in

Spatio-temporal trends in richness and persistence of bacterial communities in decline-phase water vole populations

  • 1.

    Carleton, M. & Musser, G. Order rodentia. In Wilson, D. E. & Reeder, D. M. (eds.) Mammal species of the world. A taxonomic and geographic reference, vol. 2, 745–752 (Johns Hopkins University Press, Baltimore, Maryland, 2005).

  • 2.

    Singleton, G., Dickman, C. R. & Stoddart, D. M. Rodents. In Macdonald, D. W. (ed.) Encyclopedia of Mammals, vol. 3rd (Oxford University Press, Oxford, United Kingdom, 2006).

  • 3.

    Dickman, C. R. Rodent-ecosystem relationships: a review. In Singleton, G. R., Hinds, L. A., Leirs, H. & Zhang, Z. (eds.) Ecologically-based management of rodent pests, 59, 113–133 (Australian Centre for International Agricultural Research, Canberra, Australia, 1999).

  • 4.

    Brown, J. H. & Heske, E. J. Control of a desert-grassland transition by a keystone rodent guild. Science 250, 1705–1707 (1990).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Singleton, G. R., Belmain, S. R., Brown, P. R. & Hardy, B. (eds.) Rodent outbreaks: ecology and impacts (International Rice Research Institute, Los Baños, Philippines, 2010).

  • 6.

    Cosson, J.-F. et al. Epidemiology of Leptospira transmitted by rodents in Southeast Asia. PLoS Neglected Tropical Diseases 8, https://doi.org/10.1371/journal.pntd.0002902 (2014).

  • 7.

    Oliveira, R. C. D. et al. Hantavirus reservoirs: Current status with an emphasis on data from Brazil. Viruses 6, 1929–1973, https://doi.org/10.3390/v6051929 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proceedings of the National Academy of Sciences 112, 7039–7044, https://doi.org/10.1073/pnas.1501598112 (2015).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Krebs, C. J. & Myers, J. H. Population cycles in small mammals. Advances in Ecological Research 8, 267–399 (1974).

    Google Scholar 

  • 10.

    Batzli, G. O. Dynamics of small mammal populations: a review. In McCullough, D. & Barrett, R. (eds.) Wildlife 2001: Populations, 831–850 (Springer, Oakland, California, 1992).

  • 11.

    Krebs, C. J. Population Fluctuations in Rodents. (University of Chicago Press, Chicago, 2013).

    Google Scholar 

  • 12.

    Elton, C., Ford, E. B., Baker, J. R. & Gardner, A. D. The health and parasites of a wild mouse population. Journal of Zoology 101, 675–721 (1931).

    Google Scholar 

  • 13.

    Chitty, D. Tuberculosis among wild voles: with a discussion of other pathological conditions among certain mammals and birds. Ecology 35, 227–237 (1954).

    Google Scholar 

  • 14.

    Elton, C. Voles, mice and lemmings: problems in population dynamics. (Clarendon Press, Oxford, 1942).

    Google Scholar 

  • 15.

    Soveri, T. et al. Disease patterns in field and bank vole populations during a cyclic decline in central Finland. Comparative Immunology, Microbiology & Infectious Diseases 23, 73–89 (2000).

    CAS  Google Scholar 

  • 16.

    Cavanagh, R. D. et al. Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti). Proceedings of the Royal Society of London. Series B: Biological Sciences 271, 859–67, https://doi.org/10.1098/rspb.2003.2667 (2004).

    Article  PubMed  Google Scholar 

  • 17.

    Niklasson, B., Hornfeldt, B., Lundkvist, A., Bjorsten, S. & Leduc, J. Temporal dynamics of Puumala virus antibody prevalence in voles and of Nephropathia epidemica incidence in humans. The American Journal of Tropical Medicine and Hygiene 53, 134–140 (1995).

    CAS  PubMed  Google Scholar 

  • 18.

    Pedersen, A. B. & Greives, T. J. The interaction of parasites and resources cause crashes in a wild mouse population. The Journal of Animal Ecology 77, 370–7, https://doi.org/10.1111/j.1365-2656.2007.01321.x (2008).

    Article  PubMed  Google Scholar 

  • 19.

    Poulin, R. Parasite biodiversity revisited: frontiers and constraints. International Journal for Parasitology 44, 581–589 (2014).

    PubMed  Google Scholar 

  • 20.

    Telfer, S. et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science 330, 243–246, https://doi.org/10.1126/science.1190333.Species (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Vaumourin, E. et al. To be or not to be associated: Power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies. Frontiers in Cellular and Infection Microbiology 4, 1–19, https://doi.org/10.3389/fcimb.2014.00062 (2014).

    Article  Google Scholar 

  • 22.

    Charbonnel, N. et al. Stress and demographic decline: a potential effect mediated by impairment of reproduction and immune function in cyclic vole populations. Physiological and biochemical zoology: PBZ 81, 63–73, https://doi.org/10.1086/523306 (2008).

    Article  PubMed  Google Scholar 

  • 23.

    Giraudoux, P. et al. Population dynamics of fossorial water vole (Arvicola terrestris scherman): a land use and landscape perspective. Agriculture, Ecosystems & Environment 66, 47–60 (1997).

    Google Scholar 

  • 24.

    Berthier, K. et al. Dispersal, landscape and travelling waves in cyclic vole populations. Ecology Letters 17, 53–64, https://doi.org/10.1111/ele.12207 (2014).

    Article  PubMed  Google Scholar 

  • 25.

    Houin, R., Deniau, M. & Liance, M. Arvicola terrestris (L.), premier rongeur trouvé naturellement infesté par Echinococcus multilocularis, Leuckart, 1863, en France. Compte-Rendus de l’Académie des Sciences, Paris, série D 290, 1269–1271 (1980).

    CAS  Google Scholar 

  • 26.

    Deter, J. et al. Influence of geographical scale on the detection of density dependence in the host-parasite system, Arvicola terrestris and Taenia taeniaeformis. Parasitology 132, 595–605, https://doi.org/10.1017/S0031182005009327 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Cerqueira, D. et al. Numerical response of a helminth community in the course of a multi-annual abundance cycle of the water vole (Arvicola terrestris). Parasitology 134, 705–11, https://doi.org/10.1017/S0031182006001946 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Deter, J. et al. Linking demography and host dispersal to Trichuris arvicolae distribution in a cyclic vole species. International journal for parasitology 37, 813–24, https://doi.org/10.1016/j.ijpara.2007.01.012 (2007).

    Article  PubMed  Google Scholar 

  • 29.

    Jolles, A. E., Ezenwa, V. O., Etienne, R. S., Turner, W. C. & Olff, H. Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. Ecology 89, 2239–2250 (2008).

    PubMed  Google Scholar 

  • 30.

    Rohani, P., Green, C. J., Mantilla-Beniers, N. B. & Grenfell, B. T. Ecological interference between fatal diseases. Nature 422, 885 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Byrd, A. L. & Segre, J. A. Adapting koch’s postulates. Science 351, 224–226 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS microbiology reviews 32, 723–735 (2008).

    CAS  PubMed  Google Scholar 

  • 33.

    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences 96, 1463–1468 (1999).

    ADS  CAS  Google Scholar 

  • 34.

    Poulin, R. & Morand, S. Parasite Biodiversity. (Smithsonian Books, Washington, DC, 2004).

    Google Scholar 

  • 35.

    Cerqueira, D. et al. Cyclic changes in the population structure and reproductive pattern of the water vole, Arvicola terrestris Linnaeus, 1758. Mammalian Biology – Zeitschrift für Säugetierkunde 71, 193–202, https://doi.org/10.1016/j.mambio.2006.01.004 (2006).

    Article  Google Scholar 

  • 36.

    Chitty, D. Mortality among voles (Microtus agrestis) at Lake Vyrnwy, Montgomeryshire in 1936–9. Philosophical Transactions of the Royal Society B: Biological Sciences 236, 505–552, https://doi.org/10.1098/rstb.1952.0009 (1952).

    ADS  Article  Google Scholar 

  • 37.

    Boonstra, R. & Krebs, C. J. Viability of large-sized and small-sized adults in fluctuating vole populations. Ecology 567–573 (1979).

  • 38.

    Giraudoux, P. et al. Estimation of water vole abundance by using surface indices. Acta Theriologica 40, 77–96 (1995).

    Google Scholar 

  • 39.

    Auffray, J.-C. et al. Protocols for field and laboratory rodent studies (Kasetsart University Press, Bangkok, Thailand, 2011).

  • 40.

    Villette, P. et al. Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population. Epidemiology and Infection 1–6, https://doi.org/10.1017/S0950268817001893 (2017).

  • 41.

    Murray, D. L. Differential body condition and vulnerability to predation in snowshoe hares. Journal of Animal Ecology 71, 614–625 (2002).

    Google Scholar 

  • 42.

    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: a comparison of body condition indices. Oikos 61–67 (1996).

  • 43.

    Krebs, C. & GR, S. Indices of condition for small mammals. Australian Journal of Zoology 317–323 (1993).

  • 44.

    Brown, M. E. Assessing body condition in birds. In Current ornithology, 67–135 (Springer, 1996).

  • 45.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology 79, 5112–5120, https://doi.org/10.1128/AEM.01043-13 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Galan, M. et al. 16S rRNA amplicon sequencing for epidemiological surveys of bacteria in wildlife: the importance of cleaning post-sequencing data before estimating positivity, prevalence and co-infection. mSystems 1, e00032–16, https://doi.org/10.1128/mSystems.00032-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular ecology resources 15, 1289–1303 (2015).

    CAS  PubMed  Google Scholar 

  • 48.

    Escudié, F. et al. FROGS: find, rapidly, OTUs with galaxy solution. Bioinformatics 34, 1287–1294 (2017).

    Google Scholar 

  • 49.

    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, 590–596, https://doi.org/10.1093/nar/gks1219 (2013).

    CAS  Article  Google Scholar 

  • 53.

    Francey, T., Gaschen, F., Nicolet, J. & Burnens, A. P. The role of Acinetobacter baumannii as a nosocomial pathogen for dogs and cats in an intensive care unit. Journal of Veterinary Internal Medicine 14, 177–183 (2000).

    CAS  PubMed  Google Scholar 

  • 54.

    Gootz, T. D. & Marra, A. Acinetobacter baumannii: an emerging multidrug-resistant threat. Expert Review of Anti-infective Therapy 6, 309–329 (2008).

    CAS  PubMed  Google Scholar 

  • 55.

    R Development Core Team. R: A language and environment for statistical computing (Vienna, Austria, 2020).

  • 56.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S, fourth edn. ISBN 0-387-95457-0 (Springer, New York, 2002).

  • 57.

    Chao, A. et al. Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67 (2014).

    Google Scholar 

  • 58.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 2.0.20 (2020).

  • 59.

    Walther, B. & Morand, S. Comparative performance of species richness estimation methods. Parasitology 116, 395–405 (1998).

    PubMed  Google Scholar 

  • 60.

    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5, 3–21, https://doi.org/10.1093/jpe/rtr044 (2012).

    Article  Google Scholar 

  • 61.

    Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: Probabilistic species co-occurrence analysis in R. Journal of Statistical Software, Code Snippets 69, 1–17, https://doi.org/10.18637/jss.v069.c02 (2016).

    Article  Google Scholar 

  • 62.

    Krebs, C. The lemming cycle at Baker Lake, Northwest Territories, during 1959–62. Arctic Institute of North America Technical Paper 15 104 pp. (1964).

  • 63.

    Bondrup-Nielsen, S. & Ims, R. A. Predicting stable and cyclic populations of Clethrionomys. Oikos 52, 178–185 (1988).

    Google Scholar 

  • 64.

    Krebs, C. J. Demographic changes in fluctuating populations of Microtus californicus. Ecological Monographs 36, 239–273 (1966).

    Google Scholar 

  • 65.

    Oli, M. K. & Dobson, F. S. Population cycles in small mammals: the role of age at sexual maturity. Oikos 86, 557–565 (1999).

    Google Scholar 

  • 66.

    Boonstra, R. Population cycles in microtines: the senescence hypothesis. Evolutionary ecology 8, 196–219 (1994).

    Google Scholar 

  • 67.

    Oli, M. K. & Dobson, F. S. Population cycles in small mammals: the α-hypothesis. Journal of Mammalogy 82, 573–581 (2001).

    Google Scholar 

  • 68.

    Norrdahl, K. & Korpimäki, E. Changes in population structure and reproduction during a 3-yr population cycle of voles. Oikos 96, 331–345 (2002).

    Google Scholar 

  • 69.

    Mihok, S., Turner, B. N. & Iverson, S. L. The characterization of vole population dynamics. Ecological Monographs 55, 399–420 (1985).

    Google Scholar 

  • 70.

    Ergon, T., Lambin, X. & Stenseth, N. C. Life-history traits of voles in a fluctuating population respond to the immediate environment. Nature 411, 1043 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 71.

    Burthe, S. J. et al. Individual growth rates in natural field vole, Microtus agrestis, populations exhibiting cyclic population dynamics. Oecologia 162, 653–61, https://doi.org/10.1007/s00442-009-1495-6 (2010).

    ADS  Article  PubMed  Google Scholar 

  • 72.

    Bown, K. J., Bennett, M. & Begon, M. Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles. Emerging Infectious Diseases 10, 684–687 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Itoh, T., Kohyama, K., Takakura, A., Takenouchi, T. & Kagiyama, N. Naturally occurring CAR bacillus infection in a laboratory rat colony and epizootiological observations. Experimental Animals 36, 387–393 (1987).

    CAS  PubMed  Google Scholar 

  • 74.

    Register, K. & Harvill, E. Bordetella. In Gyles, C. L., Prescott, J. F., Songer, J. G. & Thoen, C. O. (eds.) Pathogenesis of Bacterial Infections in Animals, 411–427, 4th edn. (Blackwell Publishing, Ames, Iowa, USA, 2010).

  • 75.

    Adler, B. & de la Peña Moctezuma, A. Leptospira. In Gyles, C. L., Prescott, J. F., Songer, J. G. & Thoen, C. O. (eds.) Pathogenesis of Bacterial Infections in Animals, 527–547, 4th edn. (Blackwell Publishing, Ames, Iowa, USA, 2010).

  • 76.

    Oliver, M. K., Telfer, S. & Piertney, S. B. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proceedings of the Royal Society B 276, 1119–28, https://doi.org/10.1098/rspb.2008.1525 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 77.

    Gelling, M. et al. Parasites and pathogens in wild populations of water voles (Arvicola amphibius) in the UK. European Journal of Wildlife Research 58, 615–619, https://doi.org/10.1007/s10344-011-0584-0 (2012).

    Article  Google Scholar 

  • 78.

    Mayer-Scholl, A. et al. Leptospira spp. in rodents and shrews in Germany. International Journal of Environmental Research and Public Health 11, 7562–7574 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Obiegala, A. et al. Prevalence and genotype allocation of pathogenic Leptospira species in small mammals from various habitat types in Germany. PLOS Neglected Tropical Diseases 10, e0004501, https://doi.org/10.1371/journal.pntd.0004501 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    Whithear, K. Diseases due to Mycoplasmas. In Williams, E. S. & Barker, I. K. (eds.) Infectious Diseases of Wild Mammals, chap. 24, 413–422, 3rd edn. (Iowa State University Press, Ames, Iowa, USA, 2001).

  • 81.

    Bajer, A. et al. Long-term spatiotemporal stability and dynamic changes in the haemoparasite community of bank voles (Myodes glareolus) in NE Poland. Microbial Ecology 68, 196–211, https://doi.org/10.1007/s00248-014-0390-9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    Tyzzer, E. E. & Weinman, D. Haemobartonella n.g. (Bartonella olim pro parte), H. microti, n. sp. of the field vole, Microtus pennsylvanicus. American Journal of Hygiene 30 (1939).

  • 83.

    Ike, F. et al. Filobacterium rodentium gen. nov., sp. nov., a member of Filobacteriaceae fam. nov. within the phylum Bacteroidetes; includes a microaerobic filamentous bacterium isolated from specimens from diseased rodent respiratory tracts. International Journal of Systematic and Evolutionary Microbiology 66, 150–157 (2016).

    CAS  PubMed  Google Scholar 

  • 84.

    Brogden, K. A., Cutlip, R. C. & Lehmkuhl, H. D. Cilia-associated respiratory bacillus in wild rats in central Iowa. Journal of Wildlife Diseases 29, 123–126 (1993).

    CAS  PubMed  Google Scholar 

  • 85.

    Bergottini, R., Mattiello, S., Crippa, L. & Scanziani, E. Cilia-associated respiratory (CAR) bacillus infection in adult red deer, chamois, and roe deer. Journal of Wildlife Diseases 41, 459–462 (2005).

    PubMed  Google Scholar 

  • 86.

    Wells, A. Q. The murine type of tubercle bacillus (the vole acid-fast bacillus). In Special Report Series, Medical Research Council, 259 (HM Stationery Office, London, United Kingdom, 1946).

  • 87.

    Schex, S., Dobler, G., Riehm, J., Müller, J. & Essbauer, S. Rickettsia spp. in wild small mammals in Lower Bavaria, South-Eastern Germany. Vector-Borne and Zoonotic Diseases 11, 493–502 (2011).

    PubMed  Google Scholar 

  • 88.

    Gajda, E. et al. Spotted fever rickettsiae in wild-living rodents from south-western Poland. Parasites & Vectors 10, https://doi.org/10.1186/s13071-017-2356-5 (2017).

  • 89.

    Burthe, S. et al. Tuberculosis (Mycobacterium microti) in wild field vole populations. Parasitology 135, 309–317, https://doi.org/10.1017/S0031182007003940.Tuberculosis (2008).

    CAS  Article  PubMed  Google Scholar 

  • 90.

    Jespersen, A. Infection of Arvicola terrestris (vole rat) with M. tuberculosis and M. bovis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica 82, 667–675 (1974).

    Google Scholar 

  • 91.

    Birtles, R. J. et al. Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents. Epidemiological Infections 126, 323–329 (2001).

    CAS  Google Scholar 

  • 92.

    Dugat, T., Lagrée, A.-C., Maillard, R., Boulouis, H.-J. & Haddad, N. Opening the black box of anaplasma phagocytophilum diversity: current situation and future perspectives. Frontiers in Cellular and Infection Microbiology 5, https://doi.org/10.3389/fcimb.2015.00061 (2015).

  • 93.

    Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos One 8, 1–10, https://doi.org/10.1371/journal.pone.0057923 (2013).

    CAS  Article  Google Scholar 

  • 94.

    Dove, A. D. & Cribb, T. H. Species accumulation curves and their applications in parasite ecology. Trends in Parasitology 22, 568–574 (2006).

    PubMed  Google Scholar 

  • 95.

    Telfer, S. et al. Parasite interactions in natural populations: insights from longitudinal data. Parasitology 135, 767–781, https://doi.org/10.1017/S0031182008000395.Parasite (2008).

  • 96.

    Saucy, F. Dynamique de population, dispersion et organisation sociale de la forme fouisseuse du Campagnol terrestre (Arviocla terrestris scherman [Shaw], Mammalia, Rodentia). (University of Neuchatel, Institute of Zoology, 1988).

  • 97.

    Berthier, K., Galan, M., Foltête, J. C., Charbonnel, N. & Cosson, J.-F. Genetic structure of the cyclic fossorial water vole (A. terrestris): landscape and demographic influences. Molecular Ecology 14, 2861–71, https://doi.org/10.1111/j.1365-294X.2005.02636.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 98.

    Telfer, S. et al. Parentage assignment detects frequent and large-scale dispersal in water voles. Molecular Ecology 12, 1939–1949 (2003).

    CAS  PubMed  Google Scholar 

  • 99.

    Marilleau, N., Lang, C. & Giraudoux, P. Coupling agent-based with equation-based models to study spatially explicit megapopulation dynamics. Ecological modelling 384, 34–42 (2018).

    Google Scholar 

  • 100.

    Auguie, B. egg: Extensions forggplot2: Custom Geom, Custom Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size, R package version 0.4.5 (2019).

  • 101.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016).

    Google Scholar 

  • 102.

    Santos Baquero, O. ggsn: North Symbols and Scale Bars for Maps Created withggplot2orggmap’, R package version 0.5.0 (2019).

  • 103.

    Wickham, H. & Pedersen, T. L. gtable: ArrangeGrobsin Tables, R package version 0.3.0 (2019).

  • 104.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling, R package version 3.1-5 (2020).

  • 105.

    Perpiñán, O. & Hijmans, R. rasterVis, R package version 0.47 (2019).

  • 106.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for theGeospatialData Abstraction Library, R package version 1.4-8 (2019).

  • 107.

    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied spatial data analysis with R, Second edition. (Springer, NY, 2013).

    Google Scholar 

  • 108.

    Dahl, D. B., Scott, D., Roosen, C., Magnusson, A. & Swinton, J. xtable: Export Tables to LaTeX or HTML, R package version 1.8-4 (2019).


  • Source: Ecology - nature.com

    Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations

    A layered approach to safety