More stories

  • in

    Q&A: Exploring ethnic dynamics and climate change in Africa

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa at MIT, and is also director of the Center for International Studies. During a semester-long sabbatical, he’s currently based at the African Climate and Development Initiative at the University of Cape Town.In this Q&A, Lieberman discusses several climate-related research projects he’s pursuing in South Africa and surrounding countries. This is part of an ongoing series exploring how the School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: South Africa is a nation whose political and economic development you have long studied and written about. Do you see this visit as an extension of the kind of research you have been pursuing, or a departure from it?A: Much of my previous work has been animated by the question of understanding the causes and consequences of group-based disparities, whether due to AIDS or Covid. These are problems that know no geographic boundaries, and where ethnic and racial minorities are often hardest hit. Climate change is an analogous problem, with these minority populations living in places where they are most vulnerable, in heat islands in cities, and in coastal areas where they are not protected. The reality is they might get hit much harder by longer-term trends and immediate shocks.In one line of research, I seek to understand how people in different African countries, in different ethnic groups, perceive the problems of climate change and their governments’ response to it. There are ethnic divisions of labor in terms of what people do — whether they are farmers or pastoralists, or live in cities. So some ethnic groups are simply more affected by drought or extreme weather than others, and this can be a basis for conflict, especially when competing for often limited government resources.In this area, just like in my previous research, learning what shapes ordinary citizen perspectives is really important, because these views affect people’s everyday practices, and the extent to which they support certain kinds of policies and investments their government makes in response to climate-related challenges. But I will also try to learn more about the perspectives of policymakers and various development partners who seek to balance climate-related challenges against a host of other problems and priorities.Q: You recently published “Until We Have Won Our Liberty,” which examines the difficult transition of South Africa from apartheid to a democratic government, scrutinizing in particular whether the quality of life for citizens has improved in terms of housing, employment, discrimination, and ethnic conflicts. How do climate change-linked issues fit into your scholarship?A: I never saw myself as a climate researcher, but a number of years ago, heavily influenced by what I was learning at MIT, I began to recognize more and more how important the issue of climate change is. And I realized there were lots of ways in which the climate problem resonated with other kinds of problems I had tackled in earlier parts of my work.There was once a time when climate and the environment was the purview primarily of white progressives: the “tree huggers.” And that’s really changed in recent decades as it has become evident that the people who’ve been most affected by the climate emergency are ethnic and racial minorities. We saw with Hurricane Katrina and other places [that] if you are Black, you’re more likely to live in a vulnerable area and to just generally experience more environmental harms, from pollution and emissions, leaving these communities much less resilient than white communities. Government has largely not addressed this inequity. When you look at American survey data in terms of who’s concerned about climate change, Black Americans, Hispanic Americans, and Asian Americans are more unified in their worries than are white Americans.There are analogous problems in Africa, my career research focus. Governments there have long responded in different ways to different ethnic groups. The research I am starting looks at the extent to which there are disparities in how governments try to solve climate-related challenges.Q: It’s difficult enough in the United States taking the measure of different groups’ perceptions of the impact of climate change and government’s effectiveness in contending with it. How do you go about this in Africa?A: Surprisingly, there’s only been a little bit of work done so far on how ordinary African citizens, who are ostensibly being hit the hardest in the world by the climate emergency, are thinking about this problem. Climate change has not been politicized there in a very big way. In fact, only 50 percent of Africans in one poll had heard of the term.In one of my new projects, with political science faculty colleague Devin Caughey and political science doctoral student Preston Johnston, we are analyzing social and climate survey data [generated by the Afrobarometer research network] from over 30 African countries to understand within and across countries the ways in which ethnic identities structure people’s perception of the climate crisis, and their beliefs in what government ought to be doing. In largely agricultural African societies, people routinely experience drought, extreme rain, and heat. They also lack the infrastructure that can shield them from the intense variability of weather patterns. But we’re adding a lens, which is looking at sources of inequality, especially ethnic differences.I will also be investigating specific sectors. Africa is a continent where in most places people cannot take for granted universal, piped access to clean water. In Cape Town, several years ago, the combination of failure to replace infrastructure and lack of rain caused such extreme conditions that one of the world’s most important cities almost ran out of water.While these studies are in progress, it is clear that in many countries, there are substantively large differences in perceptions of the severity of climate change, and attitudes about who should be doing what, and who’s capable of doing what. In several countries, both perceptions and policy preferences are differentiated along ethnic lines, more so than with respect to generational or class differences within societies.This is interesting as a phenomenon, but substantively, I think it’s important in that it may provide the basis for how politicians and government actors decide to move on allocating resources and implementing climate-protection policies. We see this kind of political calculation in the U.S. and we shouldn’t be surprised that it happens in Africa as well.That’s ultimately one of the challenges from the perch of MIT, where we’re really interested in understanding climate change, and creating technological tools and policies for mitigating the problem or adapting to it. The reality is frustrating. The political world — those who make decisions about whether to acknowledge the problem and whether to implement resources in the best technical way — are playing a whole other game. That game is about rewarding key supporters and being reelected.Q: So how do you go from measuring perceptions and beliefs among citizens about climate change and government responsiveness to those problems, to policies and actions that might actually reduce disparities in the way climate-vulnerable African groups receive support?A: Some of the work I have been doing involves understanding what local and national governments across Africa are actually doing to address these problems. We will have to drill down into government budgets to determine the actual resources devoted to addressing a challenge, what sorts of practices the government follows, and the political ramifications for governments that act aggressively versus those that don’t. With the Cape Town water crisis, for example, the government dramatically changed residents’ water usage through naming and shaming, and transformed institutional practices of water collection. They made it through a major drought by using much less water, and doing it with greater energy efficiency. Through the government’s strong policy and implementation, and citizens’ active responses, an entire city, with all its disparate groups, gained resilience. Maybe we can highlight creative solutions to major climate-related problems and use them as prods to push more effective policies and solutions in other places.In the MIT Global Diversity Lab, along with political science faculty colleague Volha Charnysh, political science doctoral student Jared Kalow, and Institute for Data, Systems and Society doctoral student Erin Walk, we are exploring American perspectives on climate-related foreign aid, asking survey respondents whether the U.S. should be giving more to people in the global South who didn’t cause the problems of climate change but have to suffer the externalities. We are particularly interested in whether people’s desire to help vulnerable communities rests on the racial or national identity of those communities.From my new seat as director of the Center for International Studies (CIS), I hope to do more and more to connect social science findings to relevant policymakers, whether in the U.S. or in other places. CIS is making climate one of our thematic priority areas, directing hundreds of thousands of dollars for MIT faculty to spark climate collaborations with researchers worldwide through the Global Seed Fund program. COP 28 (the U.N. Climate Change Conference), which I attended in December in Dubai, really drove home the importance of people coming together from around the world to exchange ideas and form networks. It was unbelievably large, with 85,000 people. But so many of us shared the belief that we are not doing enough. We need enforceable global solutions and innovation. We need ways of financing. We need to provide opportunities for journalists to broadcast the importance of this problem. And we need to understand the incentives that different actors have and what sorts of messages and strategies will resonate with them, and inspire those who have resources to be more generous. More

  • in

    Two MIT teams selected for NSF sustainable materials grants

    Two teams led by MIT researchers were selected in December 2023 by the U.S. National Science Foundation (NSF) Convergence Accelerator, a part of the TIP Directorate, to receive awards of $5 million each over three years, to pursue research aimed at helping to bring cutting-edge new sustainable materials and processes from the lab into practical, full-scale industrial production. The selection was made after 16 teams from around the country were chosen last year for one-year grants to develop detailed plans for further research aimed at solving problems of sustainability and scalability for advanced electronic products.

    Of the two MIT-led teams chosen for this current round of funding, one team, Topological Electric, is led by Mingda Li, an associate professor in the Department of Nuclear Science and Engineering. This team will be finding pathways to scale up sustainable topological materials, which have the potential to revolutionize next-generation microelectronics by showing superior electronic performance, such as dissipationless states or high-frequency response. The other team, led by Anuradha Agarwal, a principal research scientist at MIT’s Materials Research Laboratory, will be focusing on developing new materials, devices, and manufacturing processes for microchips that minimize energy consumption using electronic-photonic integration, and that detect and avoid the toxic or scarce materials used in today’s production methods.

    Scaling the use of topological materials

    Li explains that some materials based on quantum effects have achieved successful transitions from lab curiosities to successful mass production, such as blue-light LEDs, and giant magnetorestance (GMR) devices used for magnetic data storage. But he says there are a variety of equally promising materials that have shown promise but have yet to make it into real-world applications.

    “What we really wanted to achieve is to bring newer-generation quantum materials into technology and mass production, for the benefit of broader society,” he says. In particular, he says, “topological materials are really promising to do many different things.”

    Topological materials are ones whose electronic properties are fundamentally protected against disturbance. For example, Li points to the fact that just in the last two years, it has been shown that some topological materials are even better electrical conductors than copper, which are typically used for the wires interconnecting electronic components. But unlike the blue-light LEDs or the GMR devices, which have been widely produced and deployed, when it comes to topological materials, “there’s no company, no startup, there’s really no business out there,” adds Tomas Palacios, the Clarence J. Lebel Professor in Electrical Engineering at MIT and co-principal investigator on Li’s team. Part of the reason is that many versions of such materials are studied “with a focus on fundamental exotic physical properties with little or no consideration on the sustainability aspects,” says Liang Fu, an MIT professor of physics and also a co-PI. Their team will be looking for alternative formulations that are more amenable to mass production.

    One possible application of these topological materials is for detecting terahertz radiation, explains Keith Nelson, an MIT professor of chemistry and co-PI. This extremely high-frequency electronics can carry far more information than conventional radio or microwaves, but at present there are no mature electronic devices available that are scalable at this frequency range. “There’s a whole range of possibilities for topological materials” that could work at these frequencies, he says. In addition, he says, “we hope to demonstrate an entire prototype system like this in a single, very compact solid-state platform.”

    Li says that among the many possible applications of topological devices for microelectronics devices of various kinds, “we don’t know which, exactly, will end up as a product, or will reach real industrial scaleup. That’s why this opportunity from NSF is like a bridge, which is precious, to allow us to dig deeper to unleash the true potential.”

    In addition to Li, Palacios, Fu, and Nelson, the Topological Electric team includes Qiong Ma, assistant professor of physics in Boston College; Farnaz Niroui, assistant professor of electrical engineering and computer science at MIT; Susanne Stemmer, professor of materials at the University of California at Santa Barbara; Judy Cha, professor of materials science and engineering at Cornell University; industrial partners including IBM, Analog Devices, and Raytheon; and professional consultants. “We are taking this opportunity seriously,” Li says. “We really want to see if the topological materials are as good as we show in the lab when being scaled up, and how far we can push to broadly industrialize them.”

    Toward sustainable microchip production and use

    The microchips behind everything from smartphones to medical imaging are associated with a significant percentage of greenhouse gas emissions today, and every year the world produces more than 50 million metric tons of electronic waste, the equivalent of about 5,000 Eiffel Towers. Further, the data centers necessary for complex computations and huge amount of data transfer — think AI and on-demand video — are growing and will require 10 percent of the world’s electricity by 2030.

    “The current microchip manufacturing supply chain, which includes production, distribution, and use, is neither scalable nor sustainable, and cannot continue. We must innovate our way out of this crisis,” says Agarwal.

    The name of Agarwal’s team, FUTUR-IC, is a reference to the future of the integrated circuits, or chips, through a global alliance for sustainable microchip manufacturing. Says Agarwal, “We bring together stakeholders from industry, academia, and government to co-optimize across three dimensions: technology, ecology, and workforce. These were identified as key interrelated areas by some 140 stakeholders. With FUTUR-IC we aim to cut waste and CO2-equivalent emissions associated with electronics by 50 percent every 10 years.”

    The market for microelectronics in the next decade is predicted to be on the order of a trillion dollars, but most of the manufacturing for the industry occurs only in limited geographical pockets around the world. FUTUR-IC aims to diversify and strengthen the supply chain for manufacturing and packaging of electronics. The alliance has 26 collaborators and is growing. Current external collaborators include the International Electronics Manufacturing Initiative (iNEMI), Tyndall National Institute, SEMI, Hewlett Packard Enterprise, Intel, and the Rochester Institute of Technology.

    Agarwal leads FUTUR-IC in close collaboration with others, including, from MIT, Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering; Elsa Olivetti, the Jerry McAfee Professor in Engineering; Randolph Kirchain, principal research scientist in the Materials Research Laboratory; and Greg Norris, director of MIT’s Sustainability and Health Initiative for NetPositive Enterprise (SHINE). All are affiliated with the Materials Research Laboratory. They are joined by Samuel Serna, an MIT visiting professor and assistant professor of physics at Bridgewater State University. Other key personnel include Sajan Saini, education director for the Initiative for Knowledge and Innovation in Manufacturing in MIT’s Department of Materials Science and Engineering; Peter O’Brien, a professor from Tyndall National Institute; and Shekhar Chandrashekhar, CEO of iNEMI.

    “We expect the integration of electronics and photonics to revolutionize microchip manufacturing, enhancing efficiency, reducing energy consumption, and paving the way for unprecedented advancements in computing speed and data-processing capabilities,” says Serna, who is the co-lead on the project’s technology “vector.”

    Common metrics for these efforts are needed, says Norris, co-lead for the ecology vector, adding, “The microchip industry must have transparent and open Life Cycle Assessment (LCA) models and data, which are being developed by FUTUR-IC.” This is especially important given that microelectronics production transcends industries. “Given the scale and scope of microelectronics, it is critical for the industry to lead in the transition to sustainable manufacture and use,” says Kirchain, another co-lead and the co-director of the Concrete Sustainability Hub at MIT. To bring about this cross-fertilization, co-lead Olivetti, also co-director of the MIT Climate and Sustainability Consortium (MCSC), will collaborate with FUTUR-IC to enhance the benefits from microchip recycling, leveraging the learning across industries.

    Saini, the co-lead for the workforce vector, stresses the need for agility. “With a workforce that adapts to a practice of continuous upskilling, we can help increase the robustness of the chip-manufacturing supply chain, and validate a new design for a sustainability curriculum,” he says.

    “We have become accustomed to the benefits forged by the exponential growth of microelectronic technology performance and market size,” says Kimerling, who is also director of MIT’s Materials Research Laboratory and co-director of the MIT Microphotonics Center. “The ecological impact of this growth in terms of materials use, energy consumption and end-of-life disposal has begun to push back against this progress. We believe that concurrently engineered solutions for these three dimensions will build a common learning curve to power the next 40 years of progress in the semiconductor industry.”

    The MIT teams are two of six that received awards addressing sustainable materials for global challenges through phase two of the NSF Convergence Accelerator program. Launched in 2019, the program targets solutions to especially compelling challenges at an accelerated pace by incorporating a multidisciplinary research approach. More

  • in

    Optimizing nuclear fuels for next-generation reactors

    In 2010, when Ericmoore Jossou was attending college in northern Nigeria, the lights would flicker in and out all day, sometimes lasting only for a couple of hours at a time. The frustrating experience reaffirmed Jossou’s realization that the country’s sporadic energy supply was a problem. It was the beginning of his path toward nuclear engineering.

    Because of the energy crisis, “I told myself I was going to find myself in a career that allows me to develop energy technologies that can easily be scaled to meet the energy needs of the world, including my own country,” says Jossou, an assistant professor in a shared position between the departments of Nuclear Science and Engineering (NSE), where is the John Clark Hardwick (1986) Professor, and of Electrical Engineering and Computer Science.

    Today, Jossou uses computer simulations for rational materials design, AI-aided purposeful development of cladding materials and fuels for next-generation nuclear reactors. As one of the shared faculty hires between the MIT Schwarzman College of Computing and departments across MIT, his appointment recognizes his commitment to computing for climate and the environment.

    A well-rounded education in Nigeria

    Growing up in Lagos, Jossou knew education was about more than just bookish knowledge, so he was eager to travel and experience other cultures. He would start in his own backyard by traveling across the Niger river and enrolling in Ahmadu Bello University in northern Nigeria. Moving from the south was a cultural education with a different language and different foods. It was here that Jossou got to try and love tuwo shinkafa, a northern Nigerian rice-based specialty, for the first time.

    After his undergraduate studies, armed with a bachelor’s degree in chemistry, Jossou was among a small cohort selected for a specialty master’s training program funded by the World Bank Institute and African Development Bank. The program at the African University of Science and Technology in Abuja, Nigeria, is a pan-African venture dedicated to nurturing homegrown science talent on the continent. Visiting professors from around the world taught intensive three-week courses, an experience which felt like drinking from a fire hose. The program widened Jossou’s views and he set his sights on a doctoral program with an emphasis on clean energy systems.

    A pivot to nuclear science

    While in Nigeria, Jossou learned of Professor Jerzy Szpunar at the University of Saskatchewan in Canada, who was looking for a student researcher to explore fuels and alloys for nuclear reactors. Before then, Jossou was lukewarm on nuclear energy, but the research sounded fascinating. The Fukushima, Japan, incident was recently in the rearview mirror and Jossou remembered his early determination to address his own country’s energy crisis. He was sold on the idea and graduated with a doctoral degree from the University of Saskatchewan on an international dean’s scholarship.

    Jossou’s postdoctoral work registered a brief stint at Brookhaven National Laboratory as staff scientist. He leaped at the opportunity to join MIT NSE as a way of realizing his research interest and teaching future engineers. “I would really like to conduct cutting-edge research in nuclear materials design and to pass on my knowledge to the next generation of scientists and engineers and there’s no better place to do that than at MIT,” Jossou says.

    Merging material science and computational modeling

    Jossou’s doctoral work on designing nuclear fuels for next-generation reactors forms the basis of research his lab is pursuing at MIT NSE. Nuclear reactors that were built in the 1950s and ’60s are getting a makeover in terms of improved accident tolerance. Reactors are not confined to one kind, either: We have micro reactors and are now considering ones using metallic nuclear fuels, Jossou points out. The diversity of options is enough to keep researchers busy testing materials fit for cladding, the lining that prevents corrosion of the fuel and release of radioactive fission products into the surrounding reactor coolant.

    The team is also investigating fuels that improve burn-up efficiencies, so they can last longer in the reactor. An intriguing approach has been to immobilize the gas bubbles that arise from the fission process, so they don’t grow and degrade the fuel.

    Since joining MIT in July 2023, Jossou is setting up a lab that optimizes the composition of accident-tolerant nuclear fuels. He is leaning on his materials science background and looping computer simulations and artificial intelligence in the mix.

    Computer simulations allow the researchers to narrow down the potential field of candidates, optimized for specific parameters, so they can synthesize only the most promising candidates in the lab. And AI’s predictive capabilities guide researchers on which materials composition to consider next. “We no longer depend on serendipity to choose our materials, our lab is based on rational materials design,” Jossou says, “we can rapidly design advanced nuclear fuels.”

    Advancing energy causes in Africa

    Now that he is at MIT, Jossou admits the view from the outside is different. He now harbors a different perspective on what Africa needs to address some of its challenges. “The starting point to solve our problems is not money; it needs to start with ideas,” he says, “we need to find highly skilled people who can actually solve problems.” That job involves adding economic value to the rich arrays of raw materials that the continent is blessed with. It frustrates Jossou that Niger, a country rich in raw material for uranium, has no nuclear reactors of its own. It ships most of its ore to France. “The path forward is to find a way to refine these materials in Africa and to be able to power the industries on that continent as well,” Jossou says.

    Jossou is determined to do his part to eliminate these roadblocks.

    Anchored in mentorship, Jossou’s solution aims to train talent from Africa in his own lab. He has applied for a MIT Global Experiences MISTI grant to facilitate travel and research studies for Ghanaian scientists. “The goal is to conduct research in our facility and perhaps add value to indigenous materials,” Jossou says.

    Adding value has been a consistent theme of Jossou’s career. He remembers wanting to become a neurosurgeon after reading “Gifted Hands,” moved by the personal story of the author, Ben Carson. As Jossou grew older, however, he realized that becoming a doctor wasn’t necessarily what he wanted. Instead, he was looking to add value. “What I wanted was really to take on a career that allows me to solve a societal problem.” The societal problem of clean and safe energy for all is precisely what Jossou is working on today. More

  • in

    Generative AI for smart grid modeling

    MIT’s Laboratory for Information and Decision Systems (LIDS) has been awarded $1,365,000 in funding from the Appalachian Regional Commission (ARC) to support its involvement with an innovative project, “Forming the Smart Grid Deployment Consortium (SGDC) and Expanding the HILLTOP+ Platform.”

    The grant was made available through ARC’s Appalachian Regional Initiative for Stronger Economies, which fosters regional economic transformation through multi-state collaboration.

    Led by Kalyan Veeramachaneni, research scientist and principal investigator at LIDS’ Data to AI Group, the project will focus on creating AI-driven generative models for customer load data. Veeramachaneni and colleagues will work alongside a team of universities and organizations led by Tennessee Tech University, including collaborators across Ohio, Pennsylvania, West Virginia, and Tennessee, to develop and deploy smart grid modeling services through the SGDC project.

    These generative models have far-reaching applications, including grid modeling and training algorithms for energy tech startups. When the models are trained on existing data, they create additional, realistic data that can augment limited datasets or stand in for sensitive ones. Stakeholders can then use these models to understand and plan for specific what-if scenarios far beyond what could be achieved with existing data alone. For example, generated data can predict the potential load on the grid if an additional 1,000 households were to adopt solar technologies, how that load might change throughout the day, and similar contingencies vital to future planning.

    The generative AI models developed by Veeramachaneni and his team will provide inputs to modeling services based on the HILLTOP+ microgrid simulation platform, originally prototyped by MIT Lincoln Laboratory. HILLTOP+ will be used to model and test new smart grid technologies in a virtual “safe space,” providing rural electric utilities with increased confidence in deploying smart grid technologies, including utility-scale battery storage. Energy tech startups will also benefit from HILLTOP+ grid modeling services, enabling them to develop and virtually test their smart grid hardware and software products for scalability and interoperability.

    The project aims to assist rural electric utilities and energy tech startups in mitigating the risks associated with deploying these new technologies. “This project is a powerful example of how generative AI can transform a sector — in this case, the energy sector,” says Veeramachaneni. “In order to be useful, generative AI technologies and their development have to be closely integrated with domain expertise. I am thrilled to be collaborating with experts in grid modeling, and working alongside them to integrate the latest and greatest from my research group and push the boundaries of these technologies.”

    “This project is testament to the power of collaboration and innovation, and we look forward to working with our collaborators to drive positive change in the energy sector,” says Satish Mahajan, principal investigator for the project at Tennessee Tech and a professor of electrical and computer engineering. Tennessee Tech’s Center for Rural Innovation director, Michael Aikens, adds, “Together, we are taking significant steps towards a more sustainable and resilient future for the Appalachian region.” More

  • in

    Study: Global deforestation leads to more mercury pollution

    About 10 percent of human-made mercury emissions into the atmosphere each year are the result of global deforestation, according to a new MIT study.

    The world’s vegetation, from the Amazon rainforest to the savannahs of sub-Saharan Africa, acts as a sink that removes the toxic pollutant from the air. However, if the current rate of deforestation remains unchanged or accelerates, the researchers estimate that net mercury emissions will keep increasing.

    “We’ve been overlooking a significant source of mercury, especially in tropical regions,” says Ari Feinberg, a former postdoc in the Institute for Data, Systems, and Society (IDSS) and lead author of the study.

    The researchers’ model shows that the Amazon rainforest plays a particularly important role as a mercury sink, contributing about 30 percent of the global land sink. Curbing Amazon deforestation could thus have a substantial impact on reducing mercury pollution.

    The team also estimates that global reforestation efforts could increase annual mercury uptake by about 5 percent. While this is significant, the researchers emphasize that reforestation alone should not be a substitute for worldwide pollution control efforts.

    “Countries have put a lot of effort into reducing mercury emissions, especially northern industrialized countries, and for very good reason. But 10 percent of the global anthropogenic source is substantial, and there is a potential for that to be even greater in the future. [Addressing these deforestation-related emissions] needs to be part of the solution,” says senior author Noelle Selin, a professor in IDSS and MIT’s Department of Earth, Atmospheric and Planetary Sciences.

    Feinberg and Selin are joined on the paper by co-authors Martin Jiskra, a former Swiss National Science Foundation Ambizione Fellow at the University of Basel; Pasquale Borrelli, a professor at Roma Tre University in Italy; and Jagannath Biswakarma, a postdoc at the Swiss Federal Institute of Aquatic Science and Technology. The paper appears today in Environmental Science and Technology.

    Modeling mercury

    Over the past few decades, scientists have generally focused on studying deforestation as a source of global carbon dioxide emissions. Mercury, a trace element, hasn’t received the same attention, partly because the terrestrial biosphere’s role in the global mercury cycle has only recently been better quantified.

    Plant leaves take up mercury from the atmosphere, in a similar way as they take up carbon dioxide. But unlike carbon dioxide, mercury doesn’t play an essential biological function for plants. Mercury largely stays within a leaf until it falls to the forest floor, where the mercury is absorbed by the soil.

    Mercury becomes a serious concern for humans if it ends up in water bodies, where it can become methylated by microorganisms. Methylmercury, a potent neurotoxin, can be taken up by fish and bioaccumulated through the food chain. This can lead to risky levels of methylmercury in the fish humans eat.

    “In soils, mercury is much more tightly bound than it would be if it were deposited in the ocean. The forests are doing a sort of ecosystem service, in that they are sequestering mercury for longer timescales,” says Feinberg, who is now a postdoc in the Blas Cabrera Institute of Physical Chemistry in Spain.

    In this way, forests reduce the amount of toxic methylmercury in oceans.

    Many studies of mercury focus on industrial sources, like burning fossil fuels, small-scale gold mining, and metal smelting. A global treaty, the 2013 Minamata Convention, calls on nations to reduce human-made emissions. However, it doesn’t directly consider impacts of deforestation.

    The researchers launched their study to fill in that missing piece.

    In past work, they had built a model to probe the role vegetation plays in mercury uptake. Using a series of land use change scenarios, they adjusted the model to quantify the role of deforestation.

    Evaluating emissions

    This chemical transport model tracks mercury from its emissions sources to where it is chemically transformed in the atmosphere and then ultimately to where it is deposited, mainly through rainfall or uptake into forest ecosystems.

    They divided the Earth into eight regions and performed simulations to calculate deforestation emissions factors for each, considering elements like type and density of vegetation, mercury content in soils, and historical land use.

    However, good data for some regions were hard to come by.

    They lacked measurements from tropical Africa or Southeast Asia — two areas that experience heavy deforestation. To get around this gap, they used simpler, offline models to simulate hundreds of scenarios, which helped them improve their estimations of potential uncertainties.

    They also developed a new formulation for mercury emissions from soil. This formulation captures the fact that deforestation reduces leaf area, which increases the amount of sunlight that hits the ground and accelerates the outgassing of mercury from soils.

    The model divides the world into grid squares, each of which is a few hundred square kilometers. By changing land surface and vegetation parameters in certain squares to represent deforestation and reforestation scenarios, the researchers can capture impacts on the mercury cycle.

    Overall, they found that about 200 tons of mercury are emitted to the atmosphere as the result of deforestation, or about 10 percent of total human-made emissions. But in tropical and sub-tropical countries, deforestation emissions represent a higher percentage of total emissions. For example, in Brazil deforestation emissions are 40 percent of total human-made emissions.

    In addition, people often light fires to prepare tropical forested areas for agricultural activities, which causes more emissions by releasing mercury stored by vegetation.

    “If deforestation was a country, it would be the second highest emitting country, after China, which emits around 500 tons of mercury a year,” Feinberg adds.

    And since the Minamata Convention is now addressing primary mercury emissions, scientists can expect deforestation to become a larger fraction of human-made emissions in the future.

    “Policies to protect forests or cut them down have unintended effects beyond their target. It is important to consider the fact that these are systems, and they involve human activities, and we need to understand them better in order to actually solve the problems that we know are out there,” Selin says.

    By providing this first estimate, the team hopes to inspire more research in this area.

    In the future, they want to incorporate more dynamic Earth system models into their analysis, which would enable them to interactively track mercury uptake and better model the timescale of vegetation regrowth.

    “This paper represents an important advance in our understanding of global mercury cycling by quantifying a pathway that has long been suggested but not yet quantified. Much of our research to date has focused on primary anthropogenic emissions — those directly resulting from human activity via coal combustion or mercury-gold amalgam burning in artisanal and small-scale gold mining,” says Jackie Gerson, an assistant professor in the Department of Earth and Environmental Sciences at Michigan State University, who was not involved with this research. “This research shows that deforestation can also result in substantial mercury emissions and needs to be considered both in terms of global mercury models and land management policies. It therefore has the potential to advance our field scientifically as well as to promote policies that reduce mercury emissions via deforestation.

    This work was funded, in part, by the U.S. National Science Foundation, the Swiss National Science Foundation, and Swiss Federal Institute of Aquatic Science and Technology. More

  • in

    3 Questions: The Climate Project at MIT

    MIT is preparing a major campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems now impeding an effective global climate response. The Climate Project at MIT, as the new enterprise is known, includes new arrangements for promoting cross-Institute collaborations and new mechanisms for engaging with outside partners to speed the development and implementation of climate solutions.

    MIT News spoke with Richard K. Lester, MIT’s vice provost for international activities, who has helped oversee the development of the project.

    Q: What is the Climate Project at MIT?

    A: In her inaugural address last May, President Kornbluth called on the MIT community to join her in a “bold, tenacious response” to climate change. The Climate Project at MIT is a response to that call. It aims to mobilize every part of MIT to develop, deliver, and scale up practical climate solutions, as quickly as possible.

    Play video

    At MIT, well over 300 of our faculty are already working with their students and research staff members on different aspects of the climate problem. Almost all of our academic departments and more than a score of our interdepartmental labs and centers are involved in some way. What they are doing is remarkable, and this decentralized structure reflects the best traditions of MIT as a “bottom up,” entrepreneurial institution. But, as President Kornbluth said, we must do much more. We must be bolder in our research choices and more creative in how we organize ourselves to work with each other and with our partners. The purpose of the Climate Project is to support our community’s efforts to do bigger things faster in the climate domain. We will have succeeded if our work changes the trajectory of global climate outcomes for the better.

    I want to be clear that the clay is still wet here. The Climate Project will continue to take shape as more members of the MIT community bring their excellence, their energy, and their ambition to bear on the climate challenge. But I believe we have a vision and a framework for accelerating and amplifying MIT’s real-world climate impact, and I know that President Kornbluth is eager to share this progress report with the MIT community now to convey the breadth and ambition of what we’re planning.

    Q: How will the project be organized?

    A: The Climate Project will have three core components: the Climate Missions; their offshoots, the Climate Frontier Projects; and Climate HQ. A new vice president for climate will lead the enterprise.

    Initially there will be six missions, which you can read about in the plan. Each will address a different domain of climate impact where new solutions are required and where a critical mass of research excellence exists at MIT. One such mission, of course, is to decarbonize energy and industry, an area where we estimate that about 150 of our faculty are already working.

    The mission leaders will build multidisciplinary problem-solving communities reaching across the Institute and beyond. Each of these will be charged with roadmapping and assessing progress toward its mission, identifying critical gaps and bottlenecks, and launching applied research projects to accelerate progress where the MIT community and our partners are well-positioned to achieve impactful results. These projects — the climate frontier projects — will benefit from active, professional project management, with clear metrics and milestones. We are in a critical decade for responding to climate change, so it’s important that these research projects move quickly, with an eye on producing real-world results.

    The new Climate HQ will drive the overall vision for the Climate Project and support the work of the missions. We’ve talked about a core focus on impact-driven research, but much is still unknown about the Earth’s physical and biogeochemical systems, and there is also much to be learned about the behavior of the social and political systems that led us to the very difficult situation the world now faces. Climate HQ will support fundamental research in the scientific and humanistic disciplines related to climate, and will promote engagement between these disciplines and the missions. We must also advance climate-related education, led by departments and programs, as well as policy work, public outreach, and more, including an MIT-wide student-centric Climate Corps to elevate climate-related, community-focused service in MIT’s culture.

    Q: Why are partners a key part of this project?

    A: It is important to build strong partners right from the very start for our innovations, inventions, and discoveries to have any prospect of achieving scale. And in many cases, with climate change, it’s all about scale.

    One of the aims of this initiative is to strengthen MIT’s climate “scaffolding” — the people and processes connecting what we do on campus to the practical world of climate impact and response. We can build on MIT’s highly developed infrastructure for translation, innovation, and entrepreneurship, even as we promote other important pathways to scale involving communities, municipalities, and other not-for-profit organizations. Working with all these different organizations will help us build a broad infrastructure to help us get traction in the world. On a related note, the Sloan School of Management will be sharing details in the coming days of an exciting new effort to enhance MIT’s contributions in the climate policy arena.

    MIT is committing $75 million, including $25 million from Sloan, at the outset of the project. But we anticipate developing new partnerships, including philanthropic partnerships, to increase that scope dramatically. More

  • in

    Reflecting on COP28 — and humanity’s progress toward meeting global climate goals

    With 85,000 delegates, the 2023 United Nations climate change conference, known as COP28, was the largest U.N. climate conference in history. It was held at the end of the hottest year in recorded history. And after 12 days of negotiations, from Nov. 30 to Dec. 12, it produced a decision that included, for the first time, language calling for “transitioning away from fossil fuels,” though it stopped short of calling for their complete phase-out.

    U.N. Climate Change Executive Secretary Simon Stiell said the outcome in Dubai, United Arab Emirates, COP28’s host city, signaled “the beginning of the end” of the fossil fuel era. 

    COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held this year for the 28th time. Through the negotiations — and the immense conference and expo that takes place alongside them — a delegation of faculty, students, and staff from MIT was in Dubai to observe the negotiations, present new climate technologies, speak on panels, network, and conduct research.

    On Jan. 17, the MIT Center for International Studies (CIS) hosted a panel discussion with MIT delegates who shared their reflections on the experience. Asking what’s going on at COP is “like saying, ‘What’s going on in the city of Boston today?’” quipped Evan Lieberman, the Total Professor of Political Science and Contemporary Africa, director of CIS, and faculty director of MIT International Science and Technology Initiatives (MISTI). “The value added that all of us can provide for the MIT community is [to share] what we saw firsthand and how we experienced it.” 

    Phase-out, phase down, transition away?

    In the first week of COP28, over 100 countries issued a joint statement that included a call for “the global phase out of unabated fossil fuels.” The question of whether the COP28 decision — dubbed the “UAE Consensus” — would include this phase-out language animated much of the discussion in the days and weeks leading up to COP28. 

    Ultimately, the decision called for “transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner.” It also called for “accelerating efforts towards the phase down of unabated coal power,” referring to the combustion of coal without efforts to capture and store its emissions.

    In Dubai to observe the negotiations, graduate student Alessandra Fabbri said she was “confronted” by the degree to which semantic differences could impose significant ramifications — for example, when negotiators referred to a “just transition,” or to “developed vs. developing nations” — particularly where evolution in recent scholarship has produced more nuanced understandings of the terms.

    COP28 also marked the conclusion of the first global stocktake, a core component of the 2015 Paris Agreement. The effort every five years to assess the world’s progress in responding to climate change is intended as a basis for encouraging countries to strengthen their climate goals over time, a process often referred to as the Paris Agreement’s “ratchet mechanism.” 

    The technical report of the first global stocktake, published in September 2023, found that while the world has taken actions that have reduced forecasts of future warming, they are not sufficient to meet the goals of the Paris Agreement, which aims to limit global average temperature increase to “well below” 2 degrees Celsius, while pursuing efforts to limit the increase to 1.5 degrees above pre-industrial levels.

    “Despite minor, punctual advancements in climate action, parties are far from being on track to meet the long-term goals of the Paris Agreement,” said Fabbri, a graduate student in the School of Architecture and Planning and a fellow in MIT’s Leventhal Center for Advanced Urbanism. Citing a number of persistent challenges, including some parties’ fears that rapid economic transition may create or exacerbate vulnerabilities, she added, “There is a noted lack of accountability among certain countries in adhering to their commitments and responsibilities under international climate agreements.” 

    Climate and trade

    COP28 was the first climate summit to formally acknowledge the importance of international trade by featuring an official “Trade Day” on Dec. 4. Internationally traded goods account for about a quarter of global greenhouse gas emissions, raising complex questions of accountability and concerns about offshoring of industrial manufacturing, a phenomenon known as “emissions leakage.” Addressing the nexus of climate and trade is therefore considered essential for successful decarbonization, and a growing number of countries are leveraging trade policies — such as carbon fees applied to imported goods — to secure climate benefits. 

    Members of the MIT delegation participated in several related activities, sharing research and informing decision-makers. Catherine Wolfram, professor of applied economics in the MIT Sloan School of Management, and Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research (CEEPR), presented options for international cooperation on such trade policies at side events, including ones hosted by the World Trade Organization and European Parliament. 

    “While COPs are often criticized for highlighting statements that don’t have any bite, they are also tremendous opportunities to get people from around the world who care about climate and think deeply about these issues in one place,” said Wolfram.

    Climate and health

    For the first time in the conference’s nearly 30-year history, COP28 included a thematic “Health Day” that featured talks on the relationship between climate and health. Researchers from MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) have been testing policy solutions in this area for years through research funds such as the King Climate Action Initiative (K-CAI). 

    “An important but often-neglected area where climate action can lead to improved health is combating air pollution,” said Andre Zollinger, K-CAI’s senior policy manager. “COP28’s announcement on reducing methane leaks is an important step because action in this area could translate to relatively quick, cost-effective ways to curb climate change while improving air quality, especially for people living near these industrial sites.” K-CAI has an ongoing project in Colorado investigating the use of machine learning to predict leaks and improve the framework for regulating industrial methane emissions, Zollinger noted.

    This was J-PAL’s third time at COP, which Zollinger said typically presented an opportunity for researchers to share new findings and analysis with government partners, nongovernmental organizations, and companies. This year, he said, “We have [also] been working with negotiators in the [Middle East and North Africa] region in the months preceding COP to plug them into the latest evidence on water conservation, on energy access, on different challenging areas of adaptation that could be useful for them during the conference.”

    Sharing knowledge, learning from others

    MIT student Runako Gentles described COP28 as a “springboard” to greater impact. A senior from Jamaica studying civil and environmental engineering, Gentles said it was exciting to introduce himself as an MIT undergraduate to U.N. employees and Jamaican delegates in Dubai. “There’s a lot of talk on mitigation and cutting carbon emissions, but there needs to be much more going into climate adaptation, especially for small-island developing states like those in the Caribbean,” he said. “One of the things I can do, while I still try to finish my degree, is communicate — get the story out there to raise awareness.”

    At an official side event at COP28 hosted by MIT, Pennsylvania State University, and the American Geophysical Union, Maria T. Zuber, MIT’s vice president for research, stressed the importance of opportunities to share knowledge and learn from people around the world.

    “The reason this two-way learning is so important for us is simple: The ideas we come up with in a university setting, whether they’re technological or policy or any other kind of innovations — they only matter in the practical world if they can be put to good use and scaled up,” said Zuber. “And the only way we can know that our work has practical relevance for addressing climate is by working hand-in-hand with communities, industries, governments, and others.”

    Marcela Angel, research program director at the Environmental Solutions Initiative, and Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, also spoke at the event, which was moderated by Bethany Patten, director of policy and engagement for sustainability at the MIT Sloan School of Management.  More

  • in

    MIT researchers map the energy transition’s effects on jobs

    A new analysis by MIT researchers shows the places in the U.S. where jobs are most linked to fossil fuels. The research could help policymakers better identify and support areas affected over time by a switch to renewable energy.

    While many of the places most potentially affected have intensive drilling and mining operations, the study also measures how areas reliant on other industries, such as heavy manufacturing, could experience changes. The research examines the entire U.S. on a county-by-county level.

    “Our result is that you see a higher carbon footprint for jobs in places that drill for oil, mine for coal, and drill for natural gas, which is evident in our maps,” says Christopher Knittel, an economist at the MIT Sloan School of Management and co-author of a new paper detailing the findings. “But you also see high carbon footprints in areas where we do a lot of manufacturing, which is more likely to be missed by policymakers when examining how the transition to a zero-carbon economy will affect jobs.”

    So, while certain U.S. areas known for fossil-fuel production would certainly be affected — including west Texas, the Powder River Basin of Montana and Wyoming, parts of Appalachia, and more — a variety of industrial areas in the Great Plains and Midwest could see employment evolve as well.

    The paper, “Assessing the distribution of employment vulnerability to the energy transition using employment carbon footprints,” is published this week in Proceedings of the National Academy of Sciences. The authors are Kailin Graham, a master’s student in MIT’s Technology and Policy Program and graduate research assistant at MIT’s Center for Energy and Environmental Policy Research; and Knittel, who is the George P. Shultz Professor at MIT Sloan.

    “Our results are unique in that we cover close to the entire U.S. economy and consider the impacts on places that produce fossil fuels but also on places that consume a lot of coal, oil, or natural gas for energy,” says Graham. “This approach gives us a much more complete picture of where communities might be affected and how support should be targeted.”

    Adjusting the targets

    The current study stems from prior research Knittel has conducted, measuring carbon footprints at the household level across the U.S. The new project takes a conceptually related approach, but for jobs in a given county. To conduct the study, the researchers used several data sources measuring energy consumption by businesses, as well as detailed employment data from the U.S. Census Bureau.

    The study takes advantage of changes in energy supply and demand over time to estimate how strongly a full range of jobs, not just those in energy production, are linked to use of fossil fuels. The sectors accounted for in the study comprise 86 percent of U.S. employment, and 94 percent of U.S. emissions apart from the transportation sector.

    The Inflation Reduction Act, passed by Congress and signed into law by President Joe Biden in August 2022, is the first federal legislation seeking to provide an economic buffer for places affected by the transition away from fossil fuels. The act provides expanded tax credits for economic projects located in “energy community” areas — defined largely as places with high fossil-fuel industry employment or tax revenue and with high unemployment. Areas with recently closed or downsized coal mines or power plants also qualify.

    Graham and Knittel measured the “employment carbon footprint” (ECF) of each county in the U.S., producing new results. Out of more than 3,000 counties in the U.S., the researchers found that 124 are at the 90th percentile or above in ECF terms, while not qualifying for Inflation Reduction Act assistance. Another 79 counties are eligible for Inflation Reduction Act assistance, while being in the bottom 20 percent nationally in ECF terms.

    Those may not seem like colossal differences, but the findings identify real communities potentially being left out of federal policy, and highlight the need for new targeting of such programs. The research by Graham and Knittel offers a precise way to assess the industrial composition of U.S. counties, potentially helping to target economic assistance programs.

    “The impact on jobs of the energy transition is not just going to be where oil and natural gas are drilled, it’s going to be all the way up and down the value chain of things we make in the U.S.,” Knittel says. “That’s a more extensive, but still focused, problem.”

    Graham adds: “It’s important that policymakers understand these economy-wide employment impacts. Our aim in providing these data is to help policymakers incorporate these considerations into future policies like the Inflation Reduction Act.”

    Adapting policy

    Graham and Knittel are still evaluating what the best policy measures might be to help places in the U.S. adapt to a move away from fossil fuels.

    “What we haven’t necessarily closed the loop on is the right way to build a policy that takes account of these factors,” Knittel says. “The Inflation Reduction Act is the first policy to think about a [fair] energy transition because it has these subsidies for energy-dependent counties.” But given enough political backing, there may be room for additional policy measures in this area.

    One thing clearly showing through in the study’s data is that many U.S. counties are in a variety of situations, so there may be no one-size-fits-all approach to encouraging economic growth while making a switch to clean energy. What suits west Texas or Wyoming best may not work for more manufacturing-based local economies. And even among primary energy-production areas, there may be distinctions, among those drilling for oil or natural gas and those producing coal, based on the particular economics of those fuels. The study includes in-depth data about each county, characterizing its industrial portfolio, which may help tailor approaches to a range of economic situations.

    “The next step is using this data more specifically to design policies to protect these communities,” Knittel says. More