in

Physiological responses to low CO2 over prolonged drought as primers for forest–grassland transitions

  • Bond, W. Open Ecosystems (Oxford Univ. Press, 2019).

  • Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).

    Article 

    Google Scholar 

  • Haverd, V. et al. Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences 13, 761–779 (2016).

    CAS 
    Article 

    Google Scholar 

  • Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol. 35, 451–463 (2010).

    Article 

    Google Scholar 

  • Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).

    CAS 
    Article 

    Google Scholar 

  • Mitchell, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. N. Phytol. 197, 862–872 (2013).

    CAS 
    Article 

    Google Scholar 

  • Schutz, A. E. N., Bond, W. J. & Cramer, M. D. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160, 235–246 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Wigley, B., Cramer, M. & Bond, W. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).

    Article 

    Google Scholar 

  • Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A. & Consortium, C. G. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Spriggs, E. L., Christin, P.-A. & Edwards, E. J. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE 9, e97722 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • McKay, R. M. et al. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Phil. Trans. R. Soc. A 374, 20140301 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).

    CAS 
    Article 

    Google Scholar 

  • Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bellasio, C. & Farquhar, G. D. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. N. Phytol. 223, 150–166 (2019).

    CAS 
    Article 

    Google Scholar 

  • Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO(2) on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).

    CAS 
    Article 

    Google Scholar 

  • Ward, J. K., Tissue, D. T., Thomas, R. B. & Strain, B. R. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob. Change Biol. 5, 857–867 (1999).

    Article 

    Google Scholar 

  • Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).

    Article 

    Google Scholar 

  • February, E. C. & Higgins, S. I. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S. Afr. J. Bot. 76, 517–523 (2010).

    Article 

    Google Scholar 

  • February, E. C., Higgins, S. I., Bond, W. J. & Swemmer, L. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94, 1155–1164 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Fynn, R. W. S. & Naiken, J. Different responses of Eragrostis curvula and Themeda triandra to rapid- and slow-release fertilisers: insights into their ecology and implications for fertiliser selection in pot experiments. Afr. J. Range Forage Sci. 26, 43–46 (2009).

    Article 

    Google Scholar 

  • Osmolovskaya, N. et al. Methodology of drought stress research: experimental setup and physiological characterization. Int. J. Mol. Sci. 19, 4089 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • Quirk, J., Bellasio, C., Johnson, D. A., Osborne, C. P. & Beerling, D. J. C4 savanna grasses fail to maintain assimilation in drying soil under low CO2 compared with C3 trees despite lower leaf water demand. Funct. Ecol. 33, 388–398 (2019).

    Article 

    Google Scholar 

  • Taylor, S. H. et al. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Glob. Change Biol. 20, 1992–2003 (2014).

    Article 

    Google Scholar 

  • Bellasio, C., Quirk, J. & Beerling, D. J. Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Sci. 274, 181–192 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kipchirchir, K. O., Ngugi, K. R., Mwangi, M. S., Njomo, K. G. & Raphael, W. Water stress tolerance of six rangeland grasses in the Kenyan semi-arid rangelands. Am. J. Agric. For. 3, 222–229 (2015).

    Google Scholar 

  • Kadioglu, A. & Terzi, R. A dehydration avoidance mechanism: leaf rolling. Bot. Rev. 73, 290–302 (2007).

    Article 

    Google Scholar 

  • Bittman, S. & Simpson, G. M. Drought effect on leaf conductance and leaf rolling in forage grasses. Crop Sci. 29, 338–344 (1989).

    Article 

    Google Scholar 

  • O’Toole, J. C. & Cruz, R. T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 65, 428–432 (1980).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Redmann, R. E. Adaptation of grasses to water stress—leaf rolling and stomate distribution. Ann. Mo. Bot. Gard. 72, 833–842 (1985).

    Article 

    Google Scholar 

  • Volder, A., Tjoelker, M. G. & Briske, D. D. Contrasting physiological responsiveness of establishing trees and a C4 grass to rainfall events, intensified summer drought, and warming in oak savanna. Glob. Change Biol. 16, 3349–3362 (2010).

    Article 

    Google Scholar 

  • Medeiros, J. S. & Ward, J. K. Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function. N. Phytol. 199, 738–748 (2013).

    CAS 
    Article 

    Google Scholar 

  • Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nackley, L. L. et al. CO2 enrichment does not entirely ameliorate Vachellia karroo drought inhibition: a missing mechanism explaining savanna bush encroachment. Environ. Exp. Bot. 155, 98–106 (2018).

    CAS 
    Article 

    Google Scholar 

  • Apgaua, D. M. et al. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Tree Physiol. 39, 1806–1820 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bond, W. J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641–659 (2008).

    Article 

    Google Scholar 

  • Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).

    Article 

    Google Scholar 

  • Dohn, J. et al. Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J. Ecol. 101, 202–209 (2013).

    Article 

    Google Scholar 

  • Jacobsen, J. V., Hanson, A. D. & Chandler, P. C. Water stress enhances expression of an α-amylase gene in barley leaves. Plant Physiol. 80, 350–359 (1986).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brodersen, C. & McElrone, A. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00108 (2013).

  • Chitarra, W. et al. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta 239, 887–899 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hasibeder, R., Fuchslueger, L., Richter, A. & Bahn, M. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. N. Phytol. 205, 1117–1127 (2015).

    CAS 
    Article 

    Google Scholar 

  • Bradford, K. J. & Hsiao, T. C. in Physiological Plant Ecology II: Water Relations and Carbon Assimilation (eds Lange, O. L. et al.) 263–324 (Springer Berlin Heidelberg, 1982).

  • Knox, K. J. E. & Clarke, P. J. Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Funct. Ecol. 19, 690–698 (2005).

    Article 

    Google Scholar 

  • Hoffmann, W. A., Orthen, B. & Franco, A. C. Constraints to seedling success of savanna and forest trees across the savanna–forest boundary. Oecologia 140, 252–260 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Palacio, S., Maestro, M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).

    CAS 
    Article 

    Google Scholar 

  • Hoffmann, W. A., Bazzaz, F. A., Chatterton, N. J., Harrison, P. A. & Jackson, R. B. Elevated CO2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Galvez, D. A., Landhausser, S. M. & Tyree, M. T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol. 31, 250–257 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Poorter, H. et al. A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. N. Phytol. https://doi.org/10.1111/nph.17802 (2022).

  • Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheiter, S. et al. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. N. Phytol. 195, 653–666 (2012).

    Article 

    Google Scholar 

  • Quirk, J., Bellasio, C., Johnson, D. A. & Beerling, D. J. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. Ann. Bot. Lond. 124, 77–90 (2019).

    Article 
    CAS 

    Google Scholar 

  • Davies, J. et al. in AGU Fall Meeting Abstracts EP41D-2374. https://ui.adsabs.harvard.edu/abs/2019AGUFMEP41D2374D/abstract

  • Mills, A. J., Rogers, K. H., Stalmans, M. & Witkowski, E. T. F. A framework for exploring the determinants of savanna and grassland distribution. BioScience 56, 579–589 (2006).

    Article 

    Google Scholar 

  • Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. N. Phytol. 216, 1151–1160 (2017).

    CAS 
    Article 

    Google Scholar 

  • Cardoso, A. W. et al. Winners and losers: tropical forest tree seedling survival across a West African forest–savanna transition. Ecol. Evol. 6, 3417–3429 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mitchard, E. T. A. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0406 (2013).

  • Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Change 5, 823–829 (2015).

    Article 

    Google Scholar 

  • Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. B 367, 601–612 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ripley, B. S., Gilbert, M. E., Ibrahim, D. G. & Osborne, C. P. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58, 1351–1363 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McAusland, L. et al. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. N. Phytol. 211, 1209–1220 (2016).

    Article 

    Google Scholar 

  • Osborne, C. P. & Sack, L. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B 367, 583–600 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pearcy, R. W. & Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984).

    CAS 
    Article 

    Google Scholar 

  • Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. N. Phytol. 201, 908–915 (2014).

    CAS 
    Article 

    Google Scholar 

  • Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).

    Article 

    Google Scholar 

  • Polley, H. W., Johnson, H. B., Marino, B. D. & Mayeux, H. S. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361, 61–64 (1993).

    Article 

    Google Scholar 

  • Stevens, N., Lehmann, C. E., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).

    Article 

    Google Scholar 

  • Charles-Dominique, T., Midgley, G. F., Tomlinson, K. W. & Bond, W. J. Steal the light: shade vs fire adapted vegetation in forest–savanna mosaics. N. Phytol. 218, 1419–1429 (2018).

    Article 

    Google Scholar 

  • Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bellasio, C., Fini, A. & Ferrini, F. Evaluation of a high throughput starch analysis optimised for wood. PLoS ONE 9, e86645 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kozloski, G. V., Rocha, J. B., Ribeiro Filho, H. M. N. & Perottoni, J. Comparison of acid and amyloglucosidase hydrolysis for estimation of non‐structural polysaccharides in feed samples. J. Sci. Food Agric. 79, 1112–1116 (1999).

    CAS 
    Article 

    Google Scholar 

  • Bellasio, C., Beerling, D. J. & Griffiths, H. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant Cell Environ. 39, 1180–1197 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bellasio, C., Beerling, D. J. & Griffiths, H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. Plant Cell Environ. 39, 1164–1179 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ethier, G. J. & Livingston, N. J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. Plant Cell Environ. 27, 137–153 (2004).

    CAS 
    Article 

    Google Scholar 

  • von Caemmerer, S. Biochemical Models of Leaf Photosynthesis (CSIRO, 2000).

  • Bellasio, C. & Griffiths, H. Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ. 37, 1046–1058 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fini, A., Bellasio, C., Pollastri, S., Tattini, M. & Ferrini, F. Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J. Arid Environ. 89, 21–29 (2013).

    Article 

    Google Scholar 

  • Ghannoum, O., Caemmerer, S. V. & Conroy, J. P. The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Funct. Plant Biol. 29, 1337–1348 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Designing zeolites, porous materials made to trap molecules

    These neurons have food on the brain