in

Spatial autocorrelation signatures of ecological determinants on plant community characteristics in high Andean wetlands

  • Rudnick, D. A. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol. 16, 1–23 (2012).

    Google Scholar 

  • Brudvig, L. A. Interpreting the effects of landscape connectivity on community diversity. J. Veg. Sci. 27, 4–5 (2016).

    Article 

    Google Scholar 

  • Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Kuczynski, L. & Grenouillet, G. Community disassembly under global change: Evidence in favor of the stress-dominance hypothesis. Global Change Biol. 24, 4417–4427 (2018).

    ADS 
    Article 

    Google Scholar 

  • Münkemüller, T. et al. From diversity indices to community assembly processes: A test with simulated data. Ecography 35, 468–480 (2012).

    Article 

    Google Scholar 

  • Seabloom, E. W., BJørnstad, O. N., Bolker, B. M. & Reichman, O. J. Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands. Ecol. Monogr. 75, 199–214 (2005).

    Article 

    Google Scholar 

  • Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Fortin, M. J. & Dale, M. Spatial Analysis: A Guide for Ecologist (Cambridge Univ. Press., 2005).

  • McIntire, E. J. B. & Fajardo, A. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90, 46–56 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Smith, T. W. & Lundholm, J. T. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33, 648–655 (2010).

    Article 

    Google Scholar 

  • Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).

    Article 

    Google Scholar 

  • Dray, S. A new perspective about moran’s coefficient: Spatial autocorrelation as a linear regression problem. Geogr. Anal. 43, 127–141 (2011).

    Article 

    Google Scholar 

  • Biswas, S. R., Mallik, A. U., Braithwaite, N. T. & Wagner, H. H. A conceptual framework for the spatial analysis of functional trait diversity. Oikos 125, 192–200 (2016).

    Article 

    Google Scholar 

  • Biswas, S. R., MacDonald, R. L. & Chen, H. Y. H. Disturbance increases negative spatial autocorrelation in species diversity. Landsc. Ecol. 32, 823–834 (2017).

    Article 

    Google Scholar 

  • Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).

  • Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).

    Article 

    Google Scholar 

  • Biswas, S. R., Xiang, J. & Li, H. Disturbance effects on spatial autocorrelation in biodiversity: An overview and a call for study. Diversity 13, 167 (2021).

    Article 

    Google Scholar 

  • Bertin, A. et al. Effects of wind-driven spatial structure and environmental heterogeneity on high-altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshw. Biol. 60, 297–310 (2015).

    Article 

    Google Scholar 

  • Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Souvignet, M., Oyarzún, R., Verbist, K. M. J., Gaese, H. & Heinrich, J. Hydro-meteorological trends in semi-arid north-central Chile (29–32°S): Water resources implications for a fragile Andean region. Hydrol. Sci. J. 57, 479–495 (2012).

    Article 

    Google Scholar 

  • Montecinos, S., Gutiérrez, J. R., López-Cortés, F. & López, D. Climatic characteristics of the semi-arid Coquimbo Region in Chile. J. Arid Environ. 126, 7–11 (2016).

    ADS 
    Article 

    Google Scholar 

  • Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. Biol. Sci. 284, 1–10 (2017).

    Google Scholar 

  • Ruzzier, E. et al. From island biogeography to conservation: A multi-taxon and multi-taxonomic rank approach in the Tuscan archipelago. Land 10, 486 (2021).

    Article 

    Google Scholar 

  • Siqueira, T. et al. Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology 101, e03014 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Anthelme, F. & Dangles, O. Plant–plant interactions in tropical alpine environments. Perspect. Plant Ecol. 14, 363–372 (2012).

    Article 

    Google Scholar 

  • Gavini, S. S., Ezcurra, C. & Aizen, M. A. Plant–plant interactions promote alpine diversification. Evol. Ecol. 33, 195–209 (2019).

    Article 

    Google Scholar 

  • Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Kikvidze, Z. et al. The effects of foundation species on community assembly: A global study on alpine cushion plant communities. Ecology 96, 2064–2069 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Zhao, R. M., Zhang, H. & An, L. Z. Spatial patterns and interspecific relationships of two dominant cushion plants at three elevations on the Kunlun Mountain, China. Environ. Sci. Pollut. Res. 27, 17339–17349 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pugnaire, F. I., Losapio, G. & Schöb, C. Interacciones entre especies y el papel de las plantas cojín en ecosistemas de alta montaña bajo un clima cambiante. Ecosistemas 30, 2186 (2021).

    Article 

    Google Scholar 

  • Cadotte, M. W. Dispersal and species diversity: A meta-analysis. Am. Nat. 167, 913–924 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Vellend, M. et al. Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol. Ecol. 23, 2890–2901 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, 2018).

  • Wilsey, B. & Stirling, G. Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Plant Ecol. 190, 259–273 (2007).

    Article 

    Google Scholar 

  • Schamp, B. S., Arnott, S. E. & Joslin, K. L. Dispersal strength influences zooplankton co-occurrence patterns in experimental mesocosms. Ecology 96, 1074–1083 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Troncoso, A. J., Bertin, A., Osorio, R., Arancio, G. & Gouin, N. Comparative population genetics of two dominant plant species of high Andean wetlands reveals complex evolutionary histories and conservation perspectives in Chile’s Norte Chico. Conserv. Genet. 18, 1047–1060 (2017).

    Article 

    Google Scholar 

  • Pfeiffer, V. W. et al. Partitioning genetic and species diversity refines our understanding of species–genetic diversity relationships. Ecol. Evol. 8, 12351–12364 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 36, 393–402 (2013).

    Article 

    Google Scholar 

  • Moritz, C. et al. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122, 1401–1410 (2013).

    Google Scholar 

  • Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 81, 887–892 (2000).

    Article 

    Google Scholar 

  • Stirling, G. & Wilsey, B. Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat. 158, 286–299 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stevens, R. D. & Willig, M. R. Geographical ecology at the community level: Perspectives on the diversity of new world bats. Ecology 83, 545–560 (2002).

    Article 

    Google Scholar 

  • Wilsey, B. J. & Polley, H. W. Effects of seed additions and grazing history on diversity and productivity of subhumid grasslands. Ecology 84, 920–931 (2003).

    Article 

    Google Scholar 

  • Ma, M. Species richness vs evenness: Independent relationship and different responses to edaphic factors. Oikos 111, 192–198 (2005).

    Article 

    Google Scholar 

  • Schmitz, O. J. Effects of predator hunting mode on grassland ecosystem function. Science 319, 952–954 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stomp, M., Huisman, J., Mittelbach, G. G., Litchman, E. & Klausmeier, C. A. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92, 2096–2107 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, H. et al. The relationship between species richness and evenness in plant communities along a successional gradient: A study from sub-alpine meadows of the eastern Qinghai-Tibetan plateau, China. PLoS ONE 7, e49024 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001).

    Google Scholar 

  • Young, K. R. in Climate Change and Biodiversity in the Tropical Andes (eds Herzog, S. K., Martinez, R., Jørgensen, P. M. & Tiessen, H.) Ch. 8, 128–140 (Inter-American Institute for Global Change Research, 2011).

  • López-Angulo, J. et al. Determinants of high mountain plant diversity in the Chilean Andes: From regional to local spatial scales. PLoS ONE 13, e0200216 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).

    Google Scholar 

  • Hanski, I. Metapopulation Ecology (Oxford University Press, 1999).

    Google Scholar 

  • Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Kunte, K. Competition and species diversity: Removal of dominant species increases diversity in Costa Rican butterfly communities. Oikos 117, 69–76 (2008).

    Article 

    Google Scholar 

  • Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Article 

    Google Scholar 

  • Kikvidze, Z. et al. Linking patterns and processes in alpine plant communities: A global study. Ecology 86, 1395–1400 (2005).

    Article 

    Google Scholar 

  • Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article 

    Google Scholar 

  • Heip, C. H. R., Herman, P. M. J. & Soetaert, K. Indices of diversity and evenness. Océanis 4, 61–87 (1998).

    Google Scholar 

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar 

  • Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).

    Article 

    Google Scholar 

  • Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user-defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  • Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the german biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beisel, J.-N., Usseglio-Polatera, P., Bachmann, V. & Moreteau, J.-C. A comparative analysis of evenness index sensitivity. Int. Rev. Hydrobiol. 88, 3–15 (2003).

    Article 

    Google Scholar 

  • Fedor, P. & Zvaríková, M. in Encyclopedia of Ecology (ed Brian Fath) 337–346 (2019).

  • Gatti, R. C., Amoroso, N. & Monaco, A. Estimating and comparing biodiversity with a single universal metric. Ecol. Model. 424, 8 (2020).

    Google Scholar 

  • Lin, L., Deng, W., Huang, X. & Kang, B. Fish taxonomic, functional, and phylogenetic diversity and their vulnerabilities in the largest river in southeastern China. Ecol. Evol. 11, 11533–11548 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Squeo, F. A., Warner, B. G., Aravena, R. & Espinoza, D. Bofedales: High altitude peatlands of the central Andes. Rev. Chil. Hist. Nat. 79, 245–255 (2006).

    Article 

    Google Scholar 

  • Villagrán-Mella, R., Aguayo, M., Parra, L. E. & González, A. Relación entre características del hábitat y estructura del ensamble de insectos en humedales palustres urbanos del centro-sur de Chile. Rev. Chil. Hist. Nat. 79, 195–211 (2006).

    Article 

    Google Scholar 

  • Coronel, J. S., Declerck, S., Maldonado, M., Ollevier, F. & Brendonck, L. Temporary shallow pools in high-Andes ‘bofedal’ peatlands. Arch. Sci. 57, 85–96 (2004).

    CAS 

    Google Scholar 

  • Wakeling, I. N. & Morris, J. J. A test of significance for partial least squares regression. J. Chemom. 7, 291–304 (1993).

    CAS 
    Article 

    Google Scholar 

  • Foltête, J.-C., Clauzel, C. & Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Modell. Softw. 38, 316–327 (2012).

    Article 

    Google Scholar 

  • Ricotta, C., Stanisci, A., Avena, G. C. & Blasi, C. Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecol. 1, 89–94 (2000).

    Article 

    Google Scholar 

  • Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979).

    Article 

    Google Scholar 

  • Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 82, 1205–1218 (2001).

    Article 

    Google Scholar 

  • Bodin, Ö. & Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Model. 221, 2393–2405 (2010).

    Article 

    Google Scholar 

  • Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null model analysis for ecological data. R package version 0.1.0. (R Foundation for Statistical Computing, 2015).

  • Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. (R Foundation for Statistical Computing, 2020)

  • Wagner, H. H. & Dray, S. Generating spatially constrained null models for irregularly spaced data using Moran spectral randomization methods. Methods Ecol. Evol. 6, 1169–1178 (2015).

    Article 

    Google Scholar 

  • Monecke, A. & Leisch, F. semPLS: Structural equation modeling using partial least squares. J. Stat. Softw. 48, 1–32 (2012).

    Article 

    Google Scholar 

  • Zhao, X., Li, Y., Song, H., Jia, Y. & Liu, J. Agents affecting the productivity of pine plantations on the Loess Plateau in China: A study based on structural equation modeling. Forests 11, 1328 (2020).

    Article 

    Google Scholar 

  • Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Gower, J. C. & Legendre, P. Metric and euclidean properties of dissimilarity coefficients. J. Classif. 3, 5–48 (1986).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

    Article 

    Google Scholar 

  • Lumley, T. & Miller, A. leaps: Regression subset selection. R package version 2.7. http://CRAN.R-project.org/package=leaps (2004).

  • AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.3-1. (2019).

  • Freestone, A. L. & Inouye, B. D. Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87, 2425–2432 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Li, F., Tonkin, J. D. & Haase, P. Local contribution to beta diversity is negatively linked with community-wide dispersal capacity in stream invertebrate communities. Ecol. Indic. 108, 105715 (2020).

    Article 

    Google Scholar 

  • Vilmi, A., Karjalainen, S. M. & Heino, J. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Divers. Distrib. 23, 1042–1053 (2017).

    Article 

    Google Scholar 

  • Baldeck, C. A., Tupayachi, R., Sinca, F., Jaramillo, N. J. E. & Asner, G. P. Environmental drivers of tree community turnover in western Amazonian forests. Ecography 39, 1089–1099 (2016).

    Article 

    Google Scholar 

  • Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B. 366, 2351–2363 (2011).

    Article 

    Google Scholar 

  • Segre, H. et al. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett. 17, 1400–1408 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Ceschin, F., Bini, L. M. & Padial, A. A. Correlates of fish and aquatic macrophyte beta diversity in the Upper Paraná River floodplain. Hydrobiologia 805, 377–389 (2018).

    CAS 
    Article 

    Google Scholar 

  • Heino, J. et al. Unravelling the correlates of species richness and ecological uniqueness in a metacommunity of urban pond insects. Ecol. Indic. 73, 422–431 (2017).

    Article 

    Google Scholar 

  • Leão, H., Siqueira, T., Torres, N. R. & Montag, L. F. D. A. Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecol. Indic. 111, 106039 (2020).

    Article 

    Google Scholar 

  • Vega-Álvarez, J., García-Rodríguez, J. A. & Cayuela, L. Facilitation beyond species richness. J. Ecol. 107, 722–734 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A new method boosts wind farms’ energy output, without new equipment

    The overlooked role of a biotin precursor for marine bacteria – desthiobiotin as an escape route for biotin auxotrophy