Knowlton, N. et al. in Life in the World’s Oceans 65–78 (Wiley-Blackwell, 2010).
Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505. https://doi.org/10.1016/j.cub.2014.12.022 (2015).
Google Scholar
Brandl, S. J., Goatley, C. H. R., Bellwood, D. R. & Tornabene, L. The hidden half: Ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873. https://doi.org/10.1111/brv.12423 (2018).
Google Scholar
Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036 (2012).
Google Scholar
Carvalho, S. et al. Beyond the visual: Using metabarcoding to characterize the hidden reef cryptobiome. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2697 (2019).
Google Scholar
Kramer, M. J., Bellwood, O., Fulton, C. J. & Bellwood, D. R. Refining the invertivore: Diversity and specialisation in fish predation on coral reef crustaceans. Mar. Biol. 162, 1779–1786. https://doi.org/10.1007/s00227-015-2710-0 (2015).
Google Scholar
Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192. https://doi.org/10.1126/science.aav3384 (2019).
Google Scholar
Kramer, M. J., Bellwood, D. R. & Bellwood, O. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31, 1007–1015. https://doi.org/10.1007/s00338-012-0924-x (2012).
Google Scholar
Rocha, L. A. et al. Specimen collection: An essential tool. Science 344, 814–815. https://doi.org/10.1126/science.344.6186.814 (2014).
Google Scholar
Berumen, M. L. et al. The status of coral reef ecology research in the Red Sea. Coral Reefs 32, 737–748. https://doi.org/10.1007/s00338-013-1055-8 (2013).
Google Scholar
Paknia, O., Sh, H. R. & Koch, A. Lack of well-maintained natural history collections and taxonomists in megadiverse developing countries hampers global biodiversity exploration. Org. Divers. Evol. 15, 619–629. https://doi.org/10.1007/s13127-015-0202-1 (2015).
Google Scholar
Knowlton, N. & Leray, M. Censusing marine life in the twentyfirst Century. Genome 58, 238–238 (2015).
Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3, 613–623. https://doi.org/10.1111/j.2041-210X.2012.00198.x (2012).
Google Scholar
Ransome, E. et al. The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS ONE https://doi.org/10.1371/journal.pone.0175066 (2017).
Google Scholar
Coker, D. J., DiBattista, J. D., Sinclair-Taylor, T. H. & Berumen, M. L. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs 37, 193–199. https://doi.org/10.1007/s00338-017-1647-9 (2018).
Google Scholar
Pearman, J. K. et al. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 8, 8090. https://doi.org/10.1038/s41598-018-26332-5 (2018).
Google Scholar
Pearman, J. K. et al. Disentangling the complex microbial community of coral reefs using standardized Autonomous Reef Monitoring Structures (ARMS). Mol. Ecol. 28, 3496–3507. https://doi.org/10.1111/mec.15167 (2019).
Google Scholar
Selkoe, K. A. et al. The DNA of coral reef biodiversity: Predicting and protecting genetic diversity of reef assemblages. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2016.0354 (2016).
Google Scholar
DiBattista, J. D. et al. Digging for DNA at depth: Rapid universal metabarcoding surveys (RUMS) as a tool to detect coral reef biodiversity across a depth gradient. PeerJ https://doi.org/10.7717/peerj.6379 (2019).
Google Scholar
DiBattista, J. D. et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36, 1245–1252. https://doi.org/10.1007/s00338-017-1618-1 (2017).
Google Scholar
Nester, G. M. et al. Development and evaluation of fish eDNA metabarcoding assays facilitate the detection of cryptic seahorse taxa (family: Syngnathidae). Environ. DNA 2, 614–626 (2020).
Google Scholar
West, K. M. et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 29, 1069–1086. https://doi.org/10.1111/mec.15382 (2020).
Google Scholar
DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. https://doi.org/10.1038/s41598-020-64858-9 (2020).
Google Scholar
Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790. https://doi.org/10.1126/science.1132294 (2006).
Google Scholar
Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113. https://doi.org/10.1016/j.marpol.2017.05.014 (2017).
Google Scholar
Thomsen, P. F. & Willerslev, E. Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biol. Cons. 183, 4–18. https://doi.org/10.1016/j.biocon.2014.11.019 (2015).
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).
Google Scholar
Monroe, A. A. et al. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE https://doi.org/10.1371/journal.pone.0195814 (2018).
Google Scholar
Roth, F. et al. Coral reef degradation affects the potential for reef recovery after disturbance. Mar. Environ. Res. 142, 48–58. https://doi.org/10.1016/j.marenvres.2018.09.022 (2018).
Google Scholar
Foster, T. & Gilmour, J. P. Seeing red: Coral larvae are attracted to healthy-looking reefs. Mar. Ecol. Prog. Ser. 559, 65–71. https://doi.org/10.3354/meps11902 (2016).
Google Scholar
Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ https://doi.org/10.7717/peerj.8737 (2020).
Google Scholar
Pancrazi, I., Ahmed, H., Cerrano, C. & Montefalcone, M. Synergic effect of global thermal anomalies and local dredging activities on coral reefs of the Maldives. Marine Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111585 (2020).
Google Scholar
Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Change Biol. 26, 2785–2797. https://doi.org/10.1111/gcb.15059 (2020).
Google Scholar
González-Barrios, F. J., Cabral-Tena, R. A. & Alvarez-Filip, L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Glob. Change Biol. 27, 640–651. https://doi.org/10.1111/gcb.15431 (2020).
Google Scholar
Rice, M. M., Ezzat, L. & Burkepile, D. E. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front. Marine Sci. https://doi.org/10.3389/fmars.2018.00525 (2019).
Google Scholar
Lin, Y.-J. et al. Long-term ecological changes in fishes and macro-invertebrates in the world’s warmest coral reefs. Sci. Total Environ. 750, 142254. https://doi.org/10.1016/j.scitotenv.2020.142254 (2021).
Google Scholar
Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115. https://doi.org/10.1111/ele.12073 (2013).
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67. https://doi.org/10.1038/nature11148 (2012).
Google Scholar
Handley, L. L. How will the “molecular revolution’ contribute to biological recording?. Biol. J. Lin. Soc. 115, 750–766. https://doi.org/10.1111/bij.12516 (2015).
Google Scholar
Ducklow, H. W., Doney, S. C. & Steinberg, D. K. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Ann. Rev. Mar. Sci. 1, 279–302. https://doi.org/10.1146/annurev.marine.010908.163801 (2009).
Google Scholar
Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281. https://doi.org/10.1093/biosci/biw185 (2017).
Google Scholar
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599. https://doi.org/10.1111/1365-2435.12345 (2015).
Google Scholar
Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x (2004).
Google Scholar
Vellend, M. The Theory of Ecological Communities (MPB-57). (Princeton University Press, 2016).
Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. U.S.A. 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).
Google Scholar
Boero, F., Kraberg, A. C., Krause, G. & Wiltshire, K. H. Time is an affliction: Why ecology cannot be as predictive as physics and why it needs time series. J. Sea Res. 101, 12–18. https://doi.org/10.1016/j.seares.2014.07.008 (2015).
Google Scholar
Pearman, J. K., Anlauf, H., Irigoien, X. & Carvalho, S. Please mind the gap – Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar. Environ. Res. 118, 20–30. https://doi.org/10.1016/j.marenvres.2016.04.011 (2016).
Google Scholar
David, R. et al. Lessons from photo analyses of autonomous reef monitoring structures as tools to detect (bio-)geographical, spatial, and environmental effects. Mar. Pollut. Bull. 141, 420–429. https://doi.org/10.1016/j.marpolbul.2019.02.066 (2019).
Google Scholar
Pennesi, C. & Danovaro, R. Assessing marine environmental status through microphytobenthos assemblages colonizing the autonomous reef monitoring structures (ARMS) and their potential in coastal marine restoration. Mar. Pollut. Bull. 125, 56–65. https://doi.org/10.1016/j.marpolbul.2017.08.001 (2017).
Google Scholar
Chang, J. J. M., Ip, Y. C. A., Bauman, A. G. & Huang, D. MinION-in-ARMS: Nanopore sequencing to expedite barcoding of specimen-rich macrofaunal samples from Autonomous Reef Monitoring Structures. Front. Marine Sci. https://doi.org/10.3389/fmars.2020.00448 (2020).
Google Scholar
Hazeri, G. et al. Latitudinal species diversity and density of cryptic crustacean (Brachyura and Anomura) in micro-habitat Autonomous Reef Monitoring Structures across Kepulauan Seribu, Indonesia. Biodivers. J. Biol. Divers. 20 (2019).
Al-Rshaidat, M. M. D. et al. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea. Genome 59, 724–737. https://doi.org/10.1139/gen-2015-0208 (2016).
Google Scholar
Pearman, J. K. et al. Pan-regional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding Autonomous Reef Monitoring Structures. Mol. Ecol. https://doi.org/10.1111/mec.15692 (2020).
Google Scholar
Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. U.S.A. 112, 2076–2081. https://doi.org/10.1073/pnas.1424997112 (2015).
Google Scholar
Obst, M. et al. A marine biodiversity observation network for genetic monitoring of hard-bottom communities (ARMS-MBON). Front. Marine Sci. https://doi.org/10.3389/fmars.2020.572680 (2020).
Google Scholar
Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43. https://doi.org/10.1038/s41558-018-0351-2 (2019).
Google Scholar
Hughes, T. P., Kerry, J. T. & Simpson, T. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99, 501–501. https://doi.org/10.1002/ecy.2092 (2018).
Google Scholar
Furby, K. A., Bouwmeester, J. & Berumen, M. L. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32, 505–513. https://doi.org/10.1007/s00338-012-0998-5 (2013).
Google Scholar
Froehlich, C. Y. M., Klanten, O. S., Hing, M. L., Dowton, M. & Wong, M. Y. L. Uneven declines between corals and cryptobenthic fish symbionts from multiple disturbances. Sci. Rep. https://doi.org/10.1038/s41598-021-95778-x (2021).
Google Scholar
Bellwood, D. R. et al. Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170, 567–573. https://doi.org/10.1007/s00442-012-2306-z (2012).
Google Scholar
Archana, A. & Baker, D. M. Multifunctionality of an urbanized coastal marine ecosystem. Front. Marine Sci. https://doi.org/10.3389/fmars.2020.557145 (2020).
Google Scholar
Servis, J. A., Reid, B. N., Timmers, M. A., Stergioula, V. & Naro-Maciel, E. Characterizing coral reef biodiversity: Genetic species delimitation in brachyuran crabs of Palmyra Atoll Central Pacific. Mitochondrial DNA Part A 31, 178–189. https://doi.org/10.1080/24701394.2020.1769087 (2020).
Google Scholar
Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Change Biol. 24, 773–785. https://doi.org/10.1111/gcb.13962 (2018).
Google Scholar
Perry, C. T. & Morgan, K. M. Post-bleaching coral community change on southern Maldivian reefs: Is there potential for rapid recovery?. Coral Reefs 36, 1189–1194. https://doi.org/10.1007/s00338-017-1610-9 (2017).
Google Scholar
DeCarlo, T. M. The past century of coral bleaching in the Saudi Arabian central Red Sea. PeerJ https://doi.org/10.7717/peerj.10200 (2020).
Google Scholar
Cortés, J. et al. in Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment (eds Peter W. Glynn, Derek P. Manzello, & Ian C. Enochs) 203–250 (Springer Netherlands, 2017).
Enochs, I. C. & Manzello, D. P. Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31, 653–661. https://doi.org/10.1007/s00338-012-0886-z (2012).
Google Scholar
Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl. Acad. Sci. 118, e2103275118. https://doi.org/10.1073/pnas.2103275118 (2021).
Google Scholar
Khalil, M. T., Bouwmeester, J. & Berumen, M. L. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea. PeerJ https://doi.org/10.7717/peerj.3410 (2017).
Google Scholar
Roik, A. et al. Year-long monitoring of physico-chemical and biological variables provide a comparative baseline of coral reef functioning in the central Red Sea. PLoS ONE https://doi.org/10.1371/journal.pone.0163939 (2016).
Google Scholar
Largier, J. L. Considerations in estimating larval dispersal distances from oceanographic data. Ecol. Appl. 13, S71–S89 (2003).
Google Scholar
Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Patterns of relative species abundance in rainforests and coral reefs. Nature 450, 45–49. https://doi.org/10.1038/nature06197 (2007).
Google Scholar
Alsaffar, Z., Cúrdia, J., Borja, A., Irigoien, X. & Carvalho, S. Consistent variability in beta-diversity patterns contrasts with changes in alpha-diversity along an onshore to offshore environmental gradient: The case of Red Sea soft-bottom macrobenthos. Mar. Biodivers. 49, 247–262. https://doi.org/10.1007/s12526-017-0791-3 (2017).
Google Scholar
Alsaffar, Z. et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci. Rep. https://doi.org/10.1038/s41598-020-70318-1 (2020).
Google Scholar
Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284. https://doi.org/10.1126/science.aaq1614 (2018).
Google Scholar
Soininen, J., Lennon, J. J. & Hillebrand, H. A multivariate analysis of beta diversity across organisms and environments. Ecology 88, 2830–2838. https://doi.org/10.1890/06-1730.1 (2007).
Google Scholar
Chust, G. et al. Dispersal similarly shapes both population genetics and community patterns in the marine realm. Sci. Rep. https://doi.org/10.1038/srep28730 (2016).
Google Scholar
Gianuca, A. T., Declerck, S. A. J., Lemmens, P. & De Meester, L. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of beta-diversity. Ecology 98, 525–533. https://doi.org/10.1002/ecy.1666 (2017).
Google Scholar
Enochs, I. C., Toth, L. T., Brandtneris, V. W., Afflerbach, J. C. & Manzello, D. P. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar. Ecol. Prog. Ser. 438, 105-U127. https://doi.org/10.3354/meps09259 (2011).
Google Scholar
Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90. https://doi.org/10.1038/nature22901 (2017).
Google Scholar
Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).
Google Scholar
Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M. & Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. https://doi.org/10.1038/s41598-018-25731-y (2018).
Google Scholar
Hubbell, S. P. in Monographs in Population Biology. The unified neutral theory of biodiversity and biogeography Vol. 32 Monographs in Population Biology i-xiv, 1–375 (2001).
Dornelas, M., Connolly, S. R. & Hughes, T. P. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440, 80–82. https://doi.org/10.1038/nature04534 (2006).
Google Scholar
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).
Google Scholar
Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334. https://doi.org/10.1111/geb.12207 (2014).
Google Scholar
Hollander, M. & Wolfe, D. A. Nonparametric statistical methods. Ergonomics 18, 701–702 (1975).
Kohler, K. E. & Gill, S. M. Coral point count with excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269. https://doi.org/10.1016/j.cageo.2005.11.009 (2006).
Google Scholar
Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).
Google Scholar
Hao, X., Jiang, R. & Chen, T. Clustering 16S rRNA for OTU prediction: A method of unsupervised Bayesian clustering. Bioinformatics 27, 611–618. https://doi.org/10.1093/bioinformatics/btq725 (2011).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581. https://doi.org/10.1038/nmeth.3869 (2016).
Google Scholar
A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: Multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS ONE https://doi.org/10.1371/journal.pone.0022594 (2011).
Google Scholar
Machida, R. J., Leray, M., Ho, S. L. & Knowlton, N. Data Descriptor: Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data https://doi.org/10.1038/sdata.2017.27 (2017).
Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/aem.00062-07 (2007).
Google Scholar
Generate High-Resolution Venn and Euler Plots v. 1.6.20 (2018).
Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. Stat. Soc. 174, 245–245. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x (2011).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).
Google Scholar
Hervé, M. Testing and plotting procedures for biostatistics v. 0.9-79. Retrieved from https://cran.r-project.org/web/packages/RVAideMemoire/index.html (2021).
De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574. https://doi.org/10.1890/08-1823.1 (2009).
Google Scholar
Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. https://doi.org/10.1890/0012-9615(1999)069[0001:dbratm]2.0.co;2 (1999).
Google Scholar
Roberts, D. Ordination and multivariate analysis for ecology v. 2.0-1. Retrieved from http://ecology.msu.montana.edu/labdsv/R (2019).
Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G. & Wagner, H. Adespatial: Multivariate multiscale spatial analysis v. 0.3-13. Retrieved from https://cran.r-project.org/package=adespatial (2021).
Source: Ecology - nature.com