in

Age as a primary driver of the gut microbial composition and function in wild harbor seals

  • Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tanaka, M. & Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66, 515–522 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol. 19, 1–10 (2019).

    Article 

    Google Scholar 

  • Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nagpal, R. et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Front. Microbiol. 8, 1–9 (2017).

    Article 

    Google Scholar 

  • Smith, S. C., Chalker, A., Dewar, M. L. & Arnould, J. P. Y. Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota. FEMS Microbiol. Ecol. 86, 246–255 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Janiak, M. C. et al. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome 9, (2021).

  • Toro-Valdivieso, C., Toro, F., Stubbs, S., Castro-Nallar, E. & Blacklaws, B. Patterns of the fecal microbiota in the Juan Fernández fur seal (Arctocephalus philippii). MicrobiologyOpen 10, 1–19 (2021).

    Article 
    CAS 

    Google Scholar 

  • Medeiros, A. W. et al. Characterization of the faecal bacterial community of wild young South American (Arctocephalus australis) and Subantarctic fur seals (Arctocephalus tropicalis). FEMS Microbiol. Ecol. 92, 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Numberger, D., Herlemann, D. P. R., Jürgens, K., Dehnhardt, G. & Schulz-Vogt, H. Comparative analysis of the fecal bacterial community of five harbor seals (Phoca vitulina). MicrobiologyOpen 5, 782–792 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pacheco-Sandoval, A. et al. The Pacific harbor seal gut microbiota in Mexico: Its relationship with diet and functional inferences. PlosOne 14, (2019).

  • Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: A comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Glad, T. et al. Ecological characterisation of the colonic microbiota in Arctic and sub-Arctic seals. Microbiol. Ecol. 60, 320–330 (2010).

    Article 
    CAS 

    Google Scholar 

  • Delport, T. C., Power, M. L., Harcourt, R. G., Webster, K. N. & Tetu, S. G. Colony location and captivity influence the gut microbial community composition of the Australian sea lion (Neophoca cinerea). Appl. Environ. Microbiol. 82, 3440–3349 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stoffel, M. A. et al. Early sexual dimorphism in the developing gut microbiome of northern elephant seals. Mol. Ecol. 29, 2109–2122 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Tian, J., Du, J., Han, J., Song, X. & Lu, Z. Age-related differences in gut microbial community composition of captive spotted seals (Phoca largha). Mar. Mamm. Sci. 36, 1231–1240 (2020).

    Article 

    Google Scholar 

  • Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bigg, M. A. Harbour seal: Phoca vitulina and P. largha. In Handbook of Marine Mammals Vol. 2 (eds Ridgeway, S. H. & Harrison, R. J.) 1–27 (Academic Press, 1981).

    Google Scholar 

  • Parracho, H., McCartney, A. L. & Gibson, G. R. Probiotics and prebiotics in infant nutrition. Proc. Nutr. Society 66, 405–411 (2007).

    Article 

    Google Scholar 

  • Marques, T. M. et al. Programming infant gut microbiota: Influence of dietary and environmental factors. Curr. Opin. Biotechnol. 21, 149–156 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, 1556–1573 (2007).

    Article 
    CAS 

    Google Scholar 

  • Mitsuoka, T. Intestinal flora and aging. Nutr. Rev. 50, 438–446 (1992).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Bowen, W., Oftedal, O. & Boness, D. Mass and energy transfer during lactation in a small phocid, the harbor seal (Phoca vitulina). Physiol. Zool. 65, 844–866 (1992).

    Article 

    Google Scholar 

  • Bowen, W. D., Boness, D. J. & Iverson, S. J. Diving behaviour of lactating harbour seals and their pups during maternal foraging trips. Can. J. Zool. 77, 978–988 (1999).

    Article 

    Google Scholar 

  • Jørgensen, C., Lydersen, C., Brix, O. & Kovacs, K. M. Diving development in nursing harbour seal pups. J. Exp. Biol. 204, 3993–4004 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Muelbert, M. M. C. & Bowen, W. D. Duration of lactation and postweaning changes in mass and body composition of harbour seal, Phoca vitulina, pups. Can. J. Zool. 71, 1405–1414 (1993).

    Article 

    Google Scholar 

  • Kim, M., Cho, H. & Lee, W. Y. Distinct gut microbiotas between southern elephant seals and Weddell seals of Antarctica. J. Microbiol. 58, 1018–1026 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kershaw, J. L. & Hall, A. J. Seasonal variation in harbour seal (Phoca vitulina) blubber cortisol—A novel indicator of physiological state?. Sci. Rep. 6, 1–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • Madison, A. & Kiecolt-Glaser, J. K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci. 28, 105–110 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thompson, P. M., Miller, D., Cooper, R. & Hammond, P. S. Changes in the distribution and activity of female harbour seals during the breeding season: implications for their lactation strategy and mating patterns. J. Anim. Ecol. 63, 24 (1994).

    Article 

    Google Scholar 

  • Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2013, 1–22 (2013).

    Google Scholar 

  • Fernández-Martin, E. M., Heckel, G., Schramm, Y. & García-Aguilar, M. C. The timing of pupping and molting of the Pacific harbor seal, Phoca vitulina richardii, at Punta Banda Estuary, Baja California, Mexico. Cienc. Mar. 42, 195–208 (2016).

    Article 

    Google Scholar 

  • Oates, S. C. Survival, movements, and diet of juvenile harbor seals along central California. [Master’s thesis, San Jose State University]. (2005). https://doi.org/10.31979/etd.ra96-xhge.

  • Germain, L. R., Mccarthy, M. D., Koch, P. L. & Harvey, J. T. Stable carbon and nitrogen isotopes in multiple tissues of wild and captive harbor seals (Phoca vitulina) off the California coast. Mar. Mamm. Sci. 28, 542–560 (2012).

    Article 
    CAS 

    Google Scholar 

  • Brassea-Pérez, E., Schramm, Y., Heckel, G., Chong-Robles, J. & Lago-Lestón, A. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Mar. Biol. 166, (2019).

  • Davis, T. A., Nguyen, H. V., Costa, D. P. & Reeds, P. J. Amino acid composition of pinniped milk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 110, 633–639 (1995).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Sauvé, C. C., van de Walle, J., Hammill, M. O., Arnould, J. P. Y. & Beauplet, G. Stomach temperature records reveal nursing behaviour and transition to solid food consumption in an unweaned mammal, the harbour seal pup (Phoca vitulina). PLoS ONE 9, (2014).

  • Fernández Martín, E. M. Fenología de los nacimientos, estado de salud de las crías, y estructura genética poblacional de Phoca vitulina richardii en México [Doctoral thesis, Universidad Autónoma de Baja California, Mexico]. (2018).

  • Gresse, R. et al. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 25, 851–873 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Ni, Y. et al. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J. 15, 3207–3220 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pacífico, C. et al. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms 9, 1–23 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Disease 26, (2015).

  • Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).

    Article 

    Google Scholar 

  • van Parijs, S. M., Thompson, P. M., Tollit, D. J. & Mackay, A. Distribution and activity of male harbour seals during the mating season. Anim. Behav. 54, 35–43 (1997).

    Article 

    Google Scholar 

  • Bjorkland, R. H. et al. Stable isotope mixing models elucidate sex and size effects on the diet of a generalist marine predator. Mar. Ecol. Prog. Ser. 526, 213–225 (2015).

    ADS 
    Article 

    Google Scholar 

  • Schwarz, D. et al. Large-scale molecular diet analysis in a generalist marine mammal reveals male preference for prey of conservation concern. Ecol. Evol. 8, 9889–9905 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Boulva, J. Temporal variations in birth period and characteristics of newborn harbour seals. Rapports et procPs-verbaux, Reunions du Conseil International pour I’Exploration de la Mer 169, 405–408 (1975).

    Google Scholar 

  • Bhute, S. S., Ghaskadbi, S. S. & Shouche, Y. S. Rare biosphere in human gut: A less explored component of human gut microbiota and its association with human health. In Mining of Microbial Wealth and MetaGenomics (eds Kalia, V. C. et al.) 133–142 (Springer Nature Singapore Ptd Ltd, 2017). https://doi.org/10.1007/978-981-10-5708-3.

    Chapter 

    Google Scholar 

  • Brown, R. F. & Mate, B. R. Abundance, movements, and feeding habits of harbor seals, Phoca vitulina, at Netarts and Tillamook Bays, Oregon. Fishery Bull. 81, 291–301 (1983).

    Google Scholar 

  • Higgins, R. Bacteria and fungi of marine mammals: A review. Can. Veterinary J. 41, 105–116 (2000).

    CAS 

    Google Scholar 

  • Gilbert, M. J. et al. Campylobacter blaseri sp. nov., isolated from common seals (Phoca vitulina). Int. J. Syst. Evolut. Microbiol. 68, 1787–1794 (2018).

    Article 
    CAS 

    Google Scholar 

  • Agnese, E. D. et al. Comparative microbial community analysis of fur seals and salmon aquaculture in Tasmania. Authorea. https://doi.org/10.22541/au.160253843.32636436/v1 (2020).

    Article 

    Google Scholar 

  • Rivas, A. J., Lemos, M. L. & Osorio, C. R. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front. Microbiol. 4, 1–6 (2013).

    Article 

    Google Scholar 

  • Fouz, B., Toranzo, A. E., Milan, M. & Amaro, C. Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. damselae. J. Appl. Microbiol. 88, 531–535 (2000).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hundenborn, J., Thurig, S., Kommerell, M., Haag, H. & Nolte, O. Severe Wound Infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Rep. Med. 2013, (2013).

  • Lubinsky-Jinich, D., Schramm, Y. & Heckel, G. The Pacific Harbor Seal’s (Phoca vitulina richardii) breeding colonies in Mexico: Abundance and distribution. Aquat. Mamm. 43, 73–81 (2017).

    Article 

    Google Scholar 

  • Arias-Del Razo, A. et al. Distribution of four pinnipeds (Zalophus californianus, Arctocephalus philippii townsendi, Phoca vitulina richardii, and Mirounga angustirostris) on Islands off the west coast of the Baja California Peninsula, Mexico. Aquat. Mamm. 43, 40–51 (2017).

    Article 

    Google Scholar 

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 108, 4516–4522 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Robertson, K. M., Lauf, M. L. & Morin, P. A. Genetic sexing of pinnipeds: A real-time, single step qPCR technique. Conserv. Genet. Resour. 10, 213–218 (2018).

    Article 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019). Accessed 3 June 2021.

  • McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, (2013).

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-4. https://cran.r-project.org/package=vegan (2019). Accessed 3 June 2021.

  • Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. https://doi.org/10.1101/299537 (2018).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 

  • Salinas, H. & Ramirez-Delgado, D. ecolTest: Community Ecology Tests. (2021).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 
    CAS 

    Google Scholar 

  • Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020).

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes-A 2019 update. Nucleic Acids Res. 48, D455–D463 (2020).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Impact report: how biodiversity coverage shapes lives and policies

    The geometry of evolved community matrix spectra