the forest refuge hypothesis in sub-Saharan Africa using species distribution modeling for a key savannah tree species, Senegalia senegal (L.) Britton. Front. Biogeogr. https://doi.org/10.21425/F5FBG48689 (2020).

    Article 

    Google Scholar 

  • Logossa, Z. A. et al. Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa. Mol. Ecol. 20, 4009–4027. https://doi.org/10.1111/j.1365-294X.2011.05249.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lompo, D., Vinceti, B., Konrad, H., Gaisberger, H. & Geburek, T. Phylogeography of African locust bean (Parkia biglobosa) reveals genetic divergence and spatially structured populations in west and central Africa. J. Heredity 109, 811–824. https://doi.org/10.1093/jhered/esy047 (2018).

    Article 

    Google Scholar 

  • Leong Pock Tsy, J.-M. et al. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. https://doi.org/10.1111/j.1365-294X.2009.04144.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Allal, F. et al. Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107, 174–186. https://doi.org/10.1038/hdy.2011.5 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fagg, C. W. & Allison, G. E. Acacia Senegal and the gum arabic trade: monograph and annotated bibliography (University of Oxford, United Kingdom, 2004).

    Google Scholar 

  • Lézine, A. M. Late Quaternary vegetation and climate of the Sahel. Quatern. Res. 32, 317–334 (1989).

    ADS 
    Article 

    Google Scholar 

  • Steele, T. Vertebrate records: Late Pleistocene of Africa. In Encyclopedia of Quaternary Science, edited by S. Elias. (Elsevier, Oxford, 2007), 3139–3150.

  • Raddad, E., Salih, A., Fadl, M., Kaarakka, V. & Luukkanen, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275, 261–269. https://doi.org/10.1007/s11104-005-2152-4 (2005).

    CAS 
    Article 

    Google Scholar 

  • Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd? Evidence from carbon and nitrogen stable isotopes. Plant Soil 369, 479–496. https://doi.org/10.1007/s11104-013-1593-4 (2013).

    CAS 
    Article 

    Google Scholar 

  • Ross, J. H. A conspectus of African acacia species (1979).

  • Odee, D. W., Telford, A., Wilson, J., Gaye, A. & Cavers, S. Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109, 372–382. https://doi.org/10.1038/hdy.2012.52 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyam, P. et al. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa. PLoS ONE 13, e0194726 (2018).

    Article 

    Google Scholar 

  • Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692; https://doi.org/10.1016/j.tplants.2010.09.008 (2010).

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).

    Article 

    Google Scholar 

  • ESRI. ArcGIS Desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute (2020).

  • Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).

    CAS 
    Article 

    Google Scholar 

  • Elhadji, S. D. et al. Exploring genetic diversity and structure of Acacia senegal (L.) Willd to improve its conservation in Niger. African J. Biotechnol. 16, 1650–1659 (2017).

    Article 

    Google Scholar 

  • Muriira, N. G., Muchugi, A., Yu, A., Xu, J. & Liu, A. Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci. Rep. 8, 7832 (2018).

    ADS 
    Article 

    Google Scholar 

  • Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614. https://doi.org/10.1002/ece3.350 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omondi, S. F. et al. Genetic diversity and population structure of Acacia senegal (L) Willd Kenya. Trop. Plant Biol. 3, 59–70 (2010).

    Article 

    Google Scholar 

  • Marko, P. B. & Hart, M. W. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26, 448–456. https://doi.org/10.1016/j.tree.2011.05.007 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Goncalves, A. L., García, M. V., Heuertz, M. & González-Martínez, S. C. Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var cebil (Griseb.) Altschul (Fabaceae). Ann. Forest Sci. https://doi.org/10.1007/s13595-019-0797-z (2019).

    Article 

    Google Scholar 

  • Rosenzweig, M. L. Species diversity in space and time (Cambridge university press, 1995).

  • Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).

    Article 

    Google Scholar 

  • Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x (2010).

    Article 

    Google Scholar 

  • Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18. https://doi.org/10.1002/evl3.154 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evol.; Int. J. Org. Evol. 53, 1898–1914 (1999).

    Article 

    Google Scholar 

  • Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720. https://doi.org/10.1111/jbi.12322 (2014).

    Article 

    Google Scholar 

  • Voss, N., Eckstein, R. L. & Durka, W. Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Ann. Botany 110, 585–593. https://doi.org/10.1093/aob/mcs117 (2012).

    Article 

    Google Scholar 

  • Fiorini, C. F. et al. Phylogeography of the specialist plant Mandirola hirsuta (Gesneriaceae) suggests ancient habitat fragmentation due to savanna expansion. Flora 262, 151522 (2020).

    Article 

    Google Scholar 

  • Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662. https://doi.org/10.1111/mec.12938 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evol.; Int. J. Org. Evol. 59, 705–719 (2005).

    Google Scholar 

  • Wang, I. J. & Summers, K. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol. Ecol. 19, 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Xu, B. et al. Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biol. 17, 200 (2017).

    Article 

    Google Scholar 

  • Hendry, A. P. & Day, T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Cambridge university press, 2007).

  • Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Osland, M. J. et al. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Ch. Biol. 27, 3009–3034 (2021).

    Article 

    Google Scholar 

  • Higgins, S. I., Lavorel, S. & Revilla, E. Estimating plant migration rates under habitat loss and fragmentation. Oikos 101, 354–366 (2003).

    Article 

    Google Scholar 

  • Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x (2005).

    Article 
    PubMed 

    Google Scholar 

  • Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kirk, H. & Freeland, J. R. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12, 3966–3988. https://doi.org/10.3390/ijms12063966 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17. https://doi.org/10.1007/s10592-018-1067-6 (2019).

    Article 

    Google Scholar 

  • Tong, Y. et al. Ex situ conservation of Pinus koraiensis can preserve genetic diversity but homogenizes population structure. Forest Ecol. Manag. 465, 117820 (2020).

    Article 

    Google Scholar 

  • Vessella, F., Simeone, M. C. & Schirone, B. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat. Sci. Rev. 119, 85–93. https://doi.org/10.1016/j.quascirev.2015.04.018 (2015).

    ADS 
    Article 

    Google Scholar 

  • Lovejoy, T. E. Climate change and biodiversity (TERI Press, India, 2006).

    Google Scholar 

  • Poczai, P., Varga, I., Bell N.E. & Hyvonen, J. The molecular basis of plant genetic diversity. In Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. The molecular basis of plant genetic diversity, edited by M. Caliskan (InTech Open Access Publisher2012), 3–31.

  • Botermans, M., Sosef, M. S. M., Chatrou, L. W. & Couvreur, T. L. P. Revision of the African Genus Hexalobus (Annonaceae). Syst. Bot. 36, 33–48. https://doi.org/10.1600/036364411X553108 (2011).

    Article 

    Google Scholar 

  • Sosef, M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).

    Article 

    Google Scholar 

  • Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Escoffier, L. & Lische, H. ARLEQUIN suite ver. 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).

    Article 

    Google Scholar 

  • Lewis, P. O. & Zaykin, D. Genetic data analysis: computer program for the analysis of allelic data. Mol. Ecol. 11, 1157–1164 (2002).

    Article 

    Google Scholar 

  • AComputer Program to Calculate F-Statistics. Goudet, J. FSTAT (Version 1.2). J. Hered. 6, 245–246 (1995).

    Google Scholar 

  • El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).

    Article 

    Google Scholar 

  • Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).

    Article 

    Google Scholar 

  • Pritchard, J., Stephens, M. & Donelly, P. Inference of Population Structure Using Multilocus Genotype Data, 945–959 (2000).

  • Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS 
    Article 

    Google Scholar 

  • Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article 

    Google Scholar 

  • Pritchard, J. K., Wen, W. & Falush, D. Documentation for STRUCTURE software: Version 2.3. University of Chicago, Chicago, IL, 1–37 (2010).

  • Eliades, N. G. & Eliades, D. G. HAPLOTYPE ANALYSIS: software for analysis of haplotype data. Forest Goettingen (Germany): Genetics and Forest Tree Breeding, Georg-August University Goettingen (2009).

  • Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar 

  • Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).

    Article 

    Google Scholar 

  • Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307. https://doi.org/10.1111/ecog.02880 (2018).

    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 

    Google Scholar 

  • Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    How can we reduce the carbon footprint of global computing?

    Material designed to improve power plant efficiency wins 2022 Water Innovation Prize