in

Towards a unified theory of plant photosynthesis and hydraulics

  • Raschke, K., Monteith, J. L. & Weatherley, P. E. How stomata resolve the dilemma of opposing priorities. Phil. Trans. R. Soc. Lond. B 273, 551–560 (1976).

    Article 
    CAS 

    Google Scholar 

  • Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brodribb, T. J., Bowman, D. J. M. S., Nichols, S., Delzon, S. & Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188, 533–542 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keeling, R. F. et al. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1619240114 (2017).

  • Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article 
    PubMed 

    Google Scholar 

  • McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

    Article 

    Google Scholar 

  • Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    Article 
    CAS 

    Google Scholar 

  • Damour, G., Simonneau, T., Cochard, H. & Urban, L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33, 1419–1438 (2010).

    PubMed 

    Google Scholar 

  • Wang, Y., Sperry, J. S., Anderegg, W. R. L., Venturas, M. D. & Trugman, A. T. A theoretical and empirical assessment of stomatal optimization modeling. New Phytol. 227, 311–325 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Venturas, M. D. et al. A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought. New Phytol. 220, 836–850 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sabot, M. E. B. et al. Plant profit maximization improves predictions of European forest responses to drought. New Phytol. 226, 1638–1655 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Eller, C. B. et al. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytol. 226, 1622–1637 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).

    Article 

    Google Scholar 

  • Bonan, G. B., Williams, M., Fisher, R. A. & Oleson, K. W. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev. 7, 2193–2222 (2014).

    Article 

    Google Scholar 

  • Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).

    Article 

    Google Scholar 

  • Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, Version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).

    Article 

    Google Scholar 

  • Cowan, I. R. & Farquhar, G. D. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol. 31, 471–505 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. USA 113, E7222–E7230 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sperry, J. S. et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 40, 816–830 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bartlett, M. K., Detto, M. & Pacala, S. W. Predicting shifts in the functional composition of tropical forests under increased drought and CO2 from trade-offs among plant hydraulic traits. Ecol. Lett. 22, 67–77 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Wright, I. J., Reich, P. B. & Westoby, M. Least‐cost input mixtures of water and nitrogen for photosynthesis. Am. Nat.161, 98–111 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).

    Article 

    Google Scholar 

  • Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J.-L., Reynolds, J. F., Harley, P. C. & Tenhunen, J. D. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).

    Article 
    PubMed 

    Google Scholar 

  • Buckley, T. N., John, G. P., Scoffoni, C. & Sack, L. How does leaf anatomy influence water transport outside the xylem? Plant Physiol. 168, 1616–1635 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scoffoni, C. et al. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiol. 173, 1197–1210 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klein, T. et al. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol. Res. 33, 839–855 (2018).

    CAS 

    Google Scholar 

  • Rodriguez-Dominguez, C. M. & Brodribb, T. J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126–134 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sack, L. & Holbrook, N. M. Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361–381 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bourbia, I., Pritzkow, C. & Brodribb, T. J. Herb and conifer roots show similar high sensitivity to water deficit. Plant Physiol. 186, 1908–1918 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. Meteorol. 182–183, 204–214 (2013).

    Article 

    Google Scholar 

  • Kanechi, M., Uchida, N., Yasuda, T. & Yamaguchi, T. Non-stomatal inhibition associated with inactivation of rubisco in dehydrated coffee leaves under unshaded and shaded conditions. Plant Cell Physiol. 37, 455–460 (1996).

    Article 
    CAS 

    Google Scholar 

  • Salmon, Y. et al. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytol. 226, 690–703 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82–94 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. New Phytol. 204, 105–115 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bartlett, M. K., Klein, T., Jansen, S., Choat, B. & Sack, L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl Acad. Sci. USA 113, 13098–13103 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutiérrez, M. V. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450 (2003).

    Article 

    Google Scholar 

  • Martin‐StPaul, N., Delzon, S. & Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20, 1437–1447 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Skelton, R. P. et al. Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiol. 177, 1066–1077 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hölttä, T., Lintunen, A., Chan, T., Mäkelä, A. & Nikinmaa, E. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source–sink flux. Tree Physiol. 37, 851–868 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Pivovaroff, A. L., Sack, L. & Santiago, L. S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytol. 203, 842–850 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Boyer, J. S., Wong, S. C. & Farquhar, G. D. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol. 114, 185–191 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deans, R. M., Brodribb, T. J., Busch, F. A. & Farquhar, G. D. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. Nat. Plants 6, 1116–1125 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, S.-X., Medlyn, B. E. & Prentice, I. C. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 117, 133–144 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rungwattana, K. et al. Trait evolution in tropical rubber (Hevea brasiliensis) trees is related to dry season intensity. Funct. Ecol. 32, 2638–2651 (2018).

    Article 

    Google Scholar 

  • Dybzinski, R., Farrior, C., Wolf, A., Reich, P. B. & Pacala, S. W. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. Am. Nat. 177, 153–166 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hikosaka, K. & Anten, N. P. R. An evolutionary game of leaf dynamics and its consequences for canopy structure. Funct. Ecol. 26, 1024–1032 (2012).

    Article 

    Google Scholar 

  • Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

    Article 

    Google Scholar 

  • Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob. Change Biol. 26, 2573–2583 (2020).

    Article 

    Google Scholar 

  • Papastefanou, P. et al. A dynamic model for strategies and dynamics of plant water-potential regulation under drought conditions. Front. Plant Sci. 11, 373 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grieu, P., Guehl, J. M. & Aussenac, G. The effects of soil and atmospheric drought on photosynthesis and stomatal control of gas exchange in three coniferous species. Physiol. Plant. 73, 97–104 (1988).

    Article 

    Google Scholar 

  • Liu, F., Andersen, M. N., Jacobsen, S.-E. & Jensen, C. R. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ. Exp. Bot. 54, 33–40 (2005).

    Article 
    CAS 

    Google Scholar 

  • Tezara, W., Driscoll, S. & Lawlor, D. W. Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. Photosynthetica 46, 127–134 (2008).

    Article 
    CAS 

    Google Scholar 

  • Liu, C.-C. et al. Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol. Plant. 139, 39–54 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Posch, S. & Bennett, L. T. Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol. 11, 83–93 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, M., Kelly, J. W. G., Atwell, B. J., Tissue, D. T. & Medlyn, B. E. Drought by CO2 interactions in trees: a test of the water savings mechanism. New Phytol. 230, 1421–1434 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ennajeh, M., Tounekti, T., Vadel, A. M., Khemira, H. & Cochard, H. Water relations and drought-induced embolism in olive (Olea europaea) varieties ‘Meski’ and ‘Chemlali’ during severe drought. Tree Physiol. 28, 971–976 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Peguero-Pina, J. J., Sancho-Knapik, D., Morales, F., Flexas, J. & Gil-Pelegrín, E. Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Funct. Plant Biol. 36, 453–462 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Liu, C.-C. et al. Exploitation of patchy soil water resources by the clonal vine Ficus tikoua in karst habitats of southwestern China. Acta Physiol. Plant. 33, 93–102 (2011).

    Article 

    Google Scholar 

  • Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355 (1995).

    Article 
    CAS 

    Google Scholar 

  • Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    Article 

    Google Scholar 

  • Brodribb, T. et al. Linking xylem network failure with leaf tissue death. New Phytol. 232, 68–79 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Coordinating climate and air-quality policies to improve public health

    Pesticide innovation takes top prize at Collegiate Inventors Competition