in

Dynamic monitoring and analysis of factors influencing ecological environment quality in northern Anhui, China, based on the Google Earth Engine

  • Zhao, Q. G., Huang, G. Q. & Ma, Y. Q. The ecological environment conditions and construction of an ecological civilization in China. Acta Ecol. Sin. 36, 6328–6335 (2016).

    Google Scholar 

  • Jiang, Y. China’s water scarcity. J. Environ. Manag. 90, 3185–3196 (2009).

    Article 

    Google Scholar 

  • Jacob, D. J. & Winner, D. A. Effect of climate change on air quality. Atmos. Environ. 43, 51–63 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shahmohamadi, P., Che-Ani, A. I., Ramly, A., Maulud, K. N. A. & Mohd-Nor, M. F. I. Reducing urban heat island effects: A systematic review to achieve energy consumption balance. Int. J. Phys. Sci. 5, 626–636 (2010).

    Google Scholar 

  • Shan, W. et al. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 239, 118126 (2019).

    Article 

    Google Scholar 

  • Cheng, R. et al. Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences 17, 4523–4544 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ochoa-Gaona, S. et al. A multi-criterion index for the evaluation of local tropical forest conditions in Mexico. For. Ecol. Manag. 260, 618–627 (2010).

    Article 

    Google Scholar 

  • Zuromski, L. M. et al. Solar-induced fluorescence detects interannual variation in gross primary production of coniferous forests in the western United States. Geophys. Res. Lett. 45, 7184–7193 (2018).

    Article 
    ADS 

    Google Scholar 

  • Wingard, G. L. & Lorenz, J. J. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands. Ecol. Ind. 44, 92–107 (2014).

    Article 

    Google Scholar 

  • Zhou, X. H., Zhang, F., Zhang, H. W., Zhang, X. L. & Yuan, J. A study of soil salinity inversion based on multispectral remote sensing index in Ebinur lake wetland nature reserve. Spectrosc. Spectral Anal. 39, 1229–1235 (2019).

    CAS 

    Google Scholar 

  • Jiang, M. Z., Chen, H. Y., Chen, Q. H., Wu, H. Y. & Chen, P. Wetland ecosystem integrity and its variation in an estuary using the EBLE index. Ecol. Ind. 48, 252–262 (2015).

    Article 

    Google Scholar 

  • Lv, J. X. et al. Wetland loss identification and evaluation based on landscape and remote sensing indices in Xiong’an new area. Remote Sens. 11, 2834 (2019).

    Article 
    ADS 

    Google Scholar 

  • Bi, X. et al. Assessment of spatio-temporal variation and driving mechanism of ecological environment quality in the arid regions of Central Asia, Xinjiang. Int. J. Environ. Res. Public Health 18, 7111 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leroux, L. et al. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 108, 11–26 (2019).

    Article 

    Google Scholar 

  • Liran, O., Shir, O. M., Levy, S., Grunfeld, A. & Shelly, Y. Novel remote sensing index of electron transport rate predicts primary production and crop health in L. sativa and Z. mays. Remote Sens. 12, 1718 (2020).

    Article 
    ADS 

    Google Scholar 

  • Zang, Y. Z. et al. Remote sensing index for mapping canola flowers using MODIS data. Remote Sens. 12, 3912 (2020).

    Article 
    ADS 

    Google Scholar 

  • Jia, T. X., Zhang, X. Q. & Dong, R. C. Long-term spatial and temporal monitoring of cyanobacteria blooms using MODIS on Google Earth Engine: A case study in Taihu lake. Remote Sens. 11, 2269 (2019).

    Article 
    ADS 

    Google Scholar 

  • Bai, Y. Analysis of vegetation dynamics in the Qinling-Daba Mountains region from MODIS time series data. Ecol. Ind. 129, 108029 (2021).

    Article 

    Google Scholar 

  • Zhang, M., Lin, H., Long, X. R. & Cai, Y. T. Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000–2019 time-series Landsat data. Sci. Total Environ. 780, 146615 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qu, C., Li, P. J. & Zhang, C. M. A spectral index for winter wheat mapping using multi-temporal Landsat NDVI data of key growth stages. ISPRS J. Photogramm. Remote Sens. 175, 431–447 (2021).

    Article 
    ADS 

    Google Scholar 

  • Fu, Y. C., Lu, X. Y., Zhao, Y. L., Zeng, X. T. & Xia, L. L. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China. Remote Sens. 5, 4125–4144 (2013).

    Article 
    ADS 

    Google Scholar 

  • Kulkarni, K. & Vijaya, P. NDBI based prediction of land use land cover change. J. Indian Soc. Remote Sens. 49, 2523–2537 (2021).

    Article 

    Google Scholar 

  • Li, C. Y. & Zhang, N. Analysis of the daytime urban heat island mechanism in East China. J. Geophys. Res.-Atmos. 126, 2020 (2021).

    Google Scholar 

  • Wang, Z. A. et al. Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecol. Indic. 128, 107845 (2021).

    Article 

    Google Scholar 

  • Zhao, Y. J. et al. Impact of urban expansion on rain island effect in Jinan City, North China. Remote Sens. 13, 2989 (2021).

    Article 
    ADS 

    Google Scholar 

  • Xu, H. Q. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 33, 7853–7862 (2013).

    Google Scholar 

  • Gou, R. K. & Zhao, J. Eco-environmental quality monitoring in Beijing, China, using an RSEI-based approach combined with random forest algorithms. IEEE Access 8, 196657–196666 (2020).

    Article 

    Google Scholar 

  • Jing, Y. Q. et al. Assessment of spatial and temporal variation of ecological environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 110, 107518 (2020).

    Article 

    Google Scholar 

  • Airiken, M., Zhang, F., Chan, N. W. & Kung, H. T. Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the North Slope of Tianshan, China. Environ. Sci. Pollut. Res. 29, 12282–12299 (2022).

    Article 

    Google Scholar 

  • Ji, J. W., Wang, S. X., Zhou, Y., Liu, W. L. & Wang, L. T. Studying the eco-environmental quality variations of Jing-Jin-Ji urban agglomeration and its driving factors in different ecosystem service regions from 2001 to 2015. IEEE Access 8, 154940–154952 (2020).

    Article 

    Google Scholar 

  • Liu, Z. S., Wang, L. Y. & Li, B. Quality assessment of ecological environment based on Google Earth Engine: A case study of the Zhoushan Islands. Front. Ecol. Evol. 10, 918756 (2022).

    Article 

    Google Scholar 

  • Xiong, Y. et al. Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 125, 107518 (2021).

    Article 

    Google Scholar 

  • Zhang, Q. F. et al. Recent oasis dynamics and ecological security in the Tarim River Basin, Central Asia. Sustainability 14, 3372 (2022).

    Article 

    Google Scholar 

  • Yuan, B. D. et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 302, 126995 (2021).

    Article 

    Google Scholar 

  • Gao, W. L., Zhang, S. W., Rao, X. Y., Lin, X. & Li, R. S. Landsat TM/OLI-based ecological and environmental quality survey of Yellow River Basin, Inner Mongolia section. Remote Sens. 13, 4477 (2021).

    Article 
    ADS 

    Google Scholar 

  • Zhu, Q. et al. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Ind. 121, 107119 (2021).

    Article 

    Google Scholar 

  • Huang, H. P., Chen, W., Zhang, Y., Qiao, L. & Du, Y. Y. Analysis of ecological quality in Lhasa metropolitan area during 1990–2017 based on remote sensing and Google Earth Engine platform. J. Geogr. Sci. 31, 265–280 (2021).

    Article 

    Google Scholar 

  • Fan, C., Gui, F., Wang, L. Z. & Zhao, S. Evaluation of environmental quality based on remote sensing data in the coastal lands of eastern China. J. Coastal Res. 36, 1229–1236 (2020).

    Article 

    Google Scholar 

  • Phan, T. N., Kuch, V. & Lehnert, L. W. Land cover classification using Google Earth Engine and random forest classifier—The role of image composition. Remote Sens. 12, 2411 (2020).

    Article 
    ADS 

    Google Scholar 

  • Binh, N. A. et al. Thirty-year dynamics of LULC at the Dong Thap Muoi area, southern Vietnam, using Google Earth Engine. ISPRS Int. J. Geo Inf. 10, 226 (2021).

    Article 

    Google Scholar 

  • Yang, G. X. et al. AGTOC: A novel approach to winter wheat mapping by automatic generation of training samples and one-class classification on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 102, 102446 (2021).

  • Inman, V. L. & Lyons, M. B. Automated inundation mapping over large areas using Landsat data and Google Earth Engine. Remote Sens. 12, 1348 (2020).

    Article 
    ADS 

    Google Scholar 

  • Long, X. R., Li, X. Y., Lin, H. & Zhang, M. Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 102, 102453 (2021).

    Google Scholar 

  • Hu, Y. F., Dong, Y. & Nacun, B. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogram. Remote Sens. 146, 347–359 (2018).

    Article 
    ADS 

    Google Scholar 

  • Mahdianpari, M. et al. A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: A case study in Newfoundland. Gisci. Remote Sens. 57, 1102–1124 (2020).

    Article 

    Google Scholar 

  • Brovelli, M. A., Sun, Y. & Yordanov, V. Monitoring forest change in the Amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS Int. J. Geo Inf. 9, 580 (2020).

    Article 

    Google Scholar 

  • Yin, H. R. et al. Analysis of spatial heterogeneity and influencing factors of ecological environment quality in China’s north-south transitional zone. Int. J. Environ. Res. Public Health 19, 2236 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xinran, N., Zhenqi, H., Mengying, R., Qi, Z. & Huang, S. Remote-sensing evaluation and temporal and spatial change detection of ecological environment quality in coal-mining areas. Remote Sens. 14, 345 (2022).

    Article 

    Google Scholar 

  • Li, H. et al. Exploring spatial distributions of increments in soil heavy metals and their relationships with environmental factors using GWR. Stoch. Environ. Res. Risk Assess. 35, 2173–2186 (2021).

    Article 

    Google Scholar 

  • Wang, J. F. & Xu, C. D. Geodetector: Principle and prospective. Acta Geogr. Sin. 72, 116–134 (2017).

    Google Scholar 

  • Peng, S., Ding, Y., Liu, W. & Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data. 11, 1931–1946 (2019).

    Article 
    ADS 

    Google Scholar 

  • Hu, X. S. & Xu, H. Q. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 89, 11–21 (2018).

    Article 

    Google Scholar 

  • Yu, G. Q., Yang, H. B., Tian, Z. Z. & Zhang, B. S. Eco-environment quality assessment of Miyun county based on RS and GIS. Proc. Environ. Sci. 10, 2601–2607 (2011).

    Article 

    Google Scholar 

  • Chen, S. L., Zhu, Z. H., Liu, X. T. & Yang, L. Variation in vegetation and its driving force in the Pearl river delta region of China. Int. J. Environ. Res. Public Health 19, 10343 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, D. Y., Chen, T., Zhen, N. & Niu, R. Q. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index. Environ. Sci. Pollut. Res. 27, 15716–15728 (2020).

    Article 

    Google Scholar 

  • Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. & Skakun, S. Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 5, 1–10 (2017).

    Article 

    Google Scholar 

  • Kumar, L. & Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 10, 1509 (2018).

    Article 
    ADS 

    Google Scholar 

  • Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar 

  • Parastatidis, D., Mitraka, Z., Chrysoulakis, N. & Abrams, M. Online global land surface temperature estimation from Landsat. Remote Sens. 9, 1208 (2017).

    Article 
    ADS 

    Google Scholar 

  • Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).

    Article 
    ADS 

    Google Scholar 

  • Huang, H. B. et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 202, 166–176 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ying, L. et al. Estimation of remote sensing based ecological index along the Grand Canal based on PCA-AHP-TOPSIS methodology. Ecol. Ind. 122, 107214 (2021).

    Article 

    Google Scholar 

  • He, X., Li, M., Guo, H. & Tian, Z. Evaluation of ecological environment of Songshan scenic area based on GF-1 data. in IOP Conference Series: Materials Science and Engineering. Vol. 392. 042029 (2018).

  • Yi, Z., Jiyun, S., Xiangren, L. & Meng, Z. Spatio-temporal evolution and driving factors of eco-environmental quality based on RSEI in Chang-Zhu-Tan metropolitan circle, central China. Ecol. Ind. 144, 109436 (2022).

    Article 

    Google Scholar 

  • Wan, H. L., Huo, F., Niu, Y. F., Zhang, W. & Zhang, Q. R. Dynamic monitoring and analysis of ecological environment change in Cangzhou city based on RSEI model considering PM2.5 concentration. Prog. Geophys. 36, 953–960 (2021).

    Google Scholar 

  • Wang, J., Ma, J. L., Xie, F. F. & Xu, X. J. Improvement of remote sensing ecological index in arid regions: Taking Ulan Buh Desert as an example. Chin. J. Appl. Ecol. 31, 3795–3804 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Community succession and functional prediction of microbial consortium with straw degradation during subculture at low temperature

    Predicting the potential global distribution of an invasive alien pest Trioza erytreae (Del Guercio) (Hemiptera: Triozidae)