in

Foraging strategy of a carnivorous-insectivorous raptor species based on prey size, capturability and nutritional components

  • 1.

    Pyke, G. H., Pulliam, H. R. & Charnov, E. Optimal foraging: a selective review of theory and tests. Quart. Rev. Biol. 52, 137–54 (1977).

    • Article
    • Google Scholar
  • 2.

    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology (The University of Chicago Press, 2007).

  • 3.

    Emlen, J. M. The role of time and energy in food preference. Am. Nat. 100, 611–17 (1966).

    • Article
    • Google Scholar
  • 4.

    Schoener, T. W. Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404 (1971).

    • Article
    • Google Scholar
  • 5.

    Begon, M., Townsend, C. R. & Harper, J. L. Ecology: From Individuals to Ecosystems, Ch. 9, 283 (Blackwell, 2006).

  • 6.

    Pierce, G. & Ollason, J. Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49, 111–17 (1987).

    • Article
    • Google Scholar
  • 7.

    Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 61, 379–90 (2001).

    • Article
    • Google Scholar
  • 8.

    Kohl, K. D., Coogan, S. C. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? BioEssays 37, 701–09 (2015).

  • 9.

    Orians, G. H. & Pearson, N. E. In Analysis of Ecological Systems (eds Horn, D. J., Stairs, G. R. & Mitchell R. D.) Ch. 6, 155-77 (Ohio State University Press, 1979).

  • 10.

    Olsson, O., Brown, J. S. & Helf, K. L. A guide to central place effects in foraging. Theor. Pop. Biol. 74, 22–33 (2008).

  • 11.

    Kacelnik, A. & Houston, A. I. Some effects of energy costs on foraging strategies. Anim. Behav. 32, 609–14 (1984).

    • Article
    • Google Scholar
  • 12.

    Ydenberg, R. C. In Foraging: Behavior and Ecology (eds. Stephens, D. W., Brown, J. S. & Ydenberg, R.) Ch. 8, 273-304 (University of Chicago Press, 2007).

  • 13.

    Moore, D. J. The provisioning tactics of parent common terns (Sterna hirundo) in relation to brood energy requirement. Ph.D. dissertation, Simon Fraser University (2002). Cited In Foraging: Behavior and Ecology (eds. Stephens, D. W., Brown, J. S. & Ydenberg, R.) Ch. 8, 273-304 (University of Chicago Press, 2007).

  • 14.

    Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).

    • Google Scholar
  • 15.

    Woodland, D., Jaafar, Z. & Knight, M.-L. The” pursuit deterrent” function of alarm signals. Am. Nat. 115, 748–53 (1980).

    • Article
    • Google Scholar
  • 16.

    Brodie, E. D. III & Brodie, E. D. Jr Costs of exploiting poisonous prey: evolutionary trade-offs in a predator-prey arms race. Evolution 53, 626–31 (1999).

  • 17.

    Abrams, P. A. The evolution of predator-prey interactions: theory and evidence. Ann. Rev. Ecol. Syst. 31, 79–105 (2000).

    • Article
    • Google Scholar
  • 18.

    Dimitrova, M., Stobbe, N., Schaefer, H. M. & Merilaita, S. Concealed by conspicuousness: distractive prey markings and backgrounds. Proc. R. Soc. Lond. B 276, 1905–10 (2009).

    • Google Scholar
  • 19.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–40 (1990).

    • Article
    • Google Scholar
  • 20.

    Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

  • 21.

    Terraube, J., Guixé, D. & Arroyo, B. Diet composition and foraging success in generalist predators: Are specialist individuals better foragers? Basic Appl. Ecol. 15, 616–24 (2014).

    • Article
    • Google Scholar
  • 22.

    Abrams, P. Anomalous predictions of ratio-dependent models of predation. Oikos 80, 163–71 (1997).

    • Article
    • Google Scholar
  • 23.

    Galef, B. G. Food selection: problems in understanding how we choose foods to eat. Neurosci. Biobehav. Rev. 20, 67–73 (1996).

  • 24.

    Kooijman, S., Andersen, T. & Kooi, B. Dynamic energy budget representations of stoichiometric constraints on population dynamics. Ecology 85, 1230–43 (2004).

    • Article
    • Google Scholar
  • 25.

    Whelan, C. J. & Schmidt, K. A. In Foraging: Behavior and Ecology (eds. Stephens, D. W., Brown, J. S. & Ydenberg, R.) Ch. 5, 141-74 (University of Chicago Press, 2007).

  • 26.

    Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S. & Simpson, S. J. Nutrient-specific foraging in invertebrate predators. Science 307, 111–3 (2005).

  • 27.

    Mayntz, D. et al. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349–55 (2009).

    • Article
    • Google Scholar
  • 28.

    Hewson-Hughes, A. K. et al. Geometric analysis of macronutrient selection in the adult domestic cat, Felis catus. J. Exp. Biol. 214, 1039–51 (2011).

  • 29.

    Schmidt, J. M., Sebastian, P., Wilder, S. M. & Rypstra, A. L. The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS One 7, e49223 (2012).

  • 30.

    Jensen, K. et al. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112, 1226–33 (2014).

  • 31.

    Kross, S. M., Tait, A., Raubenheimer, D. & Nelson, X. J. New Zealand falcon prey selection may not be driven by preference based on prey nutritional content. New Zeal. J. Ecol. 42, 58–64 (2018).

    • Google Scholar
  • 32.

    Krebs, J. R. & Avery, M. I. Chick growth and prey quality in the European Bee-Eater (Merops apiaster). Oecologia 64, 363–8 (1984).

  • 33.

    Mayntz, D. & Toft, S. Nutrient composition of the prey’s diet affects growth and survivorship of a generalist predator. Oecologia 127, 207–13 (2001).

  • 34.

    Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: grow now, pay later? Trends Ecol. Evol. 16, 254–60 (2001).

  • 35.

    Kitaysky, A. S., Kitaiskaia, E. V., Piatt, J. F. & Wingfield, J. C. A mechanistic link between chick diet and decline in seabirds? Proc. R. Soc. Lond. B 273, 445–50 (2006).

  • 36.

    Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–8 (2012).

  • 37.

    Raubenheimer, D. & Simpson, S. J. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J. Exp. Biol. 206, 1669–81 (2003).

  • 38.

    Raubenheimer, D., Simpson, S. J. & Mayntz, D. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23, 4–16 (2009).

    • Article
    • Google Scholar
  • 39.

    Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–311 (2004).

    • Article
    • Google Scholar
  • 40.

    Machovsky‐Capuska, G. E., Coogan, S. C., Simpson, S. J. & Raubenheimer, D. Motive for killing: what drives prey choice in wild predators? Ethology 122, 703–11 (2016).

    • Article
    • Google Scholar
  • 41.

    Lochmiller, R. L. & Deerenberg, C. Trade‐offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98 (2000).

    • Article
    • Google Scholar
  • 42.

    Cotter, S. C., Simpson, S. J., Raubenheimer, D. & Wilson, K. Macronutrient balance mediates trade‐offs between immune function and life history traits. Funct. Ecol. 25, 186–98 (2011).

    • Article
    • Google Scholar
  • 43.

    Maklakov, A. A. et al. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr. Biol. 18, 1062–6 (2008).

  • 44.

    Erlenbach, J. A., Rode, K. D., Raubenheimer, D. & Robbins, C. T. Macronutrient optimization and energy maximization determine diets of brown bears. J. Mammal. 95, 160–8 (2014).

    • Article
    • Google Scholar
  • 45.

    Donaldson, W. E., Combs, G. F. & Romoser, G. L. Studies on energy levels in poultry rations. 1. The effect of calorie-protein ratio of the ration on growth, nutrient utilization and body composition of chicks. Poult. Sci. 35, 1100–5 (1956).

  • 46.

    Liu, S. Y. et al. Growth performance, nutrient utilisation and carcass composition respond to dietary protein concentrations in broiler chickens but responses are modified by dietary lipid levels. Br. J. Nutr. 118, 250–62 (2017).

  • 47.

    Wu, G. et al. Amino acid nutrition in animals: protein synthesis and beyond. Ann. Rev. Anim. Biosci. 2, 387–417 (2014).

  • 48.

    Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 1, 31–7 (2010).

  • 49.

    Ito, S. & Wakamatsu, K. Chemistry of mixed melanogenesis—pivotal roles of dopaquinone. Photochem. Photobiol. 84, 582–92 (2008).

  • 50.

    Métayer, S. et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J. Nutr. Biochem. 19, 207–15 (2008).

  • 51.

    Nikoofard, V., Mahdavi, A. H., Samie, A. H. & Jahanian, E. Effects of different sulphur amino acids and dietary electrolyte balance levels on performance, jejunal morphology, and immunocompetence of broiler chicks. J. Anim. Physiol. Anim. Nutr. 100, 189–99 (2016).

  • 52.

    Valerio, A., D’Antona, G. & Nisoli, E. Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging 3, 464–78 (2011).

  • 53.

    Zhang, S., Zeng, X., Ren, M., Mao, X. & Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: a review. J. Anim. Sci. Biotech. 8, 10 (2017).

  • 54.

    Pulliam, H. R. Diet optimization with nutrient constraints. Am. Nat. 109, 765–8 (1975).

    • Article
    • Google Scholar
  • 55.

    Lefcheck, J. S., Whalen, M. A., Davenport, T. M., Stone, J. P. & Duffy, J. E. Physiological effects of diet mixing on consumer fitness: a meta-analysis. Ecology 94, 565–72 (2013).

  • 56.

    Navarro-López, J., Vergara, P. & Fargallo, J. A. Trophic niche width, offspring condition and immunity in a raptor species. Oecologia 174, 1215–24 (2014).

  • 57.

    Blanco, G., Laiolo, P. & Fargallo, J. A. Linking environmental stress, feeding-shifts and the ‘island syndrome’: a nutritional challenge hypothesis. Popul. Ecol. 56, 203–16 (2014).

    • Article
    • Google Scholar
  • 58.

    Ricklefs, R. E., Starck, J. M. & Konarzewski, M. In Avian Growth and Development: Evolution Within the Altricial-Precocial Spectrum (eds. Starck, J. M. & Ricklefs, R. E.) Ch. 11, 266-87 (Oxford University Press, 1998).

  • 59.

    Dmitriew, C. M. The evolution of growth trajectories: what limits growth rate? Biol. Rev. 86, 97–116 (2011).

  • 60.

    Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. Small-rodent dynamics and predation. Ecology 82, 1505–20 (2001).

    • Article
    • Google Scholar
  • 61.

    Village, A. The Kestrel (Poyser, T. & Poyser, A. D., 1990).

  • 62.

    Navarro-López, J. & Fargallo, J. A. Trophic niche in a raptor species: the relationship between diet diversity, habitat diversity and territory quality. PLoS One 10, e0128855 (2015).

  • 63.

    Fargallo, J. A. et al. Kestrel-prey dynamic in a Mediterranean region: the effect of generalist predation and climatic factors. PLoS One 4, e4311 (2009).

  • 64.

    Palma-Granados, P. et al. Similar effects of lysine deficiency in muscle biochemical characteristics of fatty and lean piglets. J. Anim. Sci. 95, 3025–36 (2017).

  • 65.

    AOAC Official Methods of Analysis (Association of Official Analytical Chemists USA, 1990).

  • 66.

    Cohen, S. A., Meys, M. & Tarvin, T. L. The Pico-Tag Method: A Manual of Advanced Techniques for Amino Acid Analysis (Millipore Corporation, 1989).

  • 67.

    Moore, S. (1963) On the determination of cystine as cysteic acid. J. Biol. Chem. 238, 235–7 (1989).

    • Google Scholar
  • 68.

    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–90 (2009).

    • Article
    • Google Scholar
  • 69.

    Abdi, H. (2010) Partial least squares regression and projection on latent structure regression (PLSR). Wiley Interdiscip. Rev. Comput. Stat. 2, 97–106 (2009).

    • Article
    • Google Scholar
  • 70.

    Rakotomalala, R. TANAGRA: a free software for research and academic purposes. Proc. EGC 2, 697–702 (2005).

    • Google Scholar
  • 71.

    Ydenberg, R. C. The behavioral ecology of provisioning in birds. Ecoscience 1, 1–14 (1994).

    • Article
    • Google Scholar
  • 72.

    Masman, D., Daan, S. & Dijkstra, C. Time allocation in the kestrel (Falco tinnunculus), and the principle of energy minimization. J. Anim. Ecol. 57, 411–32 (1988).

    • Article
    • Google Scholar
  • 73.

    Masman, D., Dijkstra, C., Daan, S. & Bult, A. Energetic limitation of avian parental effort: field experiments in the kestrel (Falco tinnunculus). J. Evol. Biol. 2, 435–55 (1989).

    • Article
    • Google Scholar
  • 74.

    Endler, J. A. In Behavioural Ecology: An Evolutionary Approach (eds. Krebs, J. R. & Davies, N. B.) 169-96 (Blackwell Scientific Publications, 1991).

  • 75.

    Cresswell, W., Lind, J. & Quinn, J. L. Predator-hunting success and prey vulnerability: quantifying the spatial scale over which lethal and non-lethal effects of predation occur. J Anim. Ecol. 79, 556–62 (2010).

  • 76.

    Chang, K. H. & Hanazato, T. Vulnerability of cladoceran species to predation by the copepod Mesocyclops leuckarti: laboratory observations on the behavioural interactions between predator and prey. Freshwater Biol. 48, 476–84 (2003).

    • Article
    • Google Scholar
  • 77.

    Viitasalo, M., Kiørboe, T., Flinkman, J., Pedersen, L. W. & Visser, A. W. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities. Mar. Ecol. Prog. Ser. 175, 129–42 (1998).

  • 78.

    Murphy, M. E. & King, J. R. Dietary discrimination by molting white-crowned sparrows given diets differing only in sulfur amino acid concentration. Physiol. Zool. 60, 279–89 (1987).

  • 79.

    Pierce, B. J., McWilliams, S. R., Place, A. R. & Huguenin, M. A. Diet preferences for specific fatty acids and their effect on composition of fat reserves in migratory Red-eyed Vireos (Vireo olivaceous). Comp. Biochem. Physiol. A 138, 503–14 (2004).

  • 80.

    Senar, J. C. et al. Specific appetite for carotenoids in a colorful bird. PLoS One 5, e10716 (2010).

  • 81.

    Machovsky-Capuska, G. E. et al. Sex-specific macronutrient foraging strategies in a highly successful marine predator: the Australasian gannet. Mar. Biol. 163, 75 (2016).

  • 82.

    Korpimäki, E. Diet variation, hunting habitat and reproductive output of the kestrel Falco tinnunculus in the light of the optimal diet theory. Ornis Fenn. 63, 84–90 (1986).

    • Google Scholar
  • 83.

    Machovsky-Capuska, G. E., Senior, A. M., Simpson, S. J. & Raubenheimer, D. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355–65 (2016).


  • Source: Ecology - nature.com

    Technique could enable cheaper fertilizer production

    Millennial-scale hydroclimate control of tropical soil carbon storage