in

Condition- and context-dependent variation of sexual dimorphism across lizard populations at different spatial scales

[adace-ad id="91168"]
  • Andersson, M. Sexual Selection. (Princeton University Press, 1994).

  • Darwin, C. The Descent of Man and Selection in Relation to Sex. (1871).

  • Bonduriansky, R. The evolution of condition-dependent sexual dimorphism. Am. Nat. 169, 9–19 (2007).

    PubMed 

    Google Scholar 

  • Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution (NY). 59, 138 (2005).

    Google Scholar 

  • Godin, J. G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: A viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003).

    Google Scholar 

  • Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 80(337), 860–864 (2012).

    ADS 

    Google Scholar 

  • Cothran, R. D. & Jeyasingh, P. D. Condition dependence of a sexually selected trait in a crustacean species complex: Importance of the ecological context. Evolution (NY). 64, 2535–2546 (2010).

    Google Scholar 

  • Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: A comparison of body condition indices. Oikos 77, 61 (1996).

    Google Scholar 

  • Galeotti, P., Sacchi, R., Pellitteri-Rosa, D. & Fasola, M. The yellow cheek-patches of the Hermann’s tortoise (Reptilia, Chelonia): Sexual dimorphism and relationship with body condition. Ital. J. Zool. 78, 464–470 (2011).

    Google Scholar 

  • Sacchi, R. et al. Context-dependent expression of sexual dimorphism in island populations of the common wall lizard (Podarcis muralis). Biol. J. Linn. Soc. 114, 552–565 (2015).

    Google Scholar 

  • Greenberg, R. & Olsen, B. Bill size and dimorphism in tidal-marsh sparrows: Island-like processes in a continental habitat. Ecology 91, 2428–2436 (2010).

    PubMed 

    Google Scholar 

  • Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18, 573–581 (2003).

    Google Scholar 

  • Stillwell, R. C. & Fox, C. W. Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: Local adaptation versus phenotypic plasticity. Oikos 118, 703–712 (2009).

    Google Scholar 

  • García-Roa, R., Garcia-Gonzalez, F., Noble, D. W. A. & Carazo, P. Temperature as a modulator of sexual selection. Biol. Rev. 95, 1607–1629 (2020).

    PubMed 

    Google Scholar 

  • Ficetola, G. F. et al. Ecogeographical variation of body size in the newt Triturus carnifex : Comparing the hypotheses using an information-theoretic approach. Glob. Ecol. Biogeogr. 19, 485–495 (2010).

    Google Scholar 

  • Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).

    Google Scholar 

  • Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976 (2017).

    PubMed 

    Google Scholar 

  • Cox, R. M., Skelly, S. L. & John-Alder, H. B. A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution (NY). 57, 1653–1669 (2003).

    Google Scholar 

  • Kaliontzopoulou, A., Carretero, M. A. & Llorente, G. A. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis Lizards. J. Morphol. 268, 152–165 (2007).

    PubMed 

    Google Scholar 

  • Olsson, M., Shine, R., Wapstra, E., Ujvari, B. & Madsen, T. Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution (NY). 56, 1538–1542 (2002).

    Google Scholar 

  • Zuffi, M. A. L., Casu, V. & Marino, S. The Italian wall lizard, Podarcis siculus, along the Tuscanian coast of central Italy: Biometrical features and phenotypic patterns. Herpetol. J. 22, 207–212 (2012).

    Google Scholar 

  • Corti, C., Biaggini, M. & Capula, M. Podarcis siculus (Rafinesque-Schmaltz, 1810). In: Corti, C., Capula, M., Luiselli, L., Razzetti, E., Sindaco, R. Fauna d’Italia: Reptilia (ed. Calderini) 407–417 (2011).

  • Silva-Rocha, I. R., Salvi, D., Carretero, M. A. & Ficetola, G. F. Alien reptiles on Mediterranean Islands: A model for invasion biogeography. Divers. Distrib. 25, 995–1005 (2019).

    Google Scholar 

  • Butler, M. A. & Losos, J. B. Multivariate sexual dimorphism, sexual selection, and adaptation in greater antillean Anolis lizards. Ecol. Monogr. 72, 541–559 (2002).

    Google Scholar 

  • Kaliontzopoulou, A., Carretero, M. A. & Llorente, G. A. Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: Joining linear and geometric morphometrics. Biol. J. Linn. Soc. 93, 111–124 (2008).

    Google Scholar 

  • Herrel, A., Damme, R. V., Vanhooydonck, B. & Vree, F. D. The implications of bite performance for diet in two species of lacertid lizards. Can. J. Zool. 79, 662–670 (2001).

    Google Scholar 

  • Lomolino, M. V. Body size evolution in insular vertebrates: generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).

    Google Scholar 

  • Millien, V. Morphological evolution is accelerated among island mammals. PLoS Biol. 4, 1863–1868 (2006).

    Google Scholar 

  • de Amorim, M. E. et al. Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proc. Natl. Acad. Sci. U. S. A. 114, 8812–8816 (2017).

    ADS 

    Google Scholar 

  • Madsen, T. & Shine, R. Phenotypic plasticity in body sizes and sexual size dimorphism in European grass snakes. Evolution (NY). 47, 321–325 (1993).

    Google Scholar 

  • Levis, N. A., Isdaner, A. J. & Pfennig, D. W. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2, 1289–1297 (2018).

    PubMed 

    Google Scholar 

  • Cox, R. M., Barrett, M. M. & John-Alder, H. B. Effects of food restriction on growth, energy allocation, and sexual size dimorphism in Yarrow’s Spiny Lizard Sceloporus jarrovii. Can. J. Zool. 86, 268–276 (2008).

    Google Scholar 

  • Cox, R. M. & Calsbeek, R. Sex-specific selection and intraspecific variation in sexual size dimorphism. Evolution (NY). 64, 798–809 (2010).

    Google Scholar 

  • Cox, R. M., Zilberman, V. & John-Alder, H. B. Environmental sensitivity of sexual size dimorphism: Laboratory common garden removes effects of sex and castration on lizard growth. Funct. Ecol. 20, 880–888 (2006).

    Google Scholar 

  • Wiens, J. J. & Tuschhoff, E. Songs versus colours versus horns: what explains the diversity of sexually selected traits?. Biol. Rev. 95, 847–864 (2020).

    PubMed 

    Google Scholar 

  • Sivan, J. et al. Relative tail length correlates with body condition in male but not in female crowned leafnose snakes (Lytorhynchus diadema). Sci. Rep. 10, 4130 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, K. L., Greenwood, J. J. D. & Gaston, K. J. Dissecting the species-energy relationship. Proc. R. Soc. B Biol. Sci. 272, 2155–2163 (2005).

    Google Scholar 

  • Weier, J. & Herring, D. Measuring vegetation (NDVI & EVI). NASA. https://earthobservatory.nasa.gov/Features/MeasuringVegetation/. (2000).

  • Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: Roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569 (2019).

    Google Scholar 

  • Thorpe, R. S. & Baez, M. Geographic variation within an island: univariate and multivariate contouring of scalation, size, and shape of the lizard Gallotia galloti. Evolution (NY). 41, 256–268 (1987).

    Google Scholar 

  • Lazić, M. M., Carretero, M. A., Crnobrnja-Isailović, J. & Kaliontzopoulou, A. Effects of environmental disturbance on phenotypic variation: An integrated assessment of canalization, developmental stability, modularity, and allometry in lizard head shape. Am. Nat. 185, 44–58 (2015).

    PubMed 

    Google Scholar 

  • Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).

    Google Scholar 

  • MacArthur, R. H. & Wilson, E. O. The theory of island biogeography. (Princeton University Press, 1967).

  • Alzate, A., Etienne, R. S. & Bonte, D. Experimental island biogeography demonstrates the importance of island size and dispersal for the adaptation to novel habitats. Glob. Ecol. Biogeogr. 28, 238–247 (2019).

    Google Scholar 

  • Wieser, W. Effects of temperature on ectothermic organisms (Springer, 1973).

    Google Scholar 

  • Lucchi, F., Peccerillo, A., Keller, J., Tranne, C. A. & Rossi, P. L. The Aeolian Islands Volcanoes. (Geological Society, 2013).

  • Meiri, S. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734 (2008).

    Google Scholar 

  • Rohlf, F. J. TpsUtil version 1.87. (2021).

  • Rohlf, F. J. TpsDig2 version 2.31. (2018).

  • Sheets, H. D. CoordGen8. Integrated Morphometrics Package Suite (IMP) 8. (2014).

  • Sheets, H. D. PCAGen8. Integrated Morphometrics Package Suite (IMP) 8. (2014).

  • Lovich, J. E. & Gibbons, J. W. Review of techniques for quantifying sexual size dimorphism. Growth, Dev. Aging 56, 269–281 (1992).

  • Bittinger, K. usedist: Distance Matrix Utilities. (2020).

  • Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass-size residuals: Validating body condition indices. Ecology 86, 155–163 (2005).

    Google Scholar 

  • Corti, C., Capula, M., Luiselli, L., Razzetti, E. & Sindaco, R. Fauna d’Italia, vol. XLV, Reptilia. (Calderini, 2011).

  • Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M. & Trigo, I. F. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 12, 1–21 (2020).

    Google Scholar 

  • Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).

    PubMed 

    Google Scholar 

  • Angilletta, M. J., Hill, T. & Robson, M. A. Is physiological performance optimized by thermoregulatory behavior? A case study of the eastern fence lizard Sceloporus undulatus. J. Therm. Biol. 27, 199–204 (2002).

    Google Scholar 

  • Aybar, C., Wu, Q., Bautista, L., Yali, R. & Barja, A. rgee: An R package for interacting with Google Earth Engine. J. Open Source Softw. 5, 2272 (2020).

    ADS 

    Google Scholar 

  • Bonardi, A. et al. ReptIslands: Mediterranean islands and the distribution of their reptile fauna. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13490 (2022).

    Article 

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach, Second Edition. (Springer, 2002).

  • Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).

    Google Scholar 

  • Lukacs, P. M. et al. Concerns regarding a call for pluralism of information theory and hypothesis testing. J. Appl. Ecol. 44, 456–460 (2007).

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (2021).

  • QGIS Development Team. QGIS Geographic Information System, version 3.20.1. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. (2022).


  • Source: Ecology - nature.com

    Inter-annual variability patterns of reef cryptobiota in the central Red Sea across a shelf gradient

    Biological invasions as a selective filter driving behavioral divergence