More stories

  • in

    Exploring frontiers of mechanical engineering

    From cutting-edge robotics, design, and bioengineering to sustainable energy solutions, ocean engineering, nanotechnology, and innovative materials science, MechE students and their advisors are doing incredibly innovative work. The graduate students highlighted here represent a snapshot of the great work in progress this spring across the Department of Mechanical Engineering, and demonstrate the ways the future of this field is as limitless as the imaginations of its practitioners.Democratizing design through AILyle RegenwetterHometown: Champaign, IllinoisAdvisor: Assistant Professor Faez AhmedInterests: Food, climbing, skiing, soccer, tennis, cookingLyle Regenwetter finds excitement in the prospect of generative AI to “democratize” design and enable inexperienced designers to tackle complex design problems. His research explores new training methods through which generative AI models can be taught to implicitly obey design constraints and synthesize higher-performing designs. Knowing that prospective designers often have an intimate knowledge of the needs of users, but may otherwise lack the technical training to create solutions, Regenwetter also develops human-AI collaborative tools that allow AI models to interact and support designers in popular CAD software and real design problems. Solving a whale of a problem Loïcka BailleHometown: L’Escale, FranceAdvisor: Daniel ZitterbartInterests: Being outdoors — scuba diving, spelunking, or climbing. Sailing on the Charles River, martial arts classes, and playing volleyballLoïcka Baille’s research focuses on developing remote sensing technologies to study and protect marine life. Her main project revolves around improving onboard whale detection technology to prevent vessel strikes, with a special focus on protecting North Atlantic right whales. Baille is also involved in an ongoing study of Emperor penguins. Her team visits Antarctica annually to tag penguins and gather data to enhance their understanding of penguin population dynamics and draw conclusions regarding the overall health of the ecosystem.Water, water anywhereCarlos Díaz-MarínHometown: San José, Costa RicaAdvisor: Professor Gang Chen | Former Advisor: Professor Evelyn WangInterests: New England hiking, biking, and dancingCarlos Díaz-Marín designs and synthesizes inexpensive salt-polymer materials that can capture large amounts of humidity from the air. He aims to change the way we generate potable water from the air, even in arid conditions. In addition to water generation, these salt-polymer materials can also be used as thermal batteries, capable of storing and reusing heat. Beyond the scientific applications, Díaz-Marín is excited to continue doing research that can have big social impacts, and that finds and explains new physical phenomena. As a LatinX person, Díaz-Marín is also driven to help increase diversity in STEM.Scalable fabrication of nano-architected materialsSomayajulu DhulipalaHometown: Hyderabad, IndiaAdvisor: Assistant Professor Carlos PortelaInterests: Space exploration, taekwondo, meditation.Somayajulu Dhulipala works on developing lightweight materials with tunable mechanical properties. He is currently working on methods for the scalable fabrication of nano-architected materials and predicting their mechanical properties. The ability to fine-tune the mechanical properties of specific materials brings versatility and adaptability, making these materials suitable for a wide range of applications across multiple industries. While the research applications are quite diverse, Dhulipala is passionate about making space habitable for humanity, a crucial step toward becoming a spacefaring civilization.Ingestible health-care devicesJimmy McRaeHometown: Woburn, MassachusettsAdvisor: Associate Professor Giovani TraversoInterests: Anything basketball-related: playing, watching, going to games, organizing hometown tournaments Jimmy McRae aims to drastically improve diagnostic and therapeutic capabilities through noninvasive health-care technologies. His research focuses on leveraging materials, mechanics, embedded systems, and microfabrication to develop novel ingestible electronic and mechatronic devices. This ranges from ingestible electroceutical capsules that modulate hunger-regulating hormones to devices capable of continuous ultralong monitoring and remotely triggerable actuations from within the stomach. The principles that guide McRae’s work to develop devices that function in extreme environments can be applied far beyond the gastrointestinal tract, with applications for outer space, the ocean, and more.Freestyle BMX meets machine learningEva NatesHometown: Narberth, Pennsylvania Advisor: Professor Peko HosoiInterests: Rowing, running, biking, hiking, bakingEva Nates is working with the Australian Cycling Team to create a tool to classify Bicycle Motocross Freestyle (BMX FS) tricks. She uses a singular value decomposition method to conduct a principal component analysis of the time-dependent point-tracking data of an athlete and their bike during a run to classify each trick. The 2024 Olympic team hopes to incorporate this tool in their training workflow, and Nates worked alongside the team at their facilities on the Gold Coast of Australia during MIT’s Independent Activities Period in January.Augmenting Astronauts with Wearable Limbs Erik BallesterosHometown: Spring, TexasAdvisor: Professor Harry AsadaInterests: Cosplay, Star Wars, Lego bricksErik Ballesteros’s research seeks to support astronauts who are conducting planetary extravehicular activities through the use of supernumerary robotic limbs (SuperLimbs). His work is tailored toward design and control manifestation to assist astronauts with post-fall recovery, human-leader/robot-follower quadruped locomotion, and coordinated manipulation between the SuperLimbs and the astronaut to perform tasks like excavation and sample handling.This article appeared in the Spring 2024 edition of the Department of Mechanical Engineering’s magazine, MechE Connects.  More

  • in

    Bringing an investigator’s eye to complex social challenges

    Anna Russo likes puzzles. They require patience, organization, and a view of the big picture. She brings an investigator’s eye to big institutional and societal challenges whose solutions can have wide-ranging, long-term impacts.

    Russo’s path to MIT began with questions. She didn’t have the whole picture yet. “I had no idea what I wanted to do with my life,” says Russo, who is completing her PhD in economics in 2024. “I was good at math and science and thought I wanted to be a doctor.”

    While completing her undergraduate studies at Yale University, where she double majored in economics and applied math, Russo discovered a passion for problem-solving, where she could apply an analytical lens to answering the kinds of thorny questions whose solutions could improve policy. “Empirical research is fun and exciting,” Russo says.

    After Yale, Russo considered what to do next. She worked as a full-time research assistant with MIT economist Amy Finkelstein. Russo’s work with Finkelstein led her toward identifying, studying, and developing answers to complex questions. 

    “My research combines ideas from two fields of economic inquiry — public finance and industrial organization — and applies them to questions about the design of environmental and health care policy,” Russo says. “I like the way economists think analytically about social problems.”

    Narrowing her focus

    Studying with and being advised by renowned economists as both an undergraduate and a doctoral student helped Russo narrow her research focus, fitting more pieces into the puzzle. “What drew me to MIT was its investment in its graduate students,” Russo says.

    Economic research meant digging into policy questions, identifying market failures, and proposing solutions. Doctoral study allowed Russo to assemble data to rigorously follow each line of inquiry.

    “Doctoral study means you get to write about something you’re really interested in,” Russo notes. This led her to study policy responses to climate change adaptation and mitigation. 

    “In my first year, I worked on a project exploring the notion that floodplain regulation design doesn’t do a good job of incentivizing the right level of development in flood-prone areas,” she says. “How can economists help governments convince people to act in society’s best interest?”

    It’s important to understand institutional details, Russo adds, which can help investigators identify and implement solutions. 

    “Feedback, advice, and support from faculty were crucial as I grew as a researcher at MIT,” she says. Beyond her two main MIT advisors, Finkelstein and economist Nikhil Agarwal — educators she describes as “phenomenal, dedicated advisors and mentors” — Russo interacted regularly with faculty across the department. 

    Russo later discovered another challenge she hoped to solve: inefficiencies in conservation and carbon offset programs. She set her sights on the United States Department of Agriculture’s Conservation Reserve Program because she believes it and programs like it can be improved. 

    The CRP is a land conservation plan administered by USDA’s Farm Service Agency. In exchange for a yearly rental payment, farmers enrolled in the program agree to remove environmentally sensitive land from agricultural production and plant species that will improve environmental health and quality.

    “I think we can tweak the program’s design to improve cost-effectiveness,” Russo says. “There’s a trove of data available.” The data include information like auction participants’ bids in response to well-specified auction rules, which Russo links to satellite data measuring land use outcomes. Understanding how landowners bid in CRP auctions can help identify and improve the program’s function. 

    “We may be able to improve targeting and achieve more cost-effective conservation by adjusting the CRP’s scoring system,” Russo argues. Opportunities may exist to scale the incremental changes under study for other conservation programs and carbon offset markets more generally.  

    Economics, Russo believes, can help us conceptualize problems and recommend effective alternative solutions.

    The next puzzle

    Russo wants to find her next challenge while continuing her research. She plans to continue her work as a junior fellow at the Harvard Society of Fellows, after which she’ll join the Harvard Department of Economics as an assistant professor. Russo also plans to continue helping other budding economists since she believes in the importance of supporting other students.   

    Russo’s advisors are some of her biggest supporters. 

    Finklestein emphasizes Russo’s curiosity, enthusiasm, and energy as key drivers in her success. “Her genuine curiosity and interest in getting to the bottom of a problem with the data — with an econometric analysis, with a modeling issue — is the best antidote for [the stress that can be associated with research],” Finklestein says. “It’s a key ingredient in her ability to produce important and credible work.”

    “She’s also incredibly generous with her time and advice,” Finklestein continues, “whether it’s helping an undergraduate research assistant with her senior thesis, or helping an advisor such as myself navigate a data access process she’s previously been through.”

    “Instead of an advisor-advisee relationship, working with her on a thesis felt more like a collaboration between equals,” Agarwal adds. “[She] has the maturity and smarts to produce pathbreaking research.

    “Doctoral study is an opportunity for students to find their paths collaboratively,” Russo says. “If I can help someone else solve a small piece of their puzzle, that’s a huge positive. Research is a series of many, many small steps forward.” 

    Identifying important causes for further investigation and study will always be important to Russo. “I also want to dig into some other market that’s not working well and figure out how to make it better,” she says. “Right now I’m really excited about understanding California wildfire mitigation.” 

    Puzzles are made to be solved, after all. More

  • in

    A delicate dance

    In early 2022, economist Catherine Wolfram was at her desk in the U.S. Treasury building. She could see the east wing of the White House, just steps away.

    Russia had just invaded Ukraine, and Wolfram was thinking about Russia, oil, and sanctions. She and her colleagues had been tasked with figuring out how to restrict the revenues that Russia was using to fuel its brutal war while keeping Russian oil available and affordable to the countries that depended on it.

    Now the William F. Pounds Professor of Energy Economics at MIT, Wolfram was on leave from academia to serve as deputy assistant secretary for climate and energy economics.

    Working for Treasury Secretary Janet L. Yellen, Wolfram and her colleagues developed dozens of models and forecasts and projections. It struck her, she said later, that “huge decisions [affecting the global economy] would be made on the basis of spreadsheets that I was helping create.” Wolfram composed a memo to the Biden administration and hoped her projections would pan out the way she believed they would.

    Tackling conundrums that weigh competing, sometimes contradictory, interests has defined much of Wolfram’s career.

    Wolfram specializes in the economics of energy markets. She looks at ways to decarbonize global energy systems while recognizing that energy drives economic development, especially in the developing world.

    “The way we’re currently making energy is contributing to climate change. There’s a delicate dance we have to do to make sure that we treat this important industry carefully, but also transform it rapidly to a cleaner, decarbonized system,” she says.

    Economists as influencers

    While Wolfram was growing up in a suburb of St. Paul, Minnesota, her father was a law professor and her mother taught English as a second language. Her mother helped spawn Wolfram’s interest in other cultures and her love of travel, but it was an experience closer to home that sparked her awareness of the effect of human activities on the state of the planet.

    Minnesota’s nickname is “Land of 10,000 Lakes.” Wolfram remembers swimming in a nearby lake sometimes covered by a thick sludge of algae. “Thinking back on it, it must’ve had to do with fertilizer runoff,” she says. “That was probably the first thing that made me think about the environment and policy.”

    In high school, Wolfram liked “the fact that you could use math to understand the world. I also was interested in the types of questions about human behavior that economists were thinking about.

    “I definitely think economics is good at sussing out how different actors are likely to react to a particular policy and then designing policies with that in mind.”

    After receiving a bachelor’s degree in economics from Harvard University in 1989, Wolfram worked with a Massachusetts agency that governed rate hikes for utilities. Seeing its reliance on research, she says, illuminated the role academics could play in policy setting. It made her think she could make a difference from within academia.

    While pursuing a PhD in economics from MIT, Wolfram counted Paul L. Joskow, the Elizabeth and James Killian Professor of Economics and former director of the MIT Center for Energy and Environmental Policy Research, and Nancy L. Rose, the Charles P. Kindleberger Professor of Applied Economics, among her mentors and influencers.

    After spending 1996 to 2000 as an assistant professor of economics at Harvard, she joined the faculty at the Haas School of Business at the University of California at Berkeley.

    At Berkeley, it struck Wolfram that while she labored over ways to marginally boost the energy efficiency of U.S. power plants, the economies of China and India were growing rapidly, with a corresponding growth in energy use and carbon dioxide emissions. “It hit home that to understand the climate issue, I needed to understand energy demand in the developing world,” she says.

    The problem was that the developing world didn’t always offer up the kind of neatly packaged, comprehensive data economists relied on. She wondered if, by relying on readily accessible data, the field was looking under the lamppost — while losing sight of what the rest of the street looked like.

    To make up for a lack of available data on the state of electrification in sub-Saharan Africa, for instance, Wolfram developed and administered surveys to individual, remote rural households using on-the-ground field teams.

    Her results suggested that in the world’s poorest countries, the challenges involved in expanding the grid in rural areas should be weighed against potentially greater economic and social returns on investments in the transportation, education, or health sectors.

    Taking the lead

    Within months of Wolfram’s memo to the Biden administration, leaders of the intergovernmental political forum Group of Seven (G7) agreed to the price cap. Tankers from coalition countries would only transport Russian crude sold at or below the price cap level, initially set at $60 per barrel.

    “A price cap was not something that had ever been done before,” Wolfram says. “In some ways, we were making it up out of whole cloth. It was exciting to see that I wrote one of the original memos about it, and then literally three-and-a-half months later, the G7 was making an announcement.

    “As economists and as policymakers, we must set the parameters and get the incentives right. The price cap was basically asking developing countries to buy cheap oil, which was consistent with their incentives.”

    In May 2023, the U.S. Department of the Treasury reported that despite widespread initial skepticism about the price cap, market participants and geopolitical analysts believe it is accomplishing its goals of restricting Russia’s oil revenues while maintaining the supply of Russian oil and keeping energy costs in check for consumers and businesses around the world.

    Wolfram held the U.S. Treasury post from March 2021 to October 2022 while on leave from UC Berkeley. In July 2023, she joined MIT Sloan School of Management partly to be geographically closer to the policymakers of the nation’s capital. She’s also excited about the work taking place elsewhere at the Institute to stay ahead of climate change.

    Her time in D.C. was eye-opening, particularly in terms of the leadership power of the United States. She worries that the United States is falling prey to “lost opportunities” in terms of addressing climate change. “We were showing real leadership on the price cap, and if we could only do that on climate, I think we could make faster inroads on a global agreement,” she says.

    Now focused on structuring global agreements in energy policy among developed and developing countries, she’s considering how the United States can take advantage of its position as a world leader. “We need to be thinking about how what we do in the U.S. affects the rest of the world from a climate perspective. We can’t go it alone.

    “The U.S. needs to be more aligned with the European Union, Canada, and Japan to try to find areas where we’re taking a common approach to addressing climate change,” she says. She will touch on some of those areas in the class she will teach in spring 2024 titled “Climate and Energy in the Global Economy,” offered through MIT Sloan.

    Looking ahead, she says, “I’m a techno optimist. I believe in human innovation. I’m optimistic that we’ll find ways to live with climate change and, hopefully, ways to minimize it.”

    This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Optimizing nuclear fuels for next-generation reactors

    In 2010, when Ericmoore Jossou was attending college in northern Nigeria, the lights would flicker in and out all day, sometimes lasting only for a couple of hours at a time. The frustrating experience reaffirmed Jossou’s realization that the country’s sporadic energy supply was a problem. It was the beginning of his path toward nuclear engineering.

    Because of the energy crisis, “I told myself I was going to find myself in a career that allows me to develop energy technologies that can easily be scaled to meet the energy needs of the world, including my own country,” says Jossou, an assistant professor in a shared position between the departments of Nuclear Science and Engineering (NSE), where is the John Clark Hardwick (1986) Professor, and of Electrical Engineering and Computer Science.

    Today, Jossou uses computer simulations for rational materials design, AI-aided purposeful development of cladding materials and fuels for next-generation nuclear reactors. As one of the shared faculty hires between the MIT Schwarzman College of Computing and departments across MIT, his appointment recognizes his commitment to computing for climate and the environment.

    A well-rounded education in Nigeria

    Growing up in Lagos, Jossou knew education was about more than just bookish knowledge, so he was eager to travel and experience other cultures. He would start in his own backyard by traveling across the Niger river and enrolling in Ahmadu Bello University in northern Nigeria. Moving from the south was a cultural education with a different language and different foods. It was here that Jossou got to try and love tuwo shinkafa, a northern Nigerian rice-based specialty, for the first time.

    After his undergraduate studies, armed with a bachelor’s degree in chemistry, Jossou was among a small cohort selected for a specialty master’s training program funded by the World Bank Institute and African Development Bank. The program at the African University of Science and Technology in Abuja, Nigeria, is a pan-African venture dedicated to nurturing homegrown science talent on the continent. Visiting professors from around the world taught intensive three-week courses, an experience which felt like drinking from a fire hose. The program widened Jossou’s views and he set his sights on a doctoral program with an emphasis on clean energy systems.

    A pivot to nuclear science

    While in Nigeria, Jossou learned of Professor Jerzy Szpunar at the University of Saskatchewan in Canada, who was looking for a student researcher to explore fuels and alloys for nuclear reactors. Before then, Jossou was lukewarm on nuclear energy, but the research sounded fascinating. The Fukushima, Japan, incident was recently in the rearview mirror and Jossou remembered his early determination to address his own country’s energy crisis. He was sold on the idea and graduated with a doctoral degree from the University of Saskatchewan on an international dean’s scholarship.

    Jossou’s postdoctoral work registered a brief stint at Brookhaven National Laboratory as staff scientist. He leaped at the opportunity to join MIT NSE as a way of realizing his research interest and teaching future engineers. “I would really like to conduct cutting-edge research in nuclear materials design and to pass on my knowledge to the next generation of scientists and engineers and there’s no better place to do that than at MIT,” Jossou says.

    Merging material science and computational modeling

    Jossou’s doctoral work on designing nuclear fuels for next-generation reactors forms the basis of research his lab is pursuing at MIT NSE. Nuclear reactors that were built in the 1950s and ’60s are getting a makeover in terms of improved accident tolerance. Reactors are not confined to one kind, either: We have micro reactors and are now considering ones using metallic nuclear fuels, Jossou points out. The diversity of options is enough to keep researchers busy testing materials fit for cladding, the lining that prevents corrosion of the fuel and release of radioactive fission products into the surrounding reactor coolant.

    The team is also investigating fuels that improve burn-up efficiencies, so they can last longer in the reactor. An intriguing approach has been to immobilize the gas bubbles that arise from the fission process, so they don’t grow and degrade the fuel.

    Since joining MIT in July 2023, Jossou is setting up a lab that optimizes the composition of accident-tolerant nuclear fuels. He is leaning on his materials science background and looping computer simulations and artificial intelligence in the mix.

    Computer simulations allow the researchers to narrow down the potential field of candidates, optimized for specific parameters, so they can synthesize only the most promising candidates in the lab. And AI’s predictive capabilities guide researchers on which materials composition to consider next. “We no longer depend on serendipity to choose our materials, our lab is based on rational materials design,” Jossou says, “we can rapidly design advanced nuclear fuels.”

    Advancing energy causes in Africa

    Now that he is at MIT, Jossou admits the view from the outside is different. He now harbors a different perspective on what Africa needs to address some of its challenges. “The starting point to solve our problems is not money; it needs to start with ideas,” he says, “we need to find highly skilled people who can actually solve problems.” That job involves adding economic value to the rich arrays of raw materials that the continent is blessed with. It frustrates Jossou that Niger, a country rich in raw material for uranium, has no nuclear reactors of its own. It ships most of its ore to France. “The path forward is to find a way to refine these materials in Africa and to be able to power the industries on that continent as well,” Jossou says.

    Jossou is determined to do his part to eliminate these roadblocks.

    Anchored in mentorship, Jossou’s solution aims to train talent from Africa in his own lab. He has applied for a MIT Global Experiences MISTI grant to facilitate travel and research studies for Ghanaian scientists. “The goal is to conduct research in our facility and perhaps add value to indigenous materials,” Jossou says.

    Adding value has been a consistent theme of Jossou’s career. He remembers wanting to become a neurosurgeon after reading “Gifted Hands,” moved by the personal story of the author, Ben Carson. As Jossou grew older, however, he realized that becoming a doctor wasn’t necessarily what he wanted. Instead, he was looking to add value. “What I wanted was really to take on a career that allows me to solve a societal problem.” The societal problem of clean and safe energy for all is precisely what Jossou is working on today. More

  • in

    Letting the Earth answer back: Designing better planetary conversations

    For Chen Chu MArch ’21, the invitation to join the 2023-24 cohort of Morningside Academy for Design Design Fellows has been an unparalleled opportunity to investigate the potential of design as an alternative method of problem-solving.

    After earning a master’s degree in architecture at MIT and gaining professional experience as a researcher at an environmental nongovernmental organization, Chu decided to pursue a PhD in the Department of Urban Studies and Planning. “I discovered that I needed to engage in a deeper way with the most difficult ethical challenges of our time, especially those arising from the fact of climate change,” he explains. “For me, MIT has always represented this wonderful place where people are inherently intellectually curious — it’s a very rewarding community to be part of.”

    Chu’s PhD research, guided by his doctoral advisor Delia Wendel, assistant professor of urban studies and international development, focuses on how traditional practices of floodplain agriculture can inform local and global strategies for sustainable food production and distribution in response to climate change. 

    Typically located alongside a river or stream, floodplains arise from seasonal flooding patterns that distribute nutrient-rich silt and create connectivity between species. This results in exceptionally high levels of biodiversity and microbial richness, generating the ideal conditions for agriculture. It’s no accident that the first human civilizations were founded on floodplains, including Mesopotamia (named for its location poised between two rivers, the Euphrates and Tigris), the Indus River Civilization, and the cultures of Ancient Egypt based around the Nile. Riverine transportation networks and predictable flooding rhythms provide a framework for trade and cultivation; nonetheless, floodplain communities must learn to live with risk, subject to the sudden disruptions of high waters, drought, and ecological disequilibrium. 

    For Chu, the “unstable and ungovernable” status of floodplains makes them fertile ground for thinking about. “I’m drawn to these so-called ‘wet landscapes’ — edge conditions that act as transitional spaces between land and water, between humans and nature, between city and river,” he reflects. “The development of extensively irrigated agricultural sites is typically a collective effort, which raises intriguing questions about how communities establish social organizations that simultaneously negotiate top-down state control and adapt to the uncertainty of nature.”

    Chu is in the process of honing the focus of his dissertation and refining his data collection methods, which will include archival research and fieldwork, as well as interviews with floodplain inhabitants to gain an understanding of sociopolitical nuances. Meanwhile, his role as a design fellow gives him the space to address the big questions that fire his imagination. How can we live well on shared land? How can we take responsibility for the lives of future generations? What types of political structures are required to get everyone on board? 

    These are just a few of the questions that Chu recently put to his cohort in a presentation. During the weekly seminars for the fellowship, he has the chance to converse with peers and mentors of multiple disciplines — from researchers rethinking the pedagogy of design to entrepreneurs applying design thinking to new business models to architects and engineers developing new habitats to heal our relationship with the natural world. 

    “I’ll admit — I’m wary of the human instinct to problem-solve,” says Chu. “When it comes to the material conditions and lived experience of people and planet, there’s a limit to our economic and political reasoning, and to conventional architectural practice. That said, I do believe that the mindset of a designer can open up new ways of thinking. At its core, design is an interdisciplinary practice based on the understanding that a problem can’t be solved from a narrow, singular perspective.” 

    The stimulating structure of a MAD Fellowship — free from immediate obligations to publish or produce, fellows learn from one another and engage with visiting speakers via regular seminars and events — has prompted Chu to consider what truly makes for generative conversation in the contexts of academia and the private and public sectors. In his opinion, discussions around climate change often fail to take account of one important voice; an absence he describes as “that silent being, the Earth.”

    “You can’t ask the Earth, ‘What does justice mean to you?’ Nature will not respond,” he reflects. To bridge the gap, Chu believes it’s important to combine the study of specific political and social conditions with broader existential questions raised by the environmental humanities. His own research draws upon the perspectives of thinkers including Dipesh Chakrabarty, Donna Haraway, Peter Singer,  Anna Tsing, and Michael Watts, among others. He cites James C. Scott’s lecture “In Praise of Floods” as one of his most important influences.

    In addition to his instinctive appreciation for theory, Chu’s outlook is grounded by an attention to innovation at the local level. He is currently establishing the parameters of his research, examining case studies of agricultural systems and flood mitigation strategies that have been sustained for centuries. 

    “One example is the polder system that is practiced in the Netherlands, China, Bangladesh, and many parts of the world: small, low-lying tracts of land submerged in water and surrounded by dykes and canals,” he explains. “You’ll find a different but comparable strategy in the colder regions of Japan. Crops are protected from the winter winds by constructing a spatial unit with the house at the center; trees behind the house serve as windbreakers and paddy fields for rice are located in front of the house, providing an integrated system of food and livelihood security.”

    Chu observes that there is a tendency for international policymakers to overlook local solutions in favor of grander visions and ambitious climate pledges — but he is equally keen not to romanticize vernacular practices. “Realistically, it’s always a two-way interaction. Unless you already have a workable local system in place, it’s difficult to implement a solution without top-down support. On the other hand, the large-scale technocratic dreams are empty if ignorant of local traditions and histories.” 

    By navigating between the global and the local, the theoretical and the practical, the visionary and the cautionary, Chu has hope in the possibility of gradually finding a way toward long-term solutions that adapt to specific conditions over time. It’s a model of ambition and criticality that Chu sees played out during dialogue at MAD and within his department; at root, he’s aware that the outcome of these conversations depends on the ethical context that shapes them.

    “I’ve been fortunate to have many mentors who have taught me the power of humility; a respect for the finitude, fragility,  and uncertainty of life,” he recalls. “It’s a mindset that’s barely apparent in today’s push for economic growth.” The flip-side of hubristic growth is an assumption that technological ingenuity will be enough to solve the climate crisis, but Chu’s optimism arises from a different source: “When I feel overwhelmed by the weight of the problems we’re facing, I just need to look around me,” he says. “Here on campus — at MAD, in my home department, and increasingly among the new generations of students — there’s a powerful ethos of political sensitivity, ethical compassion, and an attention to clear and critical judgment. That always gives me hope for the planet.” More

  • in

    Moving past the Iron Age

    MIT graduate student Sydney Rose Johnson has never seen the steel mills in central India. She’s never toured the American Midwest’s hulking steel plants or the mini mills dotting the Mississippi River. But in the past year, she’s become more familiar with steel production than she ever imagined.

    A fourth-year dual degree MBA and PhD candidate in chemical engineering and a graduate research assistant with the MIT Energy Initiative (MITEI) as well as a 2022-23 Shell Energy Fellow, Johnson looks at ways to reduce carbon dioxide (CO2) emissions generated by industrial processes in hard-to-abate industries. Those include steel.

    Almost every aspect of infrastructure and transportation — buildings, bridges, cars, trains, mass transit — contains steel. The manufacture of steel hasn’t changed much since the Iron Age, with some steel plants in the United States and India operating almost continually for more than a century, their massive blast furnaces re-lined periodically with carbon and graphite to keep them going.

    According to the World Economic Forum, steel demand is projected to increase 30 percent by 2050, spurred in part by population growth and economic development in China, India, Africa, and Southeast Asia.

    The steel industry is among the three biggest producers of CO2 worldwide. Every ton of steel produced in 2020 emitted, on average, 1.89 tons of CO2 into the atmosphere — around 8 percent of global CO2 emissions, according to the World Steel Association.

    A combination of technical strategies and financial investments, Johnson notes, will be needed to wrestle that 8 percent figure down to something more planet-friendly.

    Johnson’s thesis focuses on modeling and analyzing ways to decarbonize steel. Using data mined from academic and industry sources, she builds models to calculate emissions, costs, and energy consumption for plant-level production.

    “I optimize steel production pathways using emission goals, industry commitments, and cost,” she says. Based on the projected growth of India’s steel industry, she applies this approach to case studies that predict outcomes for some of the country’s thousand-plus factories, which together have a production capacity of 154 million metric tons of steel. For the United States, she looks at the effect of Inflation Reduction Act (IRA) credits. The 2022 IRA provides incentives that could accelerate the steel industry’s efforts to minimize its carbon emissions.

    Johnson compares emissions and costs across different production pathways, asking questions such as: “If we start today, what would a cost-optimal production scenario look like years from now? How would it change if we added in credits? What would have to happen to cut 2005 levels of emissions in half by 2030?”

    “My goal is to gain an understanding of how current and emerging decarbonization strategies will be integrated into the industry,” Johnson says.

    Grappling with industrial problems

    Growing up in Marietta, Georgia, outside Atlanta, the closest she ever came to a plant of any kind was through her father, a chemical engineer working in logistics and procuring steel for an aerospace company, and during high school, when she spent a semester working alongside chemical engineers tweaking the pH of an anti-foaming agent.

    At Kennesaw Mountain High School, a STEM magnet program in Cobb County, students devote an entire semester of their senior year to an internship and research project.

    Johnson chose to work at Kemira Chemicals, which develops chemical solutions for water-intensive industries with a focus on pulp and paper, water treatment, and energy systems.

    “My goal was to understand why a polymer product was falling out of suspension — essentially, why it was less stable,” she recalls. She learned how to formulate a lab-scale version of the product and conduct tests to measure its viscosity and acidity. Comparing the lab-scale and regular product results revealed that acidity was an important factor. “Through conversations with my mentor, I learned this was connected with the holding conditions, which led to the product being oxidized,” she says. With the anti-foaming agent’s problem identified, steps could be taken to fix it.

    “I learned how to apply problem-solving. I got to learn more about working in an industrial environment by connecting with the team in quality control as well as with R&D and chemical engineers at the plant site,” Johnson says. “This experience confirmed I wanted to pursue engineering in college.”

    As an undergraduate at Stanford University, she learned about the different fields — biotechnology, environmental science, electrochemistry, and energy, among others — open to chemical engineers. “It seemed like a very diverse field and application range,” she says. “I was just so intrigued by the different things I saw people doing and all these different sets of issues.”

    Turning up the heat

    At MIT, she turned her attention to how certain industries can offset their detrimental effects on climate.

    “I’m interested in the impact of technology on global communities, the environment, and policy. Energy applications affect every field. My goal as a chemical engineer is to have a broad perspective on problem-solving and to find solutions that benefit as many people, especially those under-resourced, as possible,” says Johnson, who has served on the MIT Chemical Engineering Graduate Student Advisory Board, the MIT Energy and Climate Club, and is involved with diversity and inclusion initiatives.

    The steel industry, Johnson acknowledges, is not what she first imagined when she saw herself working toward mitigating climate change.

    “But now, understanding the role the material has in infrastructure development, combined with its heavy use of coal, has illuminated how the sector, along with other hard-to-abate industries, is important in the climate change conversation,” Johnson says.

    Despite the advanced age of many steel mills, some are quite energy-efficient, she notes. Yet these operations, which produce heat upwards of 3,000 degrees Fahrenheit, are still emission-intensive.

    Steel is made from iron ore, a mixture of iron, oxygen, and other minerals found on virtually every continent, with Brazil and Australia alone exporting millions of metric tons per year. Commonly based on a process dating back to the 19th century, iron is extracted from the ore through smelting — heating the ore with blast furnaces until the metal becomes spongy and its chemical components begin to break down.

    A reducing agent is needed to release the oxygen trapped in the ore, transforming it from its raw form to pure iron. That’s where most emissions come from, Johnson notes.

    “We want to reduce emissions, and we want to make a cleaner and safer environment for everyone,” she says. “It’s not just the CO2 emissions. It’s also sometimes NOx and SOx [nitrogen oxides and sulfur oxides] and air pollution particulate matter at some of these production facilities that can affect people as well.”

    In 2020, the International Energy Agency released a roadmap exploring potential technologies and strategies that would make the iron and steel sector more compatible with the agency’s vision of increased sustainability. Emission reductions can be accomplished with more modern technology, the agency suggests, or by substituting the fuels producing the immense heat needed to process ore. Traditionally, the fuels used for iron reduction have been coal and natural gas. Alternative fuels include clean hydrogen, electricity, and biomass.

    Using the MITEI Sustainable Energy System Analysis Modeling Environment (SESAME), Johnson analyzes various decarbonization strategies. She considers options such as switching fuel for furnaces to hydrogen with a little bit of natural gas or adding carbon-capture devices. The models demonstrate how effective these tactics are likely to be. The answers aren’t always encouraging.

    “Upstream emissions can determine how effective the strategies are,” Johnson says. Charcoal derived from forestry biomass seemed to be a promising alternative fuel, but her models showed that processing the charcoal for use in the blast furnace limited its effectiveness in negating emissions.

    Despite the challenges, “there are definitely ways of moving forward,” Johnson says. “It’s been an intriguing journey in terms of understanding where the industry is at. There’s still a long way to go, but it’s doable.”

    Johnson is heartened by the steel industry’s efforts to recycle scrap into new steel products and incorporate more emission-friendly technologies and practices, some of which result in significantly lower CO2 emissions than conventional production.

    A major issue is that low-carbon steel can be more than 50 percent more costly than conventionally produced steel. “There are costs associated with making the transition, but in the context of the environmental implications, I think it’s well worth it to adopt these technologies,” she says.

    After graduation, Johnson plans to continue to work in the energy field. “I definitely want to use a combination of engineering knowledge and business knowledge to work toward mitigating climate change, potentially in the startup space with clean technology or even in a policy context,” she says. “I’m interested in connecting the private and public sectors to implement measures for improving our environment and benefiting as many people as possible.” More

  • in

    Anushree Chaudhuri: Involving local communities in renewable energy planning

    Anushree Chaudhuri has a history of making bold decisions. In fifth grade, she biked across her home state of California with little prior experience. In her first year at MIT, she advocated for student recommendations in the preparation of the Institute’s Climate Action Plan for the Decade. And recently, she led a field research project throughout California to document the perspectives of rural and Indigenous populations affected by climate change and clean energy projects.

    “It doesn’t matter who you are or how young you are, you can get involved with something and inspire others to do so,” the senior says.

    Initially a materials science and engineering major, Chaudhuri was quickly drawn to environmental policy issues and later decided to double-major in urban studies and planning and in economics. Chaudhuri will receive her bachelor’s degrees this month, followed by a master’s degree in city planning in the spring.

    The importance of community engagement in policymaking has become one of Chaudhuri’s core interests. A 2024 Marshall Scholar, she is headed to the U.K. next year to pursue a PhD related to environment and development. She hopes to build on her work in California and continue to bring attention to impacts that energy transitions can have on local communities, which tend to be rural and low-income. Addressing resistance to these projects can be challenging, but “ignoring it leaves these communities in the dust and widens the urban-rural divide,” she says.

    Silliness and sustainability 

    Chaudhuri classifies her many activities into two groups: those that help her unwind, like her living community, Conner Two, and those that require intensive deliberation, like her sustainability-related organizing.

    Conner Two, in the Burton-Conner residence hall, is where Chaudhuri feels most at home on campus. She describes the group’s activities as “silly” and emphasizes their love of jokes, even in the floor’s nickname, “the British Floor,” which is intentionally absurd, as the residents are rarely British.

    Chaudhuri’s first involvement with sustainability issues on campus was during the preparation of MIT’s Fast Forward Climate Action Plan in the 2020-2021 academic year. As a co-lead of one of several student working groups, she helped organize key discussions between the administration, climate experts, and student government to push for six main goals in the plan, including an ethical investing framework. Being involved with a significant student movement so early on in her undergraduate career was a learning opportunity for Chaudhuri and impressed upon her that young people can play critical roles in making far-reaching structural changes.

    The experience also made her realize how many organizations on campus shared similar goals even if their perspectives varied, and she saw the potential for more synergy among them.

    Chaudhuri went on to co-lead the Student Sustainability Coalition to help build community across the sustainability-related organizations on campus and create a centralized system that would make it easier for outsiders and group members to access information and work together. Through the coalition, students have collaborated on efforts including campus events, and off-campus matters such as the Cambridge Green New Deal hearings.

    Another benefit to such a network: It creates a support system that recognizes even small-scale victories. “Community is so important to avoid burnout when you’re working on something that can be very frustrating and an uphill battle like negotiating with leadership or seeking policy changes,” Chaudhuri says.

    Fieldwork

    For the past year, Chaudhuri has been doing independent research in California with the support of several advisory organizations to host conversations with groups affected by renewable energy projects, which, as she has documented, are often concentrated in rural, low-income, and Indigenous communities. The introduction of renewable energy facilities, such as wind and solar farms, can perpetuate existing inequities if they ignore serious community concerns, Chaudhuri says.

    As state or federal policymakers and private developers carry out the permitting process for these projects, “they can repeat histories of extraction, sometimes infringing on the rights of a local or Tribal government to decide what happens with their land,” she says.

    In her site visits, she is documenting community opposition to controversial solar and wind proposals and collecting oral histories. Doing fieldwork for the first time as an outsider was difficult for Chaudhuri, as she dealt with distrust, unpredictability, and needing to be completely flexible for her sources. “A lot of it was just being willing to drop everything and go and be a little bit adventurous and take some risks,” she says.

    Role models and reading

    Chaudhuri is quick to credit many of the role models and other formative influences in her life.

    After working on the Climate Action Plan, Chaudhuri attended a public narrative workshop at Harvard University led by Marshall Ganz, a grassroots community organizer who worked with Cesar Chavez and on the 2008 Obama presidential campaign. “That was a big inspiration and kind of shaped how I viewed leadership in, for example, campus advocacy, but also in other projects and internships.”

    Reading has also influenced Chaudhuri’s perspective on community organizing, “After the Climate Action Plan campaign, I realized that a lot of what made the campaign successful or not could track well with organizing and social change theories, and histories of social movements. So, that was a good experience for me, being able to critically reflect on it and tie it into these other things I was learning about.”

    Since beginning her studies at MIT, Chaudhuri has become especially interested in social theory and political philosophy, starting with ancient forms of Western and Eastern ethic, and up to 20th and 21st century philosophers who inspire her. Chaudhuri cites Amartya Sen and Olúfẹ́mi Táíwò as particularly influential. “I think [they’ve] provided a really compelling framework to guide a lot of my own values,” she says.

    Another role model is Brenda Mallory, the current chair of the U.S. Council on Environmental Quality, who Chaudhuri was grateful to meet at the United Nations COP27 Climate Conference. As an intern at the U.S. Department of Energy, Chaudhuri worked within a team on implementing the federal administration’s Justice40 initiative, which commits 40 percent of federal climate investments to disadvantaged communities. This initiative was largely directed by Mallory, and Chaudhuri admires how Mallory was able to make an impact at different levels of government through her leadership. Chaudhuri hopes to follow in Mallory’s footsteps someday, as a public official committed to just policies and programs.

     “Good leaders are those who empower good leadership in others,” Chaudhuri says. More

  • in

    Soaring high, in the Army and the lab

    Starting off as a junior helicopter pilot, Lt. Col. Jill Rahon deployed to Afghanistan three times. During the last one, she was an air mission commander, the  pilot who is designated to interface with the ground troops throughout the mission.

    Today, Rahon is a fourth-year doctoral student studying applied physics at the Department of Nuclear Science and Engineering (NSE). Under the supervision of Areg Danagoulian, she is working on engineering solutions for enforcement of nuclear nonproliferation treaties. Rahon and her husband have 2-year-old twins: “They have the same warm relationship with my advisor that I had with my dad’s (PhD) advisor,” she says.

    Jill Rahon: Engineering solutions for enforcement of nuclear nonproliferation treaties

    A path to the armed forces

    The daughter of a health physicist father and a food chemist mother, Rahon grew up in the Hudson Valley, very close to New York City. Nine-eleven was a life-altering event: “Many of my friends’ fathers and uncles were policemen and firefighters [who] died responding to the attacks,” Rahon says. A hurt and angry teenager, Rahon was determined to do her part to help: She joined the Army and decided to pursue science, becoming part of the first class to enter West Point after 9/11.

    Rahon started by studying strategic history, a field that covers treaties and geopolitical relationships. It would prove useful later. Inspired by her father, who works in the nuclear field, Rahon added on a nuclear science and engineering track.

    After graduating from West Point, Rahon wanted to join active combat and chose aviation. At flight school in Fort Novosel, Alabama, she discovered that she loved flying. It was there that Rahon learned to fly the legendary Chinook helicopter. In short order, Rahon was assigned to the 101st Airborne Division and deployed to Afghanistan quickly thereafter.

    As expected, flying in Afghanistan, especially on night missions, was adrenaline-charged. “You’re thinking on the fly, you’re talking on five different radios, you’re making decisions for all the helicopters that are part of the mission,” Rahon remembers. Very often Rahon and her cohorts did not have the luxury of time. “We would get information that would need to be acted on quickly,” she says. During the planning meetings, she would be delighted to see a classmate from West Point function as the ground forces commander. “It would be surprising to see somebody you knew from a different setting halfway around the world, working toward common goals,” Rahon says.

    Also awesome: helping launch the first training program for female pilots to be recruited in the Afghan National Air Force. “I got to meet [and mentor] these strong young women who maybe didn’t have the same encouragement that I had growing up and they were out there hanging tough,” Rahon says.

    Exploring physics and nuclear engineering

    After serving in the combat forces, Rahon decided she wanted to teach physics at West Point. She applied to become a part of the Functional Area (FA52) as a nuclear and countering weapons of mass destruction officer.

    FA52 officers provide nuclear technical advice to maneuver commanders about nuclear weapons, effects, and operating in a nuclear environment or battlefield. Rahon’s specialty is radiation detection and operations in a nuclear environment, which poses unique threats and challenges to forces.

    Knowing she wanted to teach at West Point, she “brushed up extensively on math and physics” and applied to MIT NSE to pursue a master’s degree. “My fellow students were such an inspiration. They might not have had the same life experiences that I had but were still so mature and driven and knowledgeable not only about nuclear engineering but how that fits in the energy sector and in politics,” Rahon says.

    Resonance analysis to verify treaties

    Rahon returned to NSE to pursue her doctorate, where she does a “lot of detection and treaty verification work.”

    When looking at nuclear fuels to verify safeguards for treaties, experts search for the presence and quantities of heavy elements such as uranium, plutonium, thorium, and any of their decay products. To do so nondestructively is of high importance so they don’t destroy a piece of the material or fuel to identify it.

    Rahon’s research is built on resonance analysis, the fact that most midrange to heavy isotopes have unique resonance signatures that are accessed by neutrons of epithermal energy, which is relatively low on the scale of possible neutron energies. This means they travel slowly — crossing a distance of 2 meters in tens of microseconds, permitting their detection time to be used to calculate their energy.

    Studying how neutrons of a particular energy interact with a sample to identify worrisome nuclear materials is much like studying fingerprints to solve crimes. Isotopes that have a spike in likelihood of interaction occurring over a small neutron energy are said to have resonances, and these resonance patterns are isotopically unique. Experts can use this technique to nondestructively assess an item, identifying the constituent isotopes and their concentrations.

    Resonance analysis can be used to verify that the fuels are what the nuclear plant owner says they are. “There are a lot of safeguards activities and verification protocols that are managed by the International Atomic Energy Agency (IAEA) to ensure that a state is not misusing nuclear power for ulterior motives,” Rahon points out. And her method helps.

    “Our technique that leverages resonance analysis is nothing new,” Rahon says, “It’s been applied practically since the ’70s at very large beam facilities, hundreds of meters long with a very large accelerator that pulses neutrons, and then you’re able to correlate a neutron time of flight with a resonance profile. What we’ve done that is novel is we’ve shrunk it down to a 3-meter system with a portable neutron residence generator and a 2-meter beam path,” she says.

    Mobility confers many significant advantages: “This is something that could be conceivably put on the back of a truck and moved to a fuel facility, then driven to the next one for inspections or put at a treaty verification site. It could be taken out to a silo field where they are dismantling nuclear weapons,” Rahon says. However, the miniaturization does come with significant challenges, such as the neutron generator’s impacts on the signal to noise ratio.

    Rahon is delighted her research can ensure that a necessary fuel source will not be misused. “We need nuclear power. We need low-carbon solutions for energy and we need safe ones. We need to ensure that this powerful technology is not being misused. And that’s why these engineering solutions are needed for these safeguards,” she says.

    Rahon sees parallels between her time in active duty and her doctoral research. Teamwork and communication are key in both, she says. Her dad is her role model and Rahon is a firm believer in mentorship, something she nurtured both in the armed forces and at MIT. “My advisor is genuinely a wonderful person who has always given me so much support from not only being a student, but also being a parent,” Rahon adds.

    In turn, Danagoulian has been impressed by Rahon’s remarkable abilities: “Raising twins, doing research in applied nuclear physics, and flying coalition forces into Taliban territory while evading ground fire … [Jill] developed her own research project with minimal help from me and defended it brilliantly during the first part of the exam,” he says. 

    It seems that Rahon flies high no matter which mission she takes on. More