in

Environmental transfer parameters of strontium for soil to cow milk pathway for tropical monsoonal climatic region of the Indian subcontinent

  • Smith, J., Nicholas, A., & Beresford. Chernobyl-Catastrophe and Consequences. Springer (published in association with Praxis publishing, UK), ISBN 3–540–23866–2 Springer (2005)

  • Rosenthal, H. L. Content of stable strontium in man and animal biota. In C Skoryna (4): Handbook of Common Strontium. New York Plenum, pp. 503–514 (1981)

  • Ujwal, P. Studies on transfer factors and transfer coefficients of cesium and strontium in soil-grass-milk pathway and estimation and radiation dose in the environment of Kaiga. Ph D thesis, Mangalore University. http://hdl.handle.net/10603/131678 (2012).

  • World Health Organization (WHO). Concise international chemical assessment document 77 (strontium and strontium compounds). http://apps.who.int/iris/bitstream/10665/44280/1/9789241530774_ eng.pdf (2010).

  • Jones, S. Wind scale and Kyshtym: a double anniversary. J. Environ. Radioact. 99(1), 1–6. https://doi.org/10.1016/j.jenvrad.2007.10.002 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2000. Vol. I, Annex A (2000)

  • Nabeshi, et al. Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident. Shokuhin Eiseigaku Zasshi. 56(4), 133–143. https://doi.org/10.3358/shokueishi.56.133 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Abu –Khadra et al. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leaves of Wheat Plant. Radiation Physics & Protection Conference, 15–19 November 2008, Nasr City – Cairo, Egypt (2008)

  • Alexakhin, R. et al. Fluxes of radionuclides in agricultural environments: Main results and still unsolved problems. In The radiological consequences of the Chernobyl Accident (eds Karaoglou, A. et al.) 39–47 (European Commission, 1996).

    Google Scholar 

  • International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series (TRS) No. 472 (IAEA-TRS-472). IAEA, Vienna (2010).

  • International Atomic Energy Agency (IAEA). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series (TRS) No. 364. IAEA, Vienna (1994).

  • Howard, B. J. et al. Improving the quantity, quality and transparency of data used to derive radionuclide transfer parameters for animal products. 2. Cow milk. J. Environ. Radioact. 167, 254–268 (2017).

    CAS 
    Article 

    Google Scholar 

  • Tagami, et al. Chapter 5 – Terrestrial Radioecology in Tropical Systems, Editor(s): John R. Twining, Radioactivity in the Environment, Elsevier, Vol 18, pp 155–230 (2012).

  • Voigt, G. et al. Measurements of transfer coefficients for 137Cs, 60Co, 54Mn, 22Na, 131I, and 95mTc from feed into milk and beef. Radiat. Environ. Biophys. 27, 143–152. https://doi.org/10.1007/BF01214604 (1988).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Popplewell, D. S. & Ham, G. J. Transfer factors for 137Cs and 90Sr from grass to bovine milk under field conditions. J. Radio. Prot. 9(3), 189–193 (1989).

    CAS 
    Article 

    Google Scholar 

  • Schuller, P. et al. 137Cs concentration in soil, prairie plants, and milk from sites in southern Chile. Health Phy. 64(2), 157–161 (1993).

    CAS 
    Article 

    Google Scholar 

  • Kirchner, G. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident. Health Phys. 66(6), 653–665. https://doi.org/10.1097/00004032-199406000-00005 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Assimakopoulos, P. A. et al. Variation of the transfer coefficient for radiocaesium transport to sheep’s milk during a complete lactation period. J. Environ. Radioact. 22, 63–75 (1994).

    Article 

    Google Scholar 

  • Wang, C. J. et al. Transfer of radionuclides from soil to grass in Northern Taiwan. Appl. Radiat. Isot. 48(2), 301–303 (1997).

    CAS 
    Article 

    Google Scholar 

  • Zhu, Y.-G. & Smolders, E. Plant uptake of radiocaesium: A review of mechanisms, regulation and application. J. Exp. Bot. 51, 1635–1645 (2000).

    CAS 
    Article 

    Google Scholar 

  • Beresford, N. A. et al. The transfer of 137Cs and 90Sr to dairy cattle fed fresh herbage collected 35 km from the Chernobyl nuclear power plant. J. Environ. Radioact. 47, 157–170 (2000).

    CAS 
    Article 

    Google Scholar 

  • Beresford, N. A. Does size matter? In: International conference on the protection of the environment from the effects of ionizing radiation, Stockholm, International Atomic Energy Agency, Vienna, IAEA-CN-109, 182–185 (2003).

  • Howard, B. J. and Beresford, N. A. Advances in animal radioecology. In: Brechignac F, Howard, B.J., (Eds) Proceedings of international symposium in Aix-en-Provence, France, 3–7. EDP Science, Les Ulis, pp. 187–207 (2001).

  • Solecki, J. & Chibowski, S. Determination of transfer factors for 137Cs and 90Sr isotopes in soil-plant system. J. Radioanal. Nucl. Chem. 252(1), 89–93 (2002).

    CAS 
    Article 

    Google Scholar 

  • Strebl, F. et al. Radiocaesium contamination of meadow vegetation-time-dependent variability and influence of soil characteristics at grassland sites in Austria. J. Environ. Radioact. 58, 143–161 (2002).

    CAS 
    Article 

    Google Scholar 

  • Tsukada, H. S. et al. Transfer of 137Cs and stable Cs in soil–grass–milk pathway in Aomori, Japan. J. Radioanal. Nucl. Chem. 255(3), 455–458 (2003).

    CAS 
    Article 

    Google Scholar 

  • Toki, H. et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci. Rep. 10, 4074. https://doi.org/10.1038/s41598-020-60999-z (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kubo, K. et al. Variations in radioactive cesium accumulation in wheat germplasm from fields affected by the 2011 Fukushima nuclear power plant accident. Sci. Rep. 10(3744), 2020. https://doi.org/10.1038/s41598-020-60716-w (2020).

    CAS 
    Article 

    Google Scholar 

  • Saito, R. et al. Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Sci. Rep. 10, 6796. https://doi.org/10.1038/s41598-020-63507-5 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joshy, P. J. et al. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region. India. J. Environ. Radioact. 102, 1070–1077 (2011).

    Article 

    Google Scholar 

  • Joshi, R. M. et al. Baseline radioactivity levels in Kaiga site soil and its migration to biosphere. J. Radioanal. Nucl. Chem. 247(3), 571–574 (2001).

    CAS 
    Article 

    Google Scholar 

  • Sachdev, P. et al. The classification of Indian soils on the basis of transfer factors of radionuclides from soil to reference plants (IAEA-TECDOC–1497). International Atomic Energy Agency (IAEA) (2006)

  • Geetha, P. V. et al. Determination of concentration of iodine in grass and cow milk by NAA methods using reactor neutrons. J. Radioanal. Nucl. Chem. 294, 435–438 (2012).

    CAS 
    Article 

    Google Scholar 

  • Geetha, P. V. et al. Grass to cow milk transfer coefficient (Fm) of iodine for equilibrium and emergency situations. Radiat. Prot. Environ. 37(1), 14–20 (2014).

    Article 

    Google Scholar 

  • Karunakara, N. et al. Studies on the soil to grass transfer factor (Fv) and grass to milk transfer coefficient (Fm) for cesium in Kaiga region. J. Environ. Radioact. 124, 101–112. https://doi.org/10.1016/j.jenvrad.2013.03.008 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Karunakara, N. et al. Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J. Environ. Radioact. 2013(118), 80–92. https://doi.org/10.1016/j.jenvrad.2012.11.002 (2013).

    CAS 
    Article 

    Google Scholar 

  • Ujwal, P. et al. Estimation of grass to milk transfer coefficient for cesium for emergency situations. Radiat Prot Environ [serial online] [cited 2021 Sep 23]; 34: 210–2. Available from: https://www.rpe.org.in/text.asp?2011/34/3/210/101727 (2011).

  • International Atomic Energy Agency (IAEA). Soil–Plant Transfer of Radionuclides in Non-temperate Environments. IAEA-TECDOC No. 1979, IAEA, Vienna (2021a).

  • Iurian, A.-R. et al. Transfer parameters and processes in arid or humid warm climates. J. Environ. Radioact https://doi.org/10.1016/j.jenvrad.2021.106692 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Doering, et al. A revised IAEA data compilation for estimating the soil to plant transfer of radionuclides in tropical environments. J. Environ. Radioact., 232, 106570, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106570 (2021).

  • Rout et al. Transfer of radionuclides from soil to selected tropical plants of Indian Subcontinent: A review. J. Environ. Radioact., 235–236, 106652, ISSN 0265–931X. https://doi.org/10.1016/j.jenvrad.2021.106652 (2021a).

  • Rout et al. A review of soil to rice transfer of radionuclides in tropical regions of Indian subcontinent. J. Environ. Radioact. 234: 106631. https://doi.org/10.1016/j.jenvrad.2021.106631 (2021b).

  • Twining, J. R. et al. Soil-water distribution coefficients and plant transfer factors for 134Cs, 85Sr and 65Zn under field conditions in tropical Australia. J. Environ. Radioact. 71(2004), 71 (2004).

    CAS 
    Article 

    Google Scholar 

  • Twining, J. R. et al. Transfer of radioactive caesium, strontium and zinc from soil to sorghum and mung beans under field conditions in tropical northern Australia. Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC-1497, IAEA, Vienna (2006)

  • Mollah, A. et al. Determination of soil-to-plant transfer factors of 137Cs and 90Sr in the tropical environment of Bangladesh. Radiat. Environ. Biophys. 37, 125–128. https://doi.org/10.1007/s004110050104 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nguyen, H. Q. The classification of soil systems on the basis of transfer factors from soil to reference plants, Classification of Soil Systems on the Basis of Transfer Factors from Soil to Reference Plants, IAEA-TECDOC1497 (IAEA, 2006).

    Google Scholar 

  • Mahfuza, S., Sultana et al. Transfer of heavy metals and radionuclides from soil to vegetables and plants in Bangladesh, Soil Remediation and Plants, Elsevier. https://doi.org/10.1016/B978-0-12-799937-1.00012-7 (2015)

  • Nguyen, T. B. et al. Radionuclide transfer factors from air, soil and freshwater to the food chain of man in monsoon tropical condition of Vietnam, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex VIII to this publication (2021).

  • Robison, W.L. & Conrado, C.L. Concentration ratios for foods grown on Bikini Island at Bikini atoll, IAEA CRP Transfer of Radionuclides from Air, Soil and Fresh Water to the Food chain of Man in Tropical and Subtropical Environments, Annex X to this publication9 (2021).

  • Doering, C. & Bollhöfer, A. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province. J. Environ. Radioact. 162–163, 154 (2016).

    Article 

    Google Scholar 

  • Tenpe, S. P. & Parwate, D. V. Evaluation of elemental uptake of Citrus reticulata by nuclear analytical techniques. Int. J. Innov. Res. Sci. Eng. Technol. 4(2015), 2754 (2015).

    Google Scholar 

  • International Atomic Energy Agency (IAEA). Approaches for Modelling of Radioecological Data to Identify Key Radionuclides and Associated Parameter Values for Human and Wildlife. Exposure Assessments. IAEA-TECDOC No. 1950, IAEA, Vienna (2021b).

  • Johansen, M. P. & Twining, J. R. Radionuclide concentration ratios in Australian terrestrial wildlife and livestock: Data compilation and analysis. Radiat. Environ. Biophys. 49(4), 603–611. https://doi.org/10.1007/s00411-010-0318-9 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sotiropoulou, M., & Florou, H. Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece, J. Environ. Radioact., 237, 2021, 106666, ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2021.106666 (2021).

  • Howard, B. J. et al. Updating animal product transfer parameter values for cow and goat milk. In: Soil-pant transfer of radionuclides in non-temperate environments, IAEA-TECDOC-1950, IAEA, Vienna (2021)

  • Musatovová, O. & Vavrová, M. Transfer of 137Cs and 90Sr to some Animal Products in the site of Previewed Nuclear Power Plant Construction. Isotopenpraxis Isotopes Environ. Health Stud. 27(7), 339–341. https://doi.org/10.1080/10256019108622561 (1991).

    Article 

    Google Scholar 

  • International Atomic Energy Agency (IAEA). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments, IAEA-TECDOC-No. 1616. IAEA, Vienna (2009).

  • Karunakara, N. et al. Studies on transfer Factors of Iodine, Cesium and Strontium in air→ grass→ cow→ milk pathway and estimation of radiation dose specific to Kaiga region. Final report of the research project, Nuclear Power Corporation of India Ltd. (NPCIL). Grant No. Kaiga–3&4/00000/SD/2007/S/343 dated 27.12.2007, Kaiga –3&4/00000/SD/2007/S/343 (2012).

  • Karunakara, N. et al. Estimation of air-to-grass mass interception factors for iodine, J. Environ. Radioact., 186, 71–77. ISSN 0265–931X, https://doi.org/10.1016/j.jenvrad.2017.06.018 (2018).

  • Nayak, R. S. et al. Experimental database on water equivalent factor (WEQp) and organically bound tritium activity for tropical monsoonal climate region of South West Coast of India. Appl. Radiat. Isotopes, https://doi.org/10.1016/j.apradiso.2020.109390 (2020).

  • Karunakara, N. et al. 137Cs concentration in environment of Kaiga in the South-West Coast of India. Health Phys. 81(2), 148–155 (2001).

    CAS 
    Article 

    Google Scholar 

  • Karunakara, N. et al. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga of south-west Coast of India. J. Environ. Radioact. 65, 255–266 (2003).

    CAS 
    Article 

    Google Scholar 

  • International Atomic Energy Agency (IAEA). Measurement of radionuclides in food and the environment, a guide book. Technical report series No. 295. IAEA, Vienna (1989).

  • Environmental Measurements Laboratory, procedures manual. U.S. Department of Energy. Ed. 26 (1983).

  • Uchida, S. & Tagami, K. Soil-to-plant transfer factors of fallout Cs-137 and native Cs-133 in various crops collected in Japan. J. Radioanal. Nucl. Chem. 273, 205–210 (2007).

    CAS 
    Article 

    Google Scholar 

  • Gavlak, R. D. et al. Plant, soil and water reference methods for the Western Region. Western Regional Extension Publication (WREP) 125, WERA-103 Technical Committee, http://www.naptprogram.org/files/napt/western-states-method-manual-2005.pdf (2005).

  • Nuclear Power Corporation of India Ltd. (NPCIL). Environmental impact assessment for Kaiga atomic power project (Kaiga unit 5 & 6), 2 x 700 MWe PHWRs at Kaiga, Karnataka volume – I : Main report. NPCIL, Mumbai, India (2018).

  • Siddappa, K. et al. Distribution of natural and artificial radioactivity components in the environs of coastal Karnataka, Kaiga and Goa (1991–94). Final Project Report to Board of Research in Nuclear Sciences (BRNS), Govt. of India, Mangalore University, Mangalore, India (1994).

  • Radhakrishna, A. P. et al. Distribution of some natural and artificial radionuclides in mangalore environment of South India. J. Environ. Radioact. 30(1), 31–54 (1996).

    CAS 
    Article 

    Google Scholar 

  • Patra, A. K. et al. Influence of site characteristics on soil to plant transfer of Strontium. National Symposium on Environment, 2004. pp. 475–480 (2004).

  • Ross, et al. Milk minerals in cow milk with special reference to elevated calcium and its radiological implications. Radiat. Protect. Environ., 35(2) 64–68, DOI https://doi.org/10.4103/0972-0464.112340 (2012).

  • National Research Council (NRC), Nutrient requirements of dairy cattle. 5th revised edition, National Academic Press; Washington D.C (1978).

  • Patra, A. K. Studies on The Biological Translocation of Major and Trace elements in Kaiga Environment, Ph.D. Thesis, Mangalore University (2005).

  • Ehlken, S. & Kirchner, G. Seasonal variations in soil to grass transfer of fallout Strontium and Cesium and of Potassium in North German soils. J. Environ. Radioact. 33(2), 147–181 (1996).

    CAS 
    Article 

    Google Scholar 

  • International Union of Radioecology (IUR). 6th report of the working group soil-plant transfer factors. Report of the working group meeting in Guttannen, Grimselpass, Switzerland, May (1989).

  • Lu, et al. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. Journal of Environmental Radioactivity 90(2), 89–99 (2006).

  • Bergeijk, K. E. et al. Influence of pH, Soil Organic Matter Content on Soil-to-Plant Transfer of Radiocesium and Strontium as Analyzed by a Non-Parametric Method. J. of Environ. Radioactivity 15, 265–276 (1992).

    Article 

    Google Scholar 

  • Anderson, R. R. Comparison of trace elements in milk of four species. J. Dairy Sci. 75, 3050–3055 (1992).

    CAS 
    Article 

    Google Scholar 

  • Hurley, W. L. Lactation Biology. Minerals and Vitamins. Ed. by Univ. Urbana. Illinois USA. (1997).

  • Hingorani, S. B. et al. Sr-90 measurements in milk and composite diet samples in India. J. Sci. Indust. Res. 35, 557–579 (1976).

    CAS 

    Google Scholar 

  • Lettner, H. A. et al. 137Cs and 90Sr transfer to milk in Austrian alpine agriculture. J. Environ. Radioact. 98, 69–84 (2007).

    CAS 
    Article 

    Google Scholar 

  • Klemola, S. et al. Monitoring of Radionuclides in the Environs of the Finnish Nuclear Power Stations in 1988. Supplement 3 to Annual Report STUK-A89, Helsinki (1991)

  • Abukawa, J. et al. A Survey of 90Sr and 137Cs Activity Levels of Retail Foods in Japan. J. Environ. Radioact. 41 (3), 287–305. (1998)

  • Green, N. et al. The transfer of Cs and Sr along the soil-pasture-cow’s milk pathway in an area of land reclaimed from the Sea. J. Environ. Radioact. 23, 151–170 (1994).

    CAS 
    Article 

    Google Scholar 

  • Green, N. et al. Factors affecting the transfer of radionuclides to sheep grazing on pastures reclaimed from the Sea. J. Environ. Radioact. 30(2), 173–183 (1996).

    CAS 
    Article 

    Google Scholar 

  • Beresford, N. A. et al. The transfer of radiocaesium to ewes through a breeding cycle: An illustration of the pitfalls of the transfer coefficient. J. Environ. Radioact. 98, 24–35 (2007).

    CAS 
    Article 

    Google Scholar 

  • Bobovnikova, et al. Chemical forms of occurrence of long-lived radionuclides and their alteration in soils near the Chernobyl Nuclear Power Station. Soviet Soil Sci. 23, 52–57. (1991).

  • Kashparov, V. A. et al. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone. Health Phys. 76, 251–299 (1999).

    CAS 
    Article 

    Google Scholar 

  • Joshy, P. J. Studies on Environmental Transportation of Natural Radionuclides in Kaiga Region. Ph D Thesis, Mangalore University, pp. 105 (2007).


  • Source: Ecology - nature.com

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Team creates map for production of eco-friendly metals