in

Potential hazard characteristics of trees with hollows, cavities and fruiting bodies growing along pedestrian routes

  • Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30(7), e02149 (2020).

    Article 

    Google Scholar 

  • Li, Z. & Ma, J. Discussing street tree planning based on pedestrian volume using machine learning and computer vision. Build. Environ. 219, 109178 (2022).

    Article 

    Google Scholar 

  • Tan, X. & Shibata, S. Factors influencing street tree health in constrained planting spaces: Evidence from Kyoto City, Japan. Urban For. Urban Green. 67, 127416 (2022).

    Article 

    Google Scholar 

  • Plant, L. & Sipe, N. Adapting and applying evidence gathering techniques for planning and investment in street trees: A case study from Brisbane. Australia. Urban For. Urban Green. 19, 79–87 (2016).

    Article 

    Google Scholar 

  • Dümpelmann, S. Urban trees in times of crisis: Palliatives, mitigators, and resources. One Earth 2, 402–404 (2020).

    Article 
    ADS 

    Google Scholar 

  • Liu, J. & Slik, F. Are street trees friendly to biodiversity?. Landsc. Urban Plan. 218, 104304 (2022).

    Article 

    Google Scholar 

  • Suchocka, M. et al. Old trees are perceived as a valuable element of the municipal forest landscape. PeerJ 10, 12700 (2022).

    Article 

    Google Scholar 

  • Marselle, M. R. et al. Urban Street tree biodiversity and antidepressant prescriptions. Sci. Rep. 10, 22445 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Radu, S. The ecological role of deadwood in natural forests. In Nature Conservation. Environmental Science and Engineering (eds Gafta, D. & Akeroyd, J.) (Springer, 2006).

    Google Scholar 

  • Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).

    Article 

    Google Scholar 

  • Ferenc, M., Sedláček, O. & Fuchs, R. How to improve urban greenspace for woodland birds: Site and local-scale determinants of bird species richness. Urban Ecosyst. 17, 625–640 (2014).

    Article 

    Google Scholar 

  • Birch, J. D., Lutz, J. A., Turner, B. L. & Karst, J. Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. For. Ecol. Manage. 494, 119277 (2021).

    Article 

    Google Scholar 

  • Siitonen, J., Ranius, T. The importance of veteran trees for saproxylic insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (2015).

  • Polyakov, A. Y., Weller, T. J. & Tietje, W. D. Remnant trees increase bat activity and facilitate the use of vineyards by edge-space bats. Agr. Ecosyst. Environ. 281, 56–63 (2019).

    Article 

    Google Scholar 

  • Hall, S. J. G. & Bunce, R. G. H. Mature trees as keystone structures in Holarctic ecosystems – a quantitative species comparison in a northern English park. Plant Ecol. Divers. 4, 243–250 (2011).

    Article 

    Google Scholar 

  • Suchocka, M. et al. Transit versus Nature. Depreciation of environmental values of the road alleys. Case study: Gamerki-Jonkowo, Poland. Sustain. 11(6), 1816 (2019).

    Article 

    Google Scholar 

  • What Are Ancient & Veteran Trees. Ancient Tree Forum | Championing the Biological, Cultural And Heritage Value Of The UK’s Ancient Trees. URL https://www.ancienttreeforum.org.uk/ancient-trees/what-are-ancient-veteran-trees/ (2022).

  • Fay, N. Environmental arboriculture, tree ecology and veteran tree management. Arbor. J. 26, 213–236 (2002).

    Article 

    Google Scholar 

  • Dujesiefken, D., Fay, N., De Groot, J. W. & De Berker, N. Trees—a lifespan approach. Contributions to arboriculture from European practitioners (eds. Witkoś-Gnach, K., Tyszko-Chmielowiec, P.) (Fundacja EkoRozwoju, 2016).

  • Roman, L. How many trees are enough? Tree death and the urban canopy. Scenar. J. 04, 8 (2014).

    Google Scholar 

  • Roman, L. A. & Scatena, F. N. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For. Urban Green. 10(4), 269–274 (2011).

    Article 

    Google Scholar 

  • Czaja, M., Kołton, A. & Muras, P. The complex issue of urban trees—stress factor accumulation and ecological service possibilities. Forests 11, 932 (2020).

    Article 

    Google Scholar 

  • Olchowik, J., Suchocka, M., Jankowski, P., Malewski, T. & Hilszczańska, D. The ectomycorrhizal community of urban linden trees in Gdańsk, Poland. PlosOne. 16(4), e0237551 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nilsson, K., Konijnendijk, C. C. & Nielsen, A. B. Urban forest function, design and management. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) https://doi.org/10.1007/978-1-4419-0851-3_218 (Springer, New York, NY, 2013).

    Chapter 

    Google Scholar 

  • Pokorny, J.D. Urban tree risk management, a Community Guide to Program Design and Implementation. USDA Forest Service Northeastern Area State and Private Forestry (2003).

  • James, K. R., Haritos, N. & Ades, P. K. Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1361–1369 (2006).

    Article 

    Google Scholar 

  • Hickman, G. W., Perry, E. & Evans, R. Validation of a tree failure evaluation system. J. Arboric. 21(5), 233–234 (1995).

    Google Scholar 

  • Klein, R., Koeser, A., Hauer, R., Hansen, G. & Escobedo, F. Risk assessment and risk perception of trees: A review of literature relating to arboriculture and urban forestry. Arboric. Urban For. 45(1), 26–38 (2019).

    Google Scholar 

  • Smiley, E. T. Root pruning and stability of young willow oak. Arboric. Urban For. 34(2), 123–128 (2008).

    Article 

    Google Scholar 

  • Terho, M. & Hallaksela, A.-M. Decay characteristics of hazardous Tilia, Betula, and Acer trees felled by municipal urban tree managers in the Helsinki city area. Forestry 81(2), 151–159. https://doi.org/10.1093/forestry/cpn002 (2008).

    Article 

    Google Scholar 

  • Terho, M. An assessment of decay among urban Tilia, Betula, and Acer trees felled as hazardous. Urban For. Urban Green. 8, 77–85 (2009).

    Article 

    Google Scholar 

  • Koeser, A. K., Klein, R. W., Hasing, G. & Northrop, R. J. Factors driving professional and public urban tree risk perception. Urban For. Urban Green. 14(4), 968–974 (2015).

    Article 

    Google Scholar 

  • Johnson, G. R. Storms over Minnesota. Minn. Shade Tree Advocate 2(1), 1–12 (1999).

    ADS 

    Google Scholar 

  • Zhang, Y., Hussain, A., Deng, J. & Letson, L. Public attitudes toward urban trees and supporting urban tree programs. Environ. Behav. 39(6), 797–814 (2007).

    Article 

    Google Scholar 

  • Suchocka, M., Swoczyna, T., Kosno-Jończy, J. & Kalaji, H. M. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill Trees. PLoS ONE 16(8), e0256465. https://doi.org/10.1371/journal.pone.0256465 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gilman, E. F. & Knox, G. Pruning type affects ecay and structure of crape myrtle. J. Arboric. 31, 38–47 (2005).

    Google Scholar 

  • Gilman, E. F. & Lilly, S. J. Best Management Practices: Tree Pruning (International Society of Arboriculture, 2008).

    Google Scholar 

  • Perrette, G., Delagrange, S., Ramirez, J. A. & Messier, C. Optimisingreduction pruning under electrical lines: The influence of tree vitality before pruning on traumatic responses. Urban For. Urban Green. 63, 127139 (2021).

    Article 

    Google Scholar 

  • von Döhren, P. & Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin. Germany. Ecosyst. Serv. 40, 101031 (2019).

    Article 

    Google Scholar 

  • Papandrea, S. F., Cataldo, M. F., Zimbalatti, G. & Proto, A. R. Comparative evaluation of inspection techniques for decay detection in urban trees. Environ. Sci. Proc. 3, 14 (2021).

    Google Scholar 

  • McPherson, G. & Peper, P. P. Costs of street tree damage to infrastructure. Arbor. J. 20, 143–160 (1996).

    Article 

    Google Scholar 

  • Mullaney, J., Lucke, T. & Trueman, S. J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166 (2015).

    Article 

    Google Scholar 

  • Vogt, J., Hauer, R. J. & Fischer, B. C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 41(6), 293–323 (2015).

    Google Scholar 

  • Mattheck, C. & Breloer, H. Field guide for visual tree assessment (VTA). Arboric. J. 18(1), 1–23 (1994).

    Article 

    Google Scholar 

  • Smiley E.T., Matheny N., & Lilly S. Best management practices: Tree risk assessment. In International Society of Arboriculture, 86 (Champaign, Illinois, 2011).

  • Dunster J.A., Smiley E.T., Matheny N., Lilly S. Tree risk assessment manual. International Society of Arboriculture 194 (Champaign, Illinois, 2013).

  • Li, H., Zhang, X., Li, Z., Wen, J. & Tan, X. A review of research on tree risk assessment methods. Forests 13, 1556 (2022).

    Article 

    Google Scholar 

  • Koeser, A. K., Hauer, R. J., Klein, R. W. & Miesbauer, J. W. Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban For. 24, 71–79 (2017).

    Google Scholar 

  • TRAQ [URL TRAQandOtherTreeRiskAssessmentMethodsforEvaluationandPrioritizingTreeRiskConditions(forestmetrix.com) (2021).

  • TRAQ Tree Risk Assessment Qualification Application Guide https://www.isa-arbor.com/Portals/0/Assets/PDF/Certification-Applications/TRAQ-App-Guide.pdf (2021).

  • Matheny N. P., Clark J. R. A photographic guide to the evaluation of hazard trees in urban areas. In International Society of Arboriculture 85 (Champaign, 1994).

  • Linhares, C. S. F., Gonçalves, R., Martins, L. M. & Knapic, S. Structural stability of urban trees using visual and instrumental techniques: A review. Forests 12, 1752. https://doi.org/10.3390/f12121752 (2021).

    Article 

    Google Scholar 

  • Ellison, M. Quantified tree risk assessment: Nota De procedimiento V5.2.3 (ES)2018-01 Quantified Tree Risk Assessment Limited (2018).

  • Forbes-Laird, J. THREATS – tree hazard risk evaluation and treatment system – Guidance note for users Retrieved March 27th, 2020 from Forbes-Laird Arboricultural Consultancy http://www.flac.uk.com/wp-content/uploads/2010/07/THREATS-GN-June-2010.pdf, (2010).

  • Guyon C. Cleaver M. Jackson A. Saavedra P. Zambino A. Guide to Identifying, Assessing, and Managing Hazard Trees in Developed Recreational Sites of the Northern Rocky Mountains and the Intermountain West Retrieved March 31st, 2020 from USDA Forest Service, Northern and Intermountain Regions (2017). https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd571021.pdf

  • Blodgett, J. T., Burns, K. S., Worrall J. J.Guide to hazard tree management Retrieved March 31st, 2020 from USDA Forest Service, Rocky Mountain Region (2017) https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd572690.pdf (2017).

  • Norris M. A review of methods used to undertake risk assessments of urban trees. MSc. Thesis (2007).

  • Smiley, E. T., Matheny, N., Lilly, S. Best management practices: Tree risk assessment. International Society of Arboriculture 86 (Champaign, Illinois, 2011).

  • ALARP – Hart, A, 2013, ALARP – Recent Developments, ALARP: Learning from the Experiences of Others, London: IMechE, 4th June 2013 (2013).

  • HSE, 2001 Reducing risks, protecting people, HSE’s decision making process, Liverpool: Health and Safety Executive. (2001).

  • Rinn, F. Holzanatomische Grundlagen mechanischer impuls – Tomographie an Baumen [Wood anatomy background through mechanical pulses – tomografy of trees]. Allg. Forstwirtsch. 8, 450–456 (2003).

    Google Scholar 

  • Gilbert, E. A. & Smiley, E. T. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). J. Arboric 30, 277–281 (2004).

    Google Scholar 

  • Wang, X. & Allison, R. B. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboric. Urban For. 34(1), 1–4 (2008).

    Article 

    Google Scholar 

  • Wu, Y. & Shao, Z. Measurement and mechanical analysis of the strains–stresses induced by tree-pulling experiments in tree stems. Trees 30, 675–684 (2016).

    Article 

    Google Scholar 

  • Schindler, D. & Kolbe, S. Assessment of the response of a scots pine tree to effective wind loading. Forests 11(2), 145 (2020).

    Article 

    Google Scholar 

  • Koeser, A. K. & Smiley, E. T. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban For. 24, 109–115 (2017).

    Google Scholar 

  • Klein, R. W. et al. Assessing the consequences of tree failure. Urban Forestry & Urban Greening 65, 127307 (2021).

    Article 

    Google Scholar 

  • Renn, O. Perception of risks. Toxicol. Lett. 149(1), 405–413 (2004).

    Article 
    CAS 

    Google Scholar 

  • Hasan, R., Othman, N. & Ismail, F. Roadside tree management in urban area for public safety and properties. Asian J. Quality Life 3, 10–21834 (2018).

    Article 

    Google Scholar 

  • Williams, V. How do You Decide When to Remove a Tree? (University Of Maryland extension, 2018).

  • Rhoades, H. Filling holes in tree trunks: how to patch a hole in a tree trunk or a hollow tree. https://www.gardeningknowhow.com/ornamental/trees/tgen/patching-tree-hole.htm (2020).

  • Terho, M. & Hallaksela, A. M. Potential hazard characteristics of Tilia, Betula, and Acer trees removed in the Helsinki City Area during 2001–2003. Urban For. Urban Green. 3, 113–120 (2005).

    Article 

    Google Scholar 

  • Nagendra, H. & Gopal, D. Tree diversity, distribution, history and change in urban parks: Studies in Bangalore India. Urban Ecosyst. 14, 211–223 (2011).

    Article 

    Google Scholar 

  • Lindenmayer, D. B., Blanchard, W., Blair, D. & McBurney, L. The road to oblivion – Quantifying pathways in the decline of large old trees. For. Ecol. Manage. 430, 259–264 (2018).

    Article 

    Google Scholar 

  • Lusk, A. C., da Silva Filho, D. F. & Dobbert, L. Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA. Cities 106, 102111 (2020).

    Article 

    Google Scholar 

  • Galenieks, A. Importance of urban street tree policies: A comparison of neighboring southern California Cities. Urban For. Urban Green. 22, 105–110 (2017).

    Article 

    Google Scholar 

  • Wessolly, L. Material and structural features of trees Contribution to the Stargardt strength catalogue. In Proceedings of the 15th Bad Goteborg Tree Seminar (1992).

  • Schwarze, F. Diagnosis and prognosis of the development of wood decay in urban trees. Agrios GN 1997 Plant Patology. (Academic Press, San Diego, 2008).

  • Footway. Cycling Embassy Of Great Britain [https://www.cycling-embassy.org.uk/dictionary/footway] (2022).

  • Roloff, A. Handbuch Baumdiagnostik Baum-Korpersprache und Baum-Beurtailung (Ulmer Verlag, 2015).

    Google Scholar 

  • Koeser, A. K., Hasing, G., McLean, D., Northrop R. Tree risk assessment methods: A comparison of three common evaluation forms Retrieved March 24th, 2020 from https://edis.ifas.ufl.edu/ep487 (2016).

  • Smiley, E. T. & Kumamoto, H. Qualitative Tree Risk Assessment. 12–18 (2012).

  • Mattheck, C. Trees: The Mechanical Design (Springer, 1991).

    Book 

    Google Scholar 

  • R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).

  • Olchowik, J. et al. The ectomycorrhizal community of crimean linden trees in Warsaw, Poland. Forests 11(9), 926 (2020).

    Article 

    Google Scholar 

  • Dupre, S., Thiebaut, B. & Tessier du Cros, E. Morphologie architecture des jeunes hfitres (Fagus sylvatica L.). Influence du milieu variability genetique. Ann. Sci. For. 43, 85–102 (1986).

    Article 

    Google Scholar 

  • Power, S. A., Ashmore, M. R. & Ling, K. A. Recent trends in beech tree health in southern Britain and the influence of soil type. Water Air Soil Pollut. 85, 1293–1298 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Masarovičova, E. & Štefančik, L. Some ecophysiological features in sun and shade leaves of tall beech trees. Biol. Plant 32, 374–387 (1990).

    Article 

    Google Scholar 

  • Nicolini, E. & Caraglio, Y. L’influence de divers caracteres architecturaux sur l’apparition de la fourche chez le Fagus sylvatica, en fonction de l’absence ou de la presence d’un couvert. Botany 72, 1723–1734 (1994).

    Google Scholar 

  • van Wassenaer, P. V. & Richardson, M. A review of tree risk assessment using minimally invasive technologies and two case studies. Arboric. J. 32, 275–292 (2009).

    Article 

    Google Scholar 

  • dos Reis, M. N., Gonçalves, R., Brazolin, S. & de Assis Palma, S. S. Strength loss inference due to decay or cavities in tree trunks using tomographic imaging data applied to equations proposed in the literature. Forests 13, 596 (2022).

    Article 

    Google Scholar 

  • Kanea, B., Warrena, P. S. & Lermanab, S. B. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds. Urban For. 14, 1137–1146 (2015).

    Google Scholar 

  • Wolf, K. L. Roadside urban trees—balancing safety and community values. Arborist News 15, 25–27 (2006).

    Google Scholar 

  • Hightshoe, G. L. Native Trees, Shrubs and Vines for Urban and Rural America (Wiley and Sons, 1988).

    Google Scholar 

  • Costello, L. R. & Jones, K. S. Western chapter of the international society of arboriculture. In Reducing Infrastructure Damage by The Tree Roots: A Compendium of Strategies. 64–65 (2003).

  • Kjaer, E. D. Introduction part 2. Consequences of ash dieback: Damage level, resistance and resilience of European Ash Forests. Balt. For. 23, 141–143 (2017).

    Google Scholar 

  • Timmermann, V., Nagy, N., Hietala, A., Børja, I. & Solheim, H. Progression of ash dieback in Norway related to tree age, disease history and regional aspects. Balt. For. 23, 150–158 (2017).

    Google Scholar 

  • Zajączkowska, U., Kaczmarczyk, K. & Liana, J. Birch sap exudation: influence of tree position in a forest stand on birch sap production, trunk wood anatomy and radial bending strength. Silva Fennica 53(2), 10048. https://doi.org/10.14214/sf.10048 (2019).

    Article 

    Google Scholar 

  • Reed, H. J. Veteran Trees: A Guide to Good Management (England Nature, 2000).

    Google Scholar 


  • Source: Ecology - nature.com

    New nanosatellite tests autonomy in space

    Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends