in

Persistence of plastic debris and its colonization by bacterial communities after two decades on the abyssal seafloor

  • 1.

    PlasticsEurope. (Association of Plastic Manufacturers Brussels, 2019).

  • 2.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Lebreton, L. C. et al. River plastic emissions to the world’s oceans. Nature communications 8, 15611 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS one 9, e111913 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific reports 8, 4666 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 838–838 (2004).

    CAS  PubMed  Google Scholar 

  • 7.

    Gewert, B., Plassmann, M. M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes & Impacts 17, 1513–1521 (2015).

    CAS  Google Scholar 

  • 8.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS  PubMed  Google Scholar 

  • 9.

    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. Royal Society Open Science 1, 140317 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Lobelle, D. & Cunliffe, M. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 62, 197–200 (2011).

    CAS  PubMed  Google Scholar 

  • 11.

    Goldberg, E. Plasticizing the seafloor: an overview. Environ. Technol. 18, 195–201 (1997).

    CAS  Google Scholar 

  • 12.

    Narayan, R. Biodegradation of polymeric materials (anthropogenic macromolecules) during composting. Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects, 339 (1993).

  • 13.

    Gijsman, P., Meijers, G. & Vitarelli, G. Polym. Degrad. stab. 65, 433–441 (1999).

    CAS  Google Scholar 

  • 14.

    Yousif, E., Salimon, J. & Salih, N. New stabilizers for polystyrene based on 2‐thioacetic acid benzothiazol complexes. J. Appl. Polym. Sci. 125, 1922–1927 (2012).

    CAS  Google Scholar 

  • 15.

    Grassie, N. & Scott, G. Polymer degradation & stabilization. (Cambridge University Press, 1998).

  • 16.

    Vargo, J. D. & Olson, K. L. Identification of antioxidant and ultraviolet light stabilizing additives in plastics by liquid chromatography/mass spectrometry. Analytical Chemistry 57, 672–675 (1985).

    CAS  Google Scholar 

  • 17.

    Tedetti, M. & Sempéré, R. Penetration of ultraviolet radiation in the marine environment. A review. Photochem. Photobiol. 82, 389–397 (2006).

    CAS  PubMed  Google Scholar 

  • 18.

    Campanelli, J. R., Kamal, M. & Cooper, D. A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J. Appl. Polym. Sci. 48, 443–451 (1993).

    CAS  Google Scholar 

  • 19.

    Latorre, I., Hwang, S., Sevillano, M. & Montalvo-Rodríguez, R. PVC biodeterioration and DEHP leaching by DEHP-degrading bacteria. Int. Biodeterior. Biodegrad. 69, 73–81 (2012).

    CAS  Google Scholar 

  • 20.

    Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nature communications 9, 1430 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Devi, R. S. et al. The role of microbes in plastic degradation. Environ. Waste Manage 341 (2016).

  • 22.

    Yoshida, S. et al. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351, 1196–1199 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Baird, R. W. & Hooker, S. K. Ingestion of plastic and unusual prey by a juvenile harbour porpoise. Mar. Pollut. Bull. 40, 719–720 (2000).

    CAS  Google Scholar 

  • 24.

    Boerger, C. M., Lattin, G. L., Moore, S. L. & Moore, C. J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60, 2275–2278 (2010).

    CAS  PubMed  Google Scholar 

  • 25.

    Fry, D. M., Fefer, S. I. & Sileo, L. Ingestion of plastic debris by Laysan albatrosses and wedge-tailed shearwaters in the Hawaiian Islands. Mar. Pollut. Bull. 18, 339–343 (1987).

    Google Scholar 

  • 26.

    Laist, D. W. In Marine Debris 99-139 (Springer, 1997).

  • 27.

    Moore, C. J., Moore, S. L., Leecaster, M. K. & Weisberg, S. B. A comparison of plastic and plankton in the North Pacific central gyre. Mar. Pollut. Bull. 42, 1297–1300 (2001).

    CAS  PubMed  Google Scholar 

  • 28.

    Keswani, A., Oliver, D. M., Gutierrez, T. & Quilliam, R. S. Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar. Environ. Res. 118, 10–19 (2016).

    CAS  PubMed  Google Scholar 

  • 29.

    Oberbeckmann, S., Osborn, A. M. & Duhaime, M. B. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11, e0159289 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Lumpkin, R. & Johnson, G. C. Global ocean surface velocities from drifters: Mean, variance, El Niño–Southern Oscillation response, and seasonal cycle. Journal of Geophysical Research: Oceans 118, 2992–3006 (2013).

    ADS  Google Scholar 

  • 32.

    Wypych, G. Handbook of polymers. (Elsevier, 2016).

  • 33.

    Millero, F. J. & Poisson, A. International one-atmosphere equation of state of seawater. Deep Sea Research Part A. Oceanographic Research Papers 28, 625–629 (1981).

    ADS  Google Scholar 

  • 34.

    Nauendorf, A. et al. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments. Mar. Pollut. Bull. (2016).

  • 35.

    Haeckel, M., König, I., Riech, V., Weber, M. E. & Suess, E. Pore water profiles and numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep Sea Research Part II: Topical Studies in Oceanography 48, 3713–3736 (2001).

    ADS  CAS  Google Scholar 

  • 36.

    Carson, H. S., Nerheim, M. S., Carroll, K. A. & Eriksen, M. The plastic-associated microorganisms of the North Pacific Gyre. Mar. Pollut. Bull. 75, 126–132 (2013).

    CAS  PubMed  Google Scholar 

  • 37.

    De Tender, C. A. et al. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49, 9629–9638 (2015).

    ADS  PubMed  Google Scholar 

  • 38.

    Takada, H. & Karapanagioti, H. K. Hazardous Chemicals Associated with Plastics in the Marine Environment. Vol. 78 (Springer, 2019).

  • 39.

    Hermabessiere, L. et al. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 182, 781–793 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 40.

    Delgado, M. J., Casella, S. & Bedmar, E. J. In Biology of the nitrogen cycle 83–91 (Elsevier, 2007).

  • 41.

    Kaneko, T. et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7, 331–338 (2000).

    CAS  PubMed  Google Scholar 

  • 42.

    Zhang, M., Zhang, T., Shao, M. & Fang, H. Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. Chemosphere 76, 677–682 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 43.

    Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801–1805 (2003).

    CAS  PubMed  Google Scholar 

  • 44.

    Meyer, B., Imhoff, J. F. & Kuever, J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur‐oxidizing bacteria–evolution of the Sox sulfur oxidation enzyme system. Environ. Microbiol. 9, 2957–2977 (2007).

    CAS  PubMed  Google Scholar 

  • 45.

    Nunoura, T. et al. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ., 1204130377-1204130377 (2009).

  • 46.

    Emerson, D., Fleming, E. J. & McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561–583 (2010).

    CAS  PubMed  Google Scholar 

  • 47.

    Dworkin, M. The Prokaryotes: Vol. 5: Proteobacteria: Alpha and Beta Subclasses. (Springer Science & Business Media, 2006).

  • 48.

    Viršek, M. K., Lovšin, M. N., Koren, Š., Kržan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).

    PubMed  Google Scholar 

  • 49.

    Bienhold, C., Zinger, L., Boetius, A. & Ramette, A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS One 11, e0148016 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. The ISME journal 10, 1939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Sheik, C. S., Jain, S. & Dick, G. J. Metabolic flexibility of enigmatic SAR 324 revealed through metagenomics and metatranscriptomics. Environ. Microbiol. 16, 304–317 (2014).

    CAS  PubMed  Google Scholar 

  • 52.

    Wiese, J., Thiel, V., Gärtner, A., Schmaljohann, R. & Imhoff, J. F. Kiloniella laminariae, gen. nov., sp. nov., a new alphaproteobacterium from the marine macroalga Laminaria saccharina. Int. J. Syst. Evol. Microbiol. 59, 350–356 (2009).

    CAS  Google Scholar 

  • 53.

    Krekeler, C., Ziehr, H. & Klein, J. Physical methods for characterization of microbial cell surfaces. Experientia 45, 1047–1055 (1989).

    CAS  PubMed  Google Scholar 

  • 54.

    Hogt, A., Dankert, J., De Vries, J. & Feijen, J. Adhesion of coagulase-negative staphylococci to biomaterials. Microbiology 129, 2959–2968 (1983).

    CAS  Google Scholar 

  • 55.

    Elhariry, H. M. Biofilm formation by endospore-forming bacilli on plastic surface under some food-related and environmental stress conditions. Global J Biotechnol Biochem 3, 69–78 (2008).

    Google Scholar 

  • 56.

    Tribedi, P. & Sil, A. Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by P seudomonas sp. AKS 2. J. Appl. Microbiol. 116, 295–303 (2014).

    CAS  Google Scholar 

  • 57.

    Sekhar, V. C. et al. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J. Hazard. Mater. 318, 347–354 (2016).

    CAS  PubMed  Google Scholar 

  • 58.

    Briassoulis, D. Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films. Polym. Degradation Stab. 92, 1115–1132 (2007).

    CAS  Google Scholar 

  • 59.

    Rabek, J. F. Polymer photodegradation: mechanisms and experimental methods. (Springer Science & Business Media, 2012).

  • 60.

    Hawkins, W. L. In Polymer Degradation and Stabilization 3-34 (Springer, 1984).

  • 61.

    He, Y., Qian, Z., Zhang, H. & Liu, X. Alkaline degradation behavior of polyesteramide fibers: surface erosion. Colloid and Polymer Science 282, 972–978 (2004).

    CAS  Google Scholar 

  • 62.

    Lee, J. H., Jung, H. W., Kang, I.-K. & Lee, H. B. Cell behaviour on polymer surfaces with different functional groups. Biomaterials 15, 705–711 (1994).

    CAS  PubMed  Google Scholar 

  • 63.

    Bejgarn, S., MacLeod, M., Bogdal, C. & Breitholtz, M. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere 132, 114–119 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. (2011).

  • 65.

    Lucas, N. et al. Polymer biodegradation: Mechanisms and estimation techniques–A review. Chemosphere 73, 429–442 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 66.

    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annual Reviews in Microbiology 49, 711–745 (1995).

    CAS  Google Scholar 

  • 67.

    Stewart, P. S. & Costerton, J. W. Antibiotic resistance of bacteria in biofilms. The lancet 358, 135–138 (2001).

    CAS  Google Scholar 

  • 68.

    Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegrad. 46, 343–368 (2000).

    CAS  Google Scholar 

  • 69.

    Iskrenova-Tchoukova, E., Kalinichev, A. G. & Kirkpatrick, R. J. Metal cation complexation with natural organic matter in aqueous solutions: molecular dynamics simulations and potentials of mean force. Langmuir 26, 15909–15919 (2010).

    CAS  PubMed  Google Scholar 

  • 70.

    Lugauskas, A., Levinskait, L. & Pečiulyt, D. Micromycetes as deterioration agents of polymeric materials. Int. Biodeterior. Biodegrad. 52, 233–242 (2003).

    CAS  Google Scholar 

  • 71.

    Stintzi, A., Barnes, C., Xu, J. & Raymond, K. N. Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proceedings of the National Academy of Sciences 97, 10691–10696 (2000).

    ADS  CAS  Google Scholar 

  • 72.

    Flemming, H.-C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym. Degradation Stab. 59, 309–315 (1998).

    CAS  Google Scholar 

  • 73.

    Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265 (2008).

    CAS  PubMed  Google Scholar 

  • 74.

    Tokiwa, Y., Calabia, B. P., Ugwu, C. U. & Aiba, S. Biodegradability of plastics. International journal of molecular sciences 10, 3722–3742 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & van Sebille, E. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: A review. Crit. Rev. Environ. Sci. Technol., 1–38 (2018).

  • 76.

    Galgani, F., Souplet, A. & Cadiou, Y. Accumulation of debris on the deep sea floor off the French Mediterranean coast. Mar. Ecol. Prog. Ser. 142, 225–234 (1996).

    ADS  Google Scholar 

  • 77.

    Holden, P., Orchard, G. & Ward, I. A study of the gas barrier properties of highly oriented polyethylene. Journal of Polymer Science: Polymer Physics Edition 23, 709–731 (1985).

    ADS  CAS  Google Scholar 

  • 78.

    Lewis, E., Duckett, R., Ward, I., Fairclough, J. & Ryan, A. The barrier properties of polyethylene terephthalate to mixtures of oxygen, carbon dioxide and nitrogen. Polymer 44, 1631–1640 (2003).

    CAS  Google Scholar 

  • 79.

    Chatham, H. Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf. Coat. Technol. 78, 1–9 (1996).

    CAS  Google Scholar 

  • 80.

    Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus 1. Limnol. Oceanogr. 30, 111–122 (1985).

    ADS  Google Scholar 

  • 81.

    Thiel, H. & Schriever, G. Deep-sea mining, environmental impact and the DISCOL project [Disturbance and Re-Colonization Experiment in the Deep South Pacific Ocean]. Ambio (Sweden) (1990).

  • 82.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).

    CAS  PubMed  Google Scholar 

  • 83.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10–12 (2011).

    Google Scholar 

  • 84.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 86.

    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 87.

    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Google Scholar 

  • 89.

    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    ADS  PubMed  Google Scholar 

  • 90.

    Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 91.

    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 92.

    R: A language and environment for statistical computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).

  • 93.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.0-10. 2013. There is no corresponding record for this reference (2015).

  • 94.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis Springer-Verlag. New York (2009).

  • 95.

    Cai, L., Wang, J., Peng, J., Wu, Z. & Tan, X. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Sci. Total Environ. 628, 740–747 (2018).

    ADS  PubMed  Google Scholar 

  • 96.

    Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91 (2015).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations

    A layered approach to safety