in

Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens

[adace-ad id="91168"]
  • El-Naggar, H. A. & Hasaballah, A. I. Acute larvicidal toxicity and repellency effect of Octopus cyanea crude extracts against the filariasis vector, Culex pipiens. J. Egypt. Soc. Parasitol. 48(3), 721–728 (2018).

    Article 

    Google Scholar 

  • Koenraadt, C. J. M., Möhlmann, T. W. R., Verhulst, N. O., Spitzen, J. & Vogels, C. B. F. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasit. Vectors 12, 147. https://doi.org/10.1186/s13071-019-3400-4 (2019).

    Article 

    Google Scholar 

  • Vloet, R. P. M. et al. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 11, e0006145. https://doi.org/10.1371/journal.pntd.0006145 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dyab, A. K., Galal, L. A., Mahmoud, A. E. & Mokhtar, Y. Finding Walachia in filarial larvae and culicidae mosquitoes in upper Egypt governorate. Korean J. Parasitol. 54, 265–272 (2016).

    Article 
    CAS 

    Google Scholar 

  • Clements, A. N. & Harbach, R. E. Controversies over the scientific name of the principal mosquito vector of yellow fever virus—Expediency versus validity. J. Vector Ecol. 43, 1–14. https://doi.org/10.1111/jvec.12277 (2018).

    Article 

    Google Scholar 

  • Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13(4), 7229. https://doi.org/10.1371/journal.pntd.0007229 (2019).

    Article 

    Google Scholar 

  • Shah, R. M. et al. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol. Res. 115(11), 4345–4351 (2016).

    Article 

    Google Scholar 

  • Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 10, 1591. https://doi.org/10.3389/fphys.2019.01591 (2020).

    Article 

    Google Scholar 

  • Pavela, R. et al. Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol. Res. 115(12), 4617–4626 (2016).

    Article 

    Google Scholar 

  • Samuel, T. et al. In vitro antimicrobial activity of Ageratum houstonianum Mill. (Asteraceae). Food Sci. 35, 2897–2900 (2011).

    Google Scholar 

  • Boussaada, O. et al. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 61(2), 8435 (2008).

    Google Scholar 

  • Samuel, T., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).

    Article 

    Google Scholar 

  • Samuel, T., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299 (2012).

    Article 

    Google Scholar 

  • Tennyson, S. et al. In vitro antioxidant activity of Ageratum houstonianum Mill. (Asteraceae). Asian Pac. J. Trop. Dis. 2, S712–S714 (2012).

    Article 

    Google Scholar 

  • Sharma, P. D. & Sharma, O. P. Natural products chemistry, and biological properties of the Ageratum plant. Toxicol. Environ. Chem. 50, 213–232 (1995).

    Article 
    CAS 

    Google Scholar 

  • Bodner, C. C. & Gereau, R. E. A contribution of Bontoc ethnobotany. Econ. Bot. 42(3), 307–369 (1988).

    Article 

    Google Scholar 

  • Wiedenfeld, H. & Andrade-Cetto, A. Pyrrolizidine alkaloids from Ageratum houstononiaum Mill.. Phytochemistry 57(8), 1269–1271 (2001).

    Article 
    CAS 

    Google Scholar 

  • Siebertz, R., Proksch, P., Wray, V. & Witte, L. A benzofuran from Ageratum houstononiaum Mill.. Phytochemistry 27(12), 3996–3997 (1988).

    Article 
    CAS 

    Google Scholar 

  • Quijano, L., Calderon, J. S., Garibay, E., Escobar, E. & Rios, T. Further polysubstituted flavones from Ageratum houstononiaum Mill.. Phytochemistry 26(7), 2075–2978 (1987).

    Article 
    CAS 

    Google Scholar 

  • Kundu, A. & Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. (Stuttg.) 21(2), 185–189. https://doi.org/10.1111/plb.12947 (2019).

    Article 
    CAS 

    Google Scholar 

  • War, A. R. et al. Effect of plant secondary metabolites on legume pod borer Helicoverpa armigera. J. Pest Sci. 86, 399–408 (2013).

    Article 

    Google Scholar 

  • Cipollini, D., Stevenson, R., Enright, S., Eyles, A. & Bonello, P. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34, 144–152. https://doi.org/10.1007/s10886-008-9426-2 (2008).

    Article 
    CAS 

    Google Scholar 

  • Regnault-Roger, C. et al. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 40, 395–408 (2004).

    Article 
    CAS 

    Google Scholar 

  • Khan, S. et al. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 14(6), e0215048. https://doi.org/10.1371/journal.pone.0215048 (2019).

    Article 
    CAS 

    Google Scholar 

  • War, A., Sharma, S. P. & Sharma, H. C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 8, 55–64. https://doi.org/10.4137/IJIS.S39619 (2016).

    Article 

    Google Scholar 

  • Al Jabr, A. M., Hussain, A., Rizwan-ul-Haq, M. & Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22, 169. https://doi.org/10.3390/molecules22010169 (2017).

    Article 
    CAS 

    Google Scholar 

  • Moreira, M. D. et al. Plant compounds insecticide activity against coleoptera pests of stored products. Pesqui. Agropecu. Bras. 42(7), 909–915 (2007).

    Article 

    Google Scholar 

  • Ahuchaogu, A. A. et al. GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. Int. J. Med. Plants Nat. Prod. 4(2), 13–24. https://doi.org/10.20431/2454-7999.0402003 (2018).

    Article 

    Google Scholar 

  • Zhao, P.-L., Li, J. & Yang, G.-F. Synthesis, and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. Bioorg. Med. Chem. 15, 1888–1895 (2007).

    Article 
    CAS 

    Google Scholar 

  • Hussein, M. A. et al. Synthesis, molecular docking and insecticidal activity evaluation of chromones of date palm pits extract against Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res. 5(4), 22–32 (2018).

    Google Scholar 

  • Li, F. et al. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 25(14), 3815–3826. https://doi.org/10.1016/j.bmc.2017.05.027 (2017).

    Article 
    CAS 

    Google Scholar 

  • Feldlaufer, M. F. & Eberle, M. W. Insecticidal effect of precocene II on the human body louse, Pediculus humanus. Trans. R. Soc. Trop. Med. Hyg. 74(3), 398–399. https://doi.org/10.1016/0035-9203(80)90110-8 (1980).

    Article 
    CAS 

    Google Scholar 

  • Lu, X. N., Liu, X. C., Liu, Q. Z. & Liu, Z. L. Isolation of insecticidal constituents from the essential oil of Ageratum houstonianum Mill. against Liposcelis bostrychophila Badonnel. J. Chem. 2014, 6. https://doi.org/10.1155/2014/645687 (2014).

    Article 
    CAS 

    Google Scholar 

  • Pratt, G. & Bowers, W. Precocene II inhibits juvenile hormone biosynthesis by cockroach Corpora allata in vitro. Nature 265, 548–550. https://doi.org/10.1038/265548a0 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kumar, K. G. A. et al. Chemo-profiling and bioassay of phytoextracts from Ageratum conyzoides for acaricidal properties against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infesting cattle and buffaloes in India. Ticks Tick-Borne Dis. 7(2), 342–349 (2016).

    Article 

    Google Scholar 

  • Fahmi, A. G., Nassar, M., Mansour, E. & Salama, R. Toxicological and biochemical effects of precocene II against cotton leafworm, Spodoptera littoralis (boisd.). Egypt. J. Agric. Res. 97(1), 179–186. https://doi.org/10.21608/ejar.2019.68627 (2019).

    Article 

    Google Scholar 

  • Benelli, G., Pavela, R., Drenaggi, E., Desneux, N. & Maggi, F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 155, 112844. https://doi.org/10.1016/j.indcrop.2020.112844 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Ovicidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae. Asian Pac. J. Trop. Dis. 5, 199–203 (2015).

    Article 

    Google Scholar 

  • Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299. https://doi.org/10.1007/s00436-012-3083-7 (2012).

    Article 

    Google Scholar 

  • Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22(6), 298–307 (2007).

    Article 

    Google Scholar 

  • Navarro-Roldán, M. A., Bosch, D., Gemeno, C. & Siegwart, M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull. Entomol. Res. https://doi.org/10.1017/S0007485319000415 (2020).

    Article 

    Google Scholar 

  • Abdel Haleem, D. R., Gad, A. A. & Farag, S. M. Larvicidal, biochemical and physiological effects of acetamiprid and thiamethoxam against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 24(3), 271–283. https://doi.org/10.21608/ejabf.2020.91119 (2020).

    Article 

    Google Scholar 

  • Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).

    Article 

    Google Scholar 

  • Montella, I. R., Schama, R. & Valle, D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Mem. Inst. Oswaldo Cruz. 107(4), 437–449 (2012).

    Article 
    CAS 

    Google Scholar 

  • Vasantha-Srinivasan, P. et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.. Ecotoxicol. Environ. Saf. 139, 439–446. https://doi.org/10.1016/j.ecoenv.2017.01.026 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ramasamy, V. et al. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. Environ. Sci. Pollut. Res. 28(22), 28456–28469. https://doi.org/10.1007/s11356-021-12362-6 (2021).

    Article 

    Google Scholar 

  • Shoukat, R. F. et al. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 11, 246. https://doi.org/10.3390/insects11040246 (2020).

    Article 

    Google Scholar 

  • Boily, M., Sarrasin, B., Deblois, C., Aras, P. & Chagnon, M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res. Int. 20(8), 5603–5614. https://doi.org/10.1007/s11356-013-1568-2 (2013).

    Article 
    CAS 

    Google Scholar 

  • Rajashekar, Y., Raghavendra, A. & Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of lantana camara in stored grain and household insect pests. Biomed. Res. Int. 2014, 1–6. https://doi.org/10.1155/2014/187019 (2014).

    Article 
    CAS 

    Google Scholar 

  • Yuan, Y., Li, L., Zhao, J. & Chen, M. Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). J. Insect Sci. 20(1), 8 (2020).

    Article 

    Google Scholar 

  • Koodalingam, A., Mullainadhan, P. & Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop. 118(1), 27–36 (2011).

    Article 
    CAS 

    Google Scholar 

  • Nathan, S. S. et al. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown plant hopper Nilaparvata lugens (Stål). Ecotoxicol. Environ. Saf. 70, 244–250 (2008).

    Article 
    CAS 

    Google Scholar 

  • Abdel-Haleem, D. R., Genidy, N. A., Fahmy, A. R., Abu-El Azm, F. S. M. & Ismail, N. S. M. Comparative modeling, toxicological and biochemical studies of imidacloprid and thiamethoxam insecticides on the House Fly, Musca domestica L. (Diptera: Muscidae). Egypt. Acad. J. Biol. Sci. 11(1), 33–42. https://doi.org/10.21608/EAJB.2018.11977 (2018).

    Article 

    Google Scholar 

  • Kliot, A., Kontsedalov, S., Ramsey, J. S., Jande, G. & Ghanim, M. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. Pest Manag. Sci 70, 1595–1603 (2014).

    Article 
    CAS 

    Google Scholar 

  • Silva, T. R. F. B. et al. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Fitossanidade. Acta Sci. Agron. 38(2), 165–170. https://doi.org/10.4025/actasciagron.v38i2.27956 (2016).

    Article 

    Google Scholar 

  • Petschenka, G., Wagschal, V., Von Tschirnhaus, M., Donath, A. & Dobler, S. Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am. Nat. 190, 29–43 (2017).

    Article 

    Google Scholar 

  • Emam, M. et al. Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 26, 1710. https://doi.org/10.3390/molecules26061710 (2021).

    Article 
    CAS 

    Google Scholar 

  • El Hadidy, D., El Sayed, A. M., El Tantawy, M. & El Alfy, T. Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill. cultivated in Egypt. J. Essent. Oil-Bear. Plants 22(5), 1241–1251. https://doi.org/10.1080/0972060X.2019.1673831 (2019).

    Article 

    Google Scholar 

  • Tennyson, S., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).

    Article 

    Google Scholar 

  • Pintong, A. et al. Insecticidal and histopathological effects of Ageratum conyzoides weed extracts against dengue vector, Aedes aegypti. Insects 11, 224 (2020).

    Article 

    Google Scholar 

  • Parveen, S. et al. In vitro evaluation of ethanolic extracts of Ageratum conyzoides and Artemisia absinthium against cattle tick, Rhipicephalus microplus. Sci. World J. 2014, 858973 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 51(3), 635–640 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mruthunjaya, K. & Hukkeri, V. I. In vitro antioxidant and free radical scavenging potential of Parkinsonia aculeata Linn.. Pharmacogn. Mag. 4(13), 42–52 (2008).

    Google Scholar 

  • Atanassova, M., Georgieva, S. & Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall. 46(1), 81–88 (2011).

    CAS 

    Google Scholar 

  • Mizzi, L., Chatzitzika, C., Gatt, R. & Valdramidis, V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 58(1), 12–19. https://doi.org/10.17113/ftb.58.01.20.6395 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kasap, M. & Demirhan, H. The effect of various larval foods on the rate of adult emergence and fecundity of mosquitoes. Turk. Parasitol. Dergisi 161, 87–97 (1992).

    Google Scholar 

  • WHO. Guidelines for Laboratory & Field Testing of Mosquito Larvicides 1–4 (Bulletin of the World Health Organization, 2005).

    Google Scholar 

  • El-Sheikh, T., Bosly, H. & Shalaby, N. Insecticidal and repellent activities of methanolic extract of Tribulus terrestris L. (Zygophyllaceae) against the malarial vector Anopheles arabiensis (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. 5(2), 13–22 (2012).

    Google Scholar 

  • Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 256–267 (1952).

    Google Scholar 

  • Amin, T. R. Biochemical and Physiological Studies of Some Insect Growth Regulators on the Cotton Leafworm, Spodoptera littoralis (Boisd.). Ph.D. thesis, Faculty of Science, Cairo University (1998).

  • Simpson, D. R., Bulland, D. L. & Linquist, D. A. A semimicrotechnique for estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am. 57, 367–371 (1964).

    Article 
    CAS 

    Google Scholar 

  • Amaral, M. C., Bonecker, A. C. T. & Ortiz, C. H. D. Activity determination of Na+ K+-ATPase and Mg++-ATPase enzymes in the gill of Poecilia vivpara (Osteichthyes, Cyprinodontiformes) in different salinities. Braz. Arch. Biol. Technol. 44, 1–6 (2001).

    Article 
    CAS 

    Google Scholar 

  • Hansen, I. G. & Hodgson, E. Biochemical characteristics of insect microsomes, N-and o-demethylation. Biochem. Pharmacol. 20, 1569–1578 (1971).

    Article 
    CAS 

    Google Scholar 

  • Finney, D. J. Probit Analysis 3rd edn. (Cambridge University Press, 1971).

    MATH 

    Google Scholar 

  • Duncan, D. B. Multiple range, and multiple F tests. Biometrics 2, 1–42 (1955).

    Article 
    MathSciNet 

    Google Scholar 


  • Source: Ecology - nature.com

    New nanosatellite tests autonomy in space

    Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends