in

Connectivity modelling in conservation science: a comparative evaluation

[adace-ad id="91168"]
  • Abram, D. The spell of the sensuous: Perception and language in a more-than-human world. Vintage (2012).

  • Ingold, T. Being alive: Essays on movement, knowledge and description. Routledgehttps://doi.org/10.4324/9780203818336 (2011).

    Article 

    Google Scholar 

  • Kimmerer, R.W. Braiding sweetgrass: Indigenous wisdom, scientific knowledge and the teachings of plants (Milkweed editions, 2013).

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359(6374), 466–469 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gibbs, J.P. Amphibian movements in response to forest edges, roads, and streambeds in southern New England. in The Journal of Wildlife Management (1998), pp. 584–589. https://doi.org/10.2307/3802333.

  • Moller, H., Berkes, F., O’Brian Lyver, P., & Kislalioglu, M. Combining science and traditional ecological knowledge: Monitoring populations for co-management. in Ecology and society (2004).

  • Lorimer, J. Wildlife in the Anthropocene: conservation after nature. (U of Minnesota Press, 2015).

  • Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3(4), 385–397 (1989).

    Article 

    Google Scholar 

  • Abram, D. Becoming animal: An earthly cosmology. Vintage (2010).

  • Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105(49), 19052–19059 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90(1), 7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x (2000).

    Article 

    Google Scholar 

  • Rudnick, D., Ryan, S.J., Beier, P., Cushman, S.A., Dieffenbach, F., Epps, C., Gerber, L.R., Hartter, J.N., Jenness, J.S., & Kintsch, J. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues in Ecology (2012).

  • Hilty, J.A., Lidicker, W.Z., & Merenlender, A.M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation (Island Press, 2012).

  • Cushman, S.A., McRae, B.H., Adriaensen, F., Beier, P., Shirley, M., & Zeller, K. Biological corridors and connectivity [Chapter 21]. in Key Topics in Conservation Biology 2nd ed. (eds Macdonald, D.W., Willis, K.J.) pp. 384–404 (Hoboken, NJ: Wiley-Blackwell, 2013).

  • Unnithan Kumar, S., Turnbull, J., Hartman Davies, O., Hodgetts, T., & Cushman, S.A. Moving beyond landscape resistance: Considerations for the future of connectivity modelling and conservation science. in Landscape Ecology (2022).

  • Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landscape Ecol. 27(6), 777–797 (2012).

    Article 

    Google Scholar 

  • Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64(4), 233–247 (2003).

    Article 

    Google Scholar 

  • Cushman, S. A. & McKelvey, K. S. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23(2), 368–376. https://doi.org/10.1111/j.1523-1739.2008.01111.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • Moilanen, A. On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J. Appl. Ecol. pp. 1543–1547 (2011).

  • Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21(3), 788–799. https://doi.org/10.1111/j.1523-1739.2007.00674.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712–2724. https://doi.org/10.1890/07-1861.1. (2008).

    Article 
    PubMed 

    Google Scholar 

  • Zeller, K. A. et al. Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers. Distrib. 24(7), 868–879. https://doi.org/10.1111/ddi.12742. (2018).

    Article 

    Google Scholar 

  • Pullinger, M. G. & Johnson, C. J. Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol. 25(10), 1547–1560 (2010).

    Article 

    Google Scholar 

  • Sawyer, S. C., Clinton, W. E. & Brashares, J. S. Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes?. J. Appl. Ecol. 48(3), 668–678 (2011).

    Article 

    Google Scholar 

  • Laliberté, J. & St-Laurent, M.-H. Validation of functional connectivity modeling: The Achilles’ heel of landscape connectivity mapping. Landsc. Urban Plan. 202, 103878 (2020).

    Article 

    Google Scholar 

  • Landguth, E. L. & Cushman, S. A. CDPOP: A spatially explicit cost distance popula tion genetics program. Mol. Ecol. Resour. 10(1), 156–161. https://doi.org/10.1111/j.1755-0998.2009.02719.x. (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19(19), 4179–4191. https://doi.org/10.1111/j.1365-294X.2010.04808.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cushman, S. A. & Landguth, E. L. Scale dependent inference in landscape genetics. Landsc. Ecol. 25(6), 967–979 (2010).

    Article 

    Google Scholar 

  • Cushman, S. A., Shirk, A. J. & Landguth, E. L. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol. 27(3), 369–380. https://doi.org/10.1007/s10980-011-9693-0 (2012).

    Article 

    Google Scholar 

  • Macdonald, E. A. et al. Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS ONE 13(9), e0196974 (2018).

    Article 

    Google Scholar 

  • Schumaker, N. H. et al. Mapping sources, sinks, and connectivity using a simulation model of northern spotted owls. Landscape Ecol. 29(4), 579–592 (2014).

    Article 

    Google Scholar 

  • Unnithan Kumar, S., Kaszta, Ż & Cushman, S. A. Pathwalker: A new individual-based movement model for conservation science and connectivity modelling. ISPRS Int. J. Geo Inf. 11(6), 329 (2022).

    Article 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020).

    CAS 
    Article 

    Google Scholar 

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14(6), 927–930 (2003).

    Article 

    Google Scholar 

  • Dray, S., Royer-Carenzi, M. & Calenge, C. The exploratory analysis of autocorrelation in animal-movement studies. Ecol. Res. 25(3), 673–681. https://doi.org/10.1007/s11284-010-0701-7 (2010).

    Article 

    Google Scholar 

  • Cushman, S.A. Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis. in Spatial Complexity, Informatics, and Wildlife Conservation (Springer, 2010), pp. 131-149.

  • Zeller, K. A. et al. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landscape Ecol. 29(3), 541–557 (2014).

    Article 

    Google Scholar 

  • Kareiva, P. M. & Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia 56(2), 234–238 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schumaker, N.H. Using landscape indices to predict habitat connectivity. Ecology (1996), pp. 1210–1225.

  • Schumaker, N. H. & Brookes, A. HexSim: A modeling environment for ecology and conservation. Landscape Ecol. 33(2), 197–211 (2018).

    Article 

    Google Scholar 

  • Bocedi, G., Palmer, S. C. F., Malchow, A.-K., Zurell, D. & Watts, K. RangeShifter 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44(10), 1453–1462 (2021).

    Article 

    Google Scholar 

  • Kaszta, Ż, Cushman, S. A. & Slotow, R. Temporal non-stationarity of path- selection movement models and connectivity: An example of African elephants in Kruger national park. Front. Ecol. Evol. 9, 207 (2021).

    Article 

    Google Scholar 

  • Osipova, L. et al. Using step-selection functions to model landscape connectivity for African elephants: Accounting for variability across individuals and seasons. Anim. Conserv. 22(1), 35–48 (2019).

    Article 

    Google Scholar 

  • Vergara, M., Cushman, S. A. & Ruiz-González, A. Ecological differences and limiting factors in different regional contexts: landscape genetics of the stone marten in the Iberian Peninsula. Landscape Ecol. 32(6), 1269–1283 (2017).

    Article 

    Google Scholar 

  • Reddy, P. A., Puyravaud, J.-P., Cushman, S. A. & Segu, H. Spatial variation in the response of tiger gene ow to landscape features and limiting factors. Anim. Conserv. 22(5), 472–480 (2019).

    Article 

    Google Scholar 

  • Zeller, K. A., Lewsion, R., Fletcher, R. J., Tulbure, M. G. & Jennings, M. K. Understanding the importance of dynamic landscape connectivity. Land 9(9), 303. https://doi.org/10.3390/land9090303 (2020).

    Article 

    Google Scholar 

  • Cronon, W. The trouble with wilderness: or, getting back to the wrong nature. Environ. Hist. 1(1), 7–28 (1996).

    Article 

    Google Scholar 

  • Ingold, T. The Perception of the Environment: Essays on Livelihood, Dwelling and Skill (Routledge, 2021).

  • Boettiger, A. N. et al. Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach. Ecology 92(8), 1648–1657 (2011).

    Article 

    Google Scholar 

  • Pooley, S. et al. An interdisciplinary review of current and future approaches to improving human-predator relations. Conserv. Biol. 31(3), 513–523. https://doi.org/10.1111/cobi.12859 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Benson, E. S. Minimal animal: Surveillance, simulation, and stochasticity in wildlife biology. Antennae 30, 39 (2014).

    Google Scholar 

  • Kaszta, Ż et al. Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol. Cons. 235, 63–76 (2019).

    Article 

    Google Scholar 

  • Penjor, U., Astaras, C., Cushman, S. A., Kaszta, Ż & Macdonald, D. W. Contrasting effects of human settlement on the interaction among sympatric apex carnivores. Proc. R. Soc. B 289(1973), 20212681 (2022).

    Article 

    Google Scholar 

  • Barua, M. Bio-geo-graphy: Landscape, dwelling, and the political ecology of human-elephant relations. Environ. Plann. D Soc. Space 32(5), 915–934 (2014).

    Article 

    Google Scholar 

  • Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51(5), 1169–1178 (2014).

    Article 

    Google Scholar 

  • Kareiva, P. & Marvier, M. What is conservation science?. Bioscience 62(11), 962–969 (2012).

    Article 

    Google Scholar 

  • Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).

    Article 

    Google Scholar 

  • Bunnefeld, N., Nicholson, E., & Milner-Gulland, E.J. Decision-Making in Conservation and Natural Resource Management: Models for Interdisciplinary Approaches. (Vol. 22, Cambridge University Press, 2017).

  • Parathian, H. E., McLennan, M. R., Hill, C. M., Fraza o-Moreira, A. & Hockings, K. J. Breaking through disciplinary barriers: Human-wildlife interactions and multispecies ethnography. Int. J. Primatol. 39(5), 749–775 (2018).

    Article 

    Google Scholar 

  • Hodgetts, T. Connectivity as a multiple: In with and as “nature’’. Area 50(1), 83–90. https://doi.org/10.1111/area.12353 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Berkes, F. Sacred ecology (Routledge, 2017). https://doi.org/10.4324/9781315114644.

  • Parrenas, J.S. Decolonizing Extinction: The Work of Care in Orangutan Rehabilitation (Duke University Press, 2018).

  • Bill Adams, W., & Mulligan, M. Decolonizing Nature: Strategies for Conservation in a Post-Colonial Era (Routledge, 2012).


  • Source: Ecology - nature.com

    The evolution of parental care in salamanders

    Simulating neutron behavior in nuclear reactors