in

The evolution of parental care in salamanders

  • Wilson, E. O. Sociobiology: The New Synthesis (Harvard University Press, 1975).

    Google Scholar 

  • Székely, T., Remeš, V., Freckleton, R. P. & Liker, A. Why care? Inferring the evolution of complex social behaviour. J. Evol. Biol. 26, 1381–1391 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).

    Book 

    Google Scholar 

  • Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).

    Book 

    Google Scholar 

  • Székely, T., Webb, J. N., Houston, A. I. & McNamara, J. M. An evolutionary approach to offspring desertion in birds. In Current Ornithology Vol. 13 (eds Nolan, V. & Ketterson, E. D.) (Springer, 1996).

    Google Scholar 

  • McGraw, L., Székely, T. & Young, L. J. Pair bonds and parental behaviour. In Social Behaviour: Genes, Ecology and Evolution (eds Székely, T. et al.) (Cambridge University Press, 2010).

    Google Scholar 

  • Smiseth, P. T., Kölliker, M. & Royle, N. J. What is parental care? In The Evolution of Parental Care (eds Royle, N. J. et al.) 1–17 (Oxford Univ. Press, 2012).

    Google Scholar 

  • Mank, J. E., Promislow, D. E. L. & Avise, J. C. Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59, 1570–1578 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Benun Sutton, F. & Wilson, A. B. Where are all the moms? External fertilization predicts the rise of male parental care in bony fishes. Evolution 73, 2451–2460 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 4709 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Terrestriality and the evolution of parental care in frogs. Proc. R. Soc. Lond. B. 286, 20182737 (2019).

    Google Scholar 

  • Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Climate and mating systems as drivers of global diversity of parental care in frogs. Glob. Ecol. Biogeogr. 29, 1373–1386 (2020).

    Article 

    Google Scholar 

  • Gilbert, J. D. J. & Manica, A. Parental care trade-offs and life-history relationships in insects. Am. Nat. 176, 212–226 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Gilbert, J. D. & Manica, A. The evolution of parental care in insects: A test of current hypotheses. Evolution 69, 1255–1270 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reynolds, J. D., Goodwin, N. B. & Freckleton, R. P. Evolutionary transitions in parental care and live bearing in vertebrates. Philos. Trans. R. Soc. Lond. B. 357, 269–281 (2002).

    Article 

    Google Scholar 

  • AlRashidi, M., Kosztolányi, A., Shobrak, M., Küpper, C. & Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 82, 235–243 (2011).

    Article 

    Google Scholar 

  • Vincze, O. et al. Parental cooperation in a changing climate: Fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–385 (2017).

    Article 

    Google Scholar 

  • Martin, K. L. & Carter, A. L. Brave new propagules: Terrestrial embryos in anamniotic eggs. Integr. Comp. Biol. 53, 233–247 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ishimatsu, A., Mai, H. V. & Martin, K. L. Patterns of fish reproduction at the interface between air and water. Integr. Comp. Biol. 58, 1064–1085 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Bickford, D. P. Differential parental care behaviors of arboreal and terrestrial microhylid frogs from Papua New Guinea. Behav. Ecol. Sociobiol. 55, 402–409 (2004).

    Article 

    Google Scholar 

  • Poo, S. & Bickford, D. P. The adaptive significance of egg attendance in a South-East Asian tree frog. Ethology 119, 1–9 (2013).

    Article 

    Google Scholar 

  • Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Wells, K. D. The Ecology and Behaviour of Amphibians (University of Chicago Press, 2007).

  • Salthe, S. N. Reproductive modes and the number and sizes of ova in Urodeles. Am. Midl. Nat. 81, 467–490 (1969).

    Article 

    Google Scholar 

  • Nussbaum, R. A. The Evolution of Parental Care in Salamanders. (University of Michigan Press, 1985).

  • Nussbaum, R. A. Parental care and egg size in salamanders: An examination of the safe harbor hypothesis. Res. Popul. Ecol. 29, 27–44 (1987).

    Article 

    Google Scholar 

  • Furness, A. I., Venditti, C. & Capellini, I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and numbers across amphibians. PLoS Biol. 20, e3001495 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beck, C. W. Mode of fertilization and parental care in anurans. Anim. Behav. 55, 439–449 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kahn, A. T., Schwanz, L. E. & Kokko, H. Paternity protection can provide a kick-start for the evolution of male-only parental care. Evolution 67, 2207–2217 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Summers, K., McKeon, C. S. & Heying, H. The evolution of parental care and egg size: A comparative analysis in frogs. Proc. R. Soc. B 273, 687–692 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Lack, D. L. Ecological Adaptations for Breeding in Birds (Methuen, 1968).

  • Suski, C. D. & Ridgway, M. S. Climate and body size influence nest survival in a fish with parental care. J. Anim. Ecol. 76, 730–739 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. Posthatching parental care in salamanders revealed by infrared video surveillance. J. Herpetol. 44, 649–653 (2010).

    Article 

    Google Scholar 

  • Reinhard, S., Voitel, S. & Kupfer, A. External fertilisation and paternal care in the paedomorphic salamander Siren intermedia Barnes, 1826. Zool. Anz. 253, 1–5 (2013).

    Article 

    Google Scholar 

  • Amphibiaweb. University of California. https://amphibiaweb.org (2021).

  • Vial, J. L. The ecology of the tropical salamander, Bolitoglossa pesrubra Costa Rica. Rev. Biol. Trop. 15, 13–115 (1968).

    Google Scholar 

  • Han, X. & Fu, J. Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evol. Biol. 13, 27 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Prado, C. P. A. & Haddad, C. F. B. Size-fecundity relationships and reproductive investment in female frogs in the Pantanal, South-Western Brasil. Herpetol. J. 15, 181–189 (2005).

    Google Scholar 

  • Kupfer, A., Maxwell, E., Reinhard, S. & Kuehnel, S. The evolution of parental investment in caecilian amphibians: A comparative approach. Biol. J. Linn. Soc. 119, 4–14 (2016).

    Article 

    Google Scholar 

  • Smith, R. J. Statistics of sexual size dimorphism. J. Hum. Evol. 36, 423–458 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fairbairn, D. J. Introduction: The enigma of sexual size dimorphism. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) (Oxford University Press, 2007).

    Chapter 

    Google Scholar 

  • Lhotka, O., Kyselý, J. & Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Climatol. 131, 1043–1054 (2018).

    ADS 
    Article 

    Google Scholar 

  • Lion, M. B. et al. Global patterns of terrestriality in amphibian reproduction. Glob. Ecol. Biogeogr. 28, 744–756 (2019).

    Article 

    Google Scholar 

  • Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R Package Version 0.9-9. https://CRAN.R-project.org/package=maptools (2019).

  • Hijmans, R. J. raster: Geographic Data Analysis and Modelling. R Package Version 3.0-7. R package. https://CRAN.R-project.org/package=raster (2015).

  • Bivand, R. et al. Package ‘rgdal’. Bindings for the Geospatial Data Abstraction Library. https://cran.r-project.org/web/packages/rgdal/index.html (2017).

  • IUCN. The IUCN Red List of threatened species. https://www.iucnredlist.org (2021).

  • WorldClim. Maps, Graphs, Tables and Data of the Global Climate. https://www.worldclim.org (2021).

  • Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).

    Article 

    Google Scholar 

  • Ho, L. S. T. et al. Package ‘Phylolm’. https://cran.r-project.org/web/packages/phylolm (2018).

  • Jetz, W. et al. VertLife. https://vertlife.org (2021).

  • R-Core-Team R. Version 4.0.4. A Language and Environment for Statistical Computing. http://www.r-project.org/ (2021).

  • Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775–793 (1981).

    PubMed 
    Article 

    Google Scholar 

  • Ridley, M. & Rechten, C. Female sticklebacks prefer to spawn with males whose nests contain eggs. Behaviour 76, 152–161 (1981).

    Article 

    Google Scholar 

  • Jackson, M. E., Scott, D. E. & Estes, R. A. Determinants of nest success in the marbled salamander (Ambystoma opacum). Can. J. Zool. 67, 2277–2281 (1989).

    Article 

    Google Scholar 

  • Petranka, J. W. Observations on nest site selection, nest desertion and embryonic survival in marbled salamanders. J. Herpetol. 24, 229–234 (1990).

    Article 

    Google Scholar 

  • Croshaw, A. & Scott, D. E. Experimental evidence that nest attendance benefits female marbled salamanders (Ambystoma opacum) by reducing egg mortality. Am. Midl. Nat. 154, 398–411 (2005).

    Article 

    Google Scholar 

  • Knapp, R. A. & Sargent, R. C. Egg mimicry as a mating strategy in the fantail darter, Ethiostoma flabellare: Females prefer males with eggs. Behav. Ecol. Sociobiol. 25, 321–326 (1989).

    Article 

    Google Scholar 

  • Okada, S., Fukuda, Y. & Takahashi, M. K. Paternal care behaviors of Japanese giant salamander Andrias japonicus in natural populations. J. Ethol. 33, 1–7 (2015).

    Article 

    Google Scholar 

  • Browne, R. K. et al. The giant salamanders (Cryptobranchidae): Part B. Biogeography, ecology and reproduction. Amphib. Reptile Conserv. 5, 30–50 (2014).

    Google Scholar 

  • Taborsky, M. Sperm competition in fish: ‘Bourgeois’ males and parasitic spawning. Trends Ecol. Evol. 13, 222–227 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vieites, D. R. et al. Post-mating clutch-piracy in an amphibian. Nature 431, 305–308 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Balshine, S. & Abate, M. E. Parental care in cichlid fishes. In The Behavior, Ecology and Evolution of Cichlid Fishes (eds Abate, M. E. & Noakes, D. L. G.) (Springer, 2021).

    Google Scholar 

  • Ota, K., Kohda, M. & Sato, T. Unusual allometry of sexual size dimorphism in a cichlid where males are extremely larger than females. J. Biosci. 35, 257–265 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Mokos, J., Scheuring, I., Liker, A., Freckleton, R. P. & Székely, T. Degree of anisogamy is unrelated to the intensity of sexual selection. Sci. Rep. 11, 19424 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bourne, G. R. Amphisexual parental behaviour of a terrestrial breeding frog Eleutherodactylus johnstonei in Guyana. Behav. Ecol. 9, 1–7 (1998).

    Article 

    Google Scholar 

  • Beal, C. A. & Tallamy, D. W. A new record of amphisexual care in an insect with extensive parental care: Rhynocoris tristis (Heteroptera: Reduviidae). J. Ethol. 24, 305–307 (2006).

    Article 

    Google Scholar 

  • Ringler, E. et al. Flexible compensation of uniparental care: Female poison frogs take over when males disappear. Behav. Ecol. 26, 1219–1225 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tumulty, J., Morales, V. & Summers, K. The biparental care hypothesis for the evolution of monogamy: Experimental evidence in an amphibian. Behav. Ecol. 25, 262–270 (2014).

    Article 

    Google Scholar 

  • Remeš, V., Freckleton, R. P., Tökölyi, J., Liker, A. & Székely, T. The evolution of parental cooperation in birds. Proc. Natl. Acad. Sci. USA 112, 12603–13608 (2015).

    Article 

    Google Scholar 

  • Guex, G.-D. & Chen, P. S. Epitheliophagy: Intrauterine cell nourishment in the viviparous alpine salamander, Salamandra atra (Laur.). Experientia 42, 1205–1218 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goycoechea, O., Garrido, O. & Jorquera, B. Evidence for a trophic paternal-larval relationship in the frog Rhinoderma darwinii. J. Herpetol. 20, 168–178 (1986).

    Article 

    Google Scholar 

  • Hansen, R. W. About our cover: Ecnomyohyla rabborum. Herpetol. Rev. 42, 3 (2012).

    Google Scholar 

  • Brown, J. L., Morales, V. & Summers, K. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am. Nat. 175, 436–446 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Dugas, M. B., Moore, M. P., Martin, R. A., Richards-Zawacki, C. L. & Sprehn, Z. G. The pay-offs of maternal care increase as offspring develop, favouring extended provisioning in an egg-feeding frog. J. Evol. Biol. 29, 1977–1985 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kupfer, A. et al. Parental investment by skin feeding in a caecilian amphibian. Nature 440, 926–929 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shine, R. Propagule size and parental care: The “safe harbour” hypothesis. J. Theor. Biol. 75, 417–424 (1978).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Székely, T., Webb, J. N. & Cuthill, I. C. Mating patterns, sexual selection and parental care: An integrative approach. In Vertebrate Mating Systems (eds Apollonio, M. et al.) (World Scientific Press, 2000).

    Google Scholar 

  • Ah-King, M., Kvarnemo, C. & Tullberg, B. S. The influence of territoriality and mating system on the evolution of parental care: A phylogenetic study on fish. J. Evol. Biol. 18, 371–382 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zamudio, K. R., Bell, R. C., Nali, R. C., Haddad, C. F. B. & Prado, C. P. A. Polyandry, predation and the evolution of frog reproductive modes. Am. Nat. 188, S41–S61 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Graham, S. P., Kline, R., Steen, D. A. & Kelehear, C. Description of an extant salamander from the Gulf Coastal Plain of North America: The Reticulated Siren, Siren reticulata. PLoS ONE 13, e0207460 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yan, F. et al. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Curr. Biol. 28, R590–R592 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jaramillo, A. F. et al. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Mol. Phylogenet. Evol. 149, 106841 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Parra-Olea, G. et al. Biology of tiny animals: Three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico. PeerJ 4, e2694 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Balázs, G., Lewarne, B. & Herczeg, G. Extreme site fidelity of the olm (Proteus anguinus) revealed by a long-term capture-mark-recapture study. J. Zool. 311, 99–105 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists chart how exercise affects the body

    Connectivity modelling in conservation science: a comparative evaluation