More stories

  • in

    How hard is it to prevent recurring blackouts in Puerto Rico?

    Researchers at MIT’s Laboratory for Information and Decision Systems (LIDS) have shown that using decision-making software and dynamic monitoring of weather and energy use can significantly improve resiliency in the face of weather-related outages, and can also help to efficiently integrate renewable energy sources into the grid.The researchers point out that the system they suggest might have prevented or at least lessened the kind of widespread power outage that Puerto Rico experienced last week by providing analysis to guide rerouting of power through different lines and thus limit the spread of the outage.The computer platform, which the researchers describe as DyMonDS, for Dynamic Monitoring and Decision Systems, can be used to enhance the existing operating and planning practices used in the electric industry. The platform supports interactive information exchange and decision-making between the grid operators and grid-edge users — all the distributed power sources, storage systems and software that contribute to the grid. It also supports optimization of available resources and controllable grid equipment as system conditions vary. It further lends itself to implementing cooperative decision-making by different utility- and non-utility-owned electric power grid users, including portfolios of mixed resources, users, and storage. Operating and planning the interactions of the end-to-end high-voltage transmission grid with local distribution grids and microgrids represents another major potential use of this platform.This general approach was illustrated using a set of publicly-available data on both meteorology and details of electricity production and distribution in Puerto Rico. An extended AC Optimal Power Flow software developed by SmartGridz Inc. is used for system-level optimization of controllable equipment. This provides real-time guidance for deciding how much power, and through which transmission lines, should be channeled by adjusting plant dispatch and voltage-related set points, and in extreme cases, where to reduce or cut power in order to maintain physically-implementable service for as many customers as possible. The team found that the use of such a system can help to ensure that the greatest number of critical services maintain power even during a hurricane, and at the same time can lead to a substantial decrease in the need for construction of new power plants thanks to more efficient use of existing resources.The findings are described in a paper in the journal Foundations and Trends in Electric Energy Systems, by MIT LIDS researchers Marija Ilic and Laurentiu Anton, along with recent alumna Ramapathi Jaddivada.“Using this software,” Ilic says, they show that “even during bad weather, if you predict equipment failures, and by using that information exchange, you can localize the effect of equipment failures and still serve a lot of customers, 50 percent of customers, when otherwise things would black out.”Anton says that “the way many grids today are operated is sub-optimal.” As a result, “we showed how much better they could do even under normal conditions, without any failures, by utilizing this software.” The savings resulting from this optimization, under everyday conditions, could be in the tens of percents, they say.The way utility systems plan currently, Ilic says, “usually the standard is that they have to build enough capacity and operate in real time so that if one large piece of equipment fails, like a large generator or transmission line, you still serve customers in an uninterrupted way. That’s what’s called N-minus-1.” Under this policy, if one major component of the system fails, they should be able to maintain service for at least 30 minutes. That system allows utilities to plan for how much reserve generating capacity they need to have on hand. That’s expensive, Ilic points out, because it means maintaining this reserve capacity all the time, even under normal operating conditions when it’s not needed.In addition, “right now there are no criteria for what I call N-minus-K,” she says. If bad weather causes five pieces of equipment to fail at once, “there is no software to help utilities decide what to schedule” in terms of keeping the most customers, and the most important services such as hospitals and emergency services, provided with power. They showed that even with 50 percent of the infrastructure out of commission, it would still be possible to keep power flowing to a large proportion of customers.Their work on analyzing the power situation in Puerto Rico started after the island had been devastated by hurricanes Irma and Maria. Most of the electric generation capacity is in the south, yet the largest loads are in San Juan, in the north, and Mayaguez in the west. When transmission lines get knocked down, a lot of rerouting of power needs to happen quickly.With the new systems, “the software finds the optimal adjustments for set points,” for example, changing voltages can allow for power to be redirected through less-congested lines, or can be increased to lessen power losses, Anton says.The software also helps in the long-term planning for the grid. As many fossil-fuel power plants are scheduled to be decommissioned soon in Puerto Rico, as they are in many other places, planning for how to replace that power without having to resort to greenhouse gas-emitting sources is a key to achieving carbon-reduction goals. And by analyzing usage patterns, the software can guide the placement of new renewable power sources where they can most efficiently provide power where and when it’s needed.As plants are retired or as components are affected by weather, “We wanted to ensure the dispatchability of power when the load changes,” Anton says, “but also when crucial components are lost, to ensure the robustness at each step of the retirement schedule.”One thing they found was that “if you look at how much generating capacity exists, it’s more than the peak load, even after you retire a few fossil plants,” Ilic says. “But it’s hard to deliver.” Strategic planning of new distribution lines could make a big difference.Jaddivada, director of innovation at SmartGridz, says that “we evaluated different possible architectures in Puerto Rico, and we showed the ability of this software to ensure uninterrupted electricity service. This is the most important challenge utilities have today. They have to go through a computationally tedious process to make sure the grid functions for any possible outage in the system. And that can be done in a much more efficient way through the software that the company  developed.”The project was a collaborative effort between the MIT LIDS researchers and others at MIT Lincoln Laboratory, the Pacific Northwest National Laboratory, with overall help of SmartGridz software.  More

  • in

    Helping students bring about decarbonization, from benchtop to global energy marketplace

    MIT students are adept at producing research and innovations at the cutting edge of their fields. But addressing a problem as large as climate change requires understanding the world’s energy landscape, as well as the ways energy technologies evolve over time.Since 2010, the course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation) has equipped students with the skills they need to evaluate the various energy decarbonization pathways available to the world. The work is designed to help them maximize their impact on the world’s emissions by making better decisions along their respective career paths.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” says Professor Jessika Trancik, who started the course to help fill a gap in knowledge about the ways technologies evolve and scale over time.Since its inception in 2010, the course has attracted graduate students from across MIT’s five schools. The course has also recently opened to undergraduate students and been adapted to an online course for professionals.Class sessions alternate between lectures and student discussions that lead up to semester-long projects in which groups of students explore specific strategies and technologies for reducing global emissions. This year’s projects span several topics, including how quickly transmission infrastructure is expanding, the relationship between carbon emissions and human development, and how to decarbonize the production of key chemicals.The curriculum is designed to help students identify the most promising ways to mitigate climate change whether they plan to be scientists, engineers, policymakers, investors, urban planners, or just more informed citizens.“We’re coming at this issue from both sides,” explains Trancik, who is part of MIT’s Institute for Data, Systems, and Society. “Engineers are used to designing a technology to work as well as possible here and now, but not always thinking over a longer time horizon about a technology evolving and succeeding in the global marketplace. On the flip side, for students at the macro level, often studies in policy and economics of technological change don’t fully account for the physical and engineering constraints of rates of improvement. But all of that information allows you to make better decisions.”Bridging the gapAs a young researcher working on low-carbon polymers and electrode materials for solar cells, Trancik always wondered how the materials she worked on would scale in the real world. They might achieve promising performance benchmarks in the lab, but would they actually make a difference in mitigating climate change? Later, she began focusing increasingly on developing methods for predicting how technologies might evolve.“I’ve always been interested in both the macro and the micro, or even nano, scales,” Trancik says. “I wanted to know how to bridge these new technologies we’re working on with the big picture of where we want to go.”Trancik’ described her technology-grounded approach to decarbonization in a paper that formed the basis for IDS.065. In the paper, she presented a way to evaluate energy technologies against climate-change mitigation goals while focusing on the technology’s evolution.“That was a departure from previous approaches, which said, given these technologies with fixed characteristics and assumptions about their rates of change, how do I choose the best combination?” Trancik explains. “Instead we asked: Given a goal, how do we develop the best technologies to meet that goal? That inverts the problem in a way that’s useful to engineers developing these technologies, but also to policymakers and investors that want to use the evolution of technologies as a tool for achieving their objectives.”This past semester, the class took place every Tuesday and Thursday in a classroom on the first floor of the Stata Center. Students regularly led discussions where they reflected on the week’s readings and offered their own insights.“Students always share their takeaways and get to ask open questions of the class,” says Megan Herrington, a PhD candidate in the Department of Chemical Engineering. “It helps you understand the readings on a deeper level because people with different backgrounds get to share their perspectives on the same questions and problems. Everybody comes to class with their own lens, and the class is set up to highlight those differences.”The semester begins with an overview of climate science, the origins of emissions reductions goals, and technology’s role in achieving those goals. Students then learn how to evaluate technologies against decarbonization goals.But technologies aren’t static, and neither is the world. Later lessons help students account for the change of technologies over time, identifying the mechanisms for that change and even forecasting rates of change.Students also learn about the role of government policy. This year, Trancik shared her experience traveling to the COP29 United Nations Climate Change Conference.“It’s not just about technology,” Trancik says. “It’s also about the behaviors that we engage in and the choices we make. But technology plays a major role in determining what set of choices we can make.”From the classroom to the worldStudents in the class say it has given them a new perspective on climate change mitigation.“I have really enjoyed getting to see beyond the research people are doing at the benchtop,” says Herrington. “It’s interesting to see how certain materials or technologies that aren’t scalable yet may fit into a larger transformation in energy delivery and consumption. It’s also been interesting to pull back the curtain on energy systems analysis to understand where the metrics we cite in energy-related research originate from, and to anticipate trajectories of emerging technologies.”Onur Talu, a first-year master’s student in the Technology and Policy Program, says the class has made him more hopeful.“I came into this fairly pessimistic about the climate,” says Talu, who has worked for clean technology startups in the past. “This class has taught me different ways to look at the problem of climate change mitigation and developing renewable technologies. It’s also helped put into perspective how much we’ve accomplished so far.”Several student projects from the class over the years have been developed into papers published in peer-reviewed journals. They have also been turned into tools, like carboncounter.com, which plots the emissions and costs of cars and has been featured in The New York Times.Former class students have also launched startups; Joel Jean SM ’13, PhD ’17, for example, started Swift Solar. Others have drawn on the course material to develop impactful careers in government and academia, such as Patrick Brown PhD ’16 at the National Renewable Energy Laboratory and Leah Stokes SM ’15, PhD ’15 at the University of California at Santa Barbara.Overall, students say the course helps them take a more informed approach to applying their skills toward addressing climate change.“It’s not enough to just know how bad climate change could be,” says Yu Tong, a first-year master’s student in civil and environmental engineering. “It’s also important to understand how technology can work to mitigate climate change from both a technological and market perspective. It’s about employing technology to solve these issues rather than just working in a vacuum.” More

  • in

    In a unique research collaboration, students make the case for less e-waste

    Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.From mining to e-wasteThe SERC Scholars’ case study, “From Mining to E-waste: The Environmental and Climate Justice Implications of the Electronics Hardware Life Cycle,” was published by the MIT Case Studies in Social and Ethical Responsibilities of Computing.The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.Crufting and crafting a case studyDunca joined Rabe’s working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute’s labs, departments, and individual users.Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegal, a Northeastern University co-op student.Taking the case study to classrooms around the worldAlthough PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don’t take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is: “From Mining to E-Waste.”Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.” More

  • in

    So you want to build a solar or wind farm? Here’s how to decide where.

    Deciding where to build new solar or wind installations is often left up to individual developers or utilities, with limited overall coordination. But a new study shows that regional-level planning using fine-grained weather data, information about energy use, and energy system modeling can make a big difference in the design of such renewable power installations. This also leads to more efficient and economically viable operations.The findings show the benefits of coordinating the siting of solar farms, wind farms, and storage systems, taking into account local and temporal variations in wind, sunlight, and energy demand to maximize the utilization of renewable resources. This approach can reduce the need for sizable investments in storage, and thus the total system cost, while maximizing availability of clean power when it’s needed, the researchers found.The study, appearing today in the journal Cell Reports Sustainability, was co-authored by Liying Qiu and Rahman Khorramfar, postdocs in MIT’s Department of Civil and Environmental Engineering, and professors Saurabh Amin and Michael Howland.Qiu, the lead author, says that with the team’s new approach, “we can harness the resource complementarity, which means that renewable resources of different types, such as wind and solar, or different locations can compensate for each other in time and space. This potential for spatial complementarity to improve system design has not been emphasized and quantified in existing large-scale planning.”Such complementarity will become ever more important as variable renewable energy sources account for a greater proportion of power entering the grid, she says. By coordinating the peaks and valleys of production and demand more smoothly, she says, “we are actually trying to use the natural variability itself to address the variability.”Typically, in planning large-scale renewable energy installations, Qiu says, “some work on a country level, for example saying that 30 percent of energy should be wind and 20 percent solar. That’s very general.” For this study, the team looked at both weather data and energy system planning modeling on a scale of less than 10-kilometer (about 6-mile) resolution. “It’s a way of determining where should we, exactly, build each renewable energy plant, rather than just saying this city should have this many wind or solar farms,” she explains.To compile their data and enable high-resolution planning, the researchers relied on a variety of sources that had not previously been integrated. They used high-resolution meteorological data from the National Renewable Energy Laboratory, which is publicly available at 2-kilometer resolution but rarely used in a planning model at such a fine scale. These data were combined with an energy system model they developed to optimize siting at a sub-10-kilometer resolution. To get a sense of how the fine-scale data and model made a difference in different regions, they focused on three U.S. regions — New England, Texas, and California — analyzing up to 138,271 possible siting locations simultaneously for a single region.By comparing the results of siting based on a typical method vs. their high-resolution approach, the team showed that “resource complementarity really helps us reduce the system cost by aligning renewable power generation with demand,” which should translate directly to real-world decision-making, Qiu says. “If an individual developer wants to build a wind or solar farm and just goes to where there is the most wind or solar resource on average, it may not necessarily guarantee the best fit into a decarbonized energy system.”That’s because of the complex interactions between production and demand for electricity, as both vary hour by hour, and month by month as seasons change. “What we are trying to do is minimize the difference between the energy supply and demand rather than simply supplying as much renewable energy as possible,” Qiu says. “Sometimes your generation cannot be utilized by the system, while at other times, you don’t have enough to match the demand.”In New England, for example, the new analysis shows there should be more wind farms in locations where there is a strong wind resource during the night, when solar energy is unavailable. Some locations tend to be windier at night, while others tend to have more wind during the day.These insights were revealed through the integration of high-resolution weather data and energy system optimization used by the researchers. When planning with lower resolution weather data, which was generated at a 30-kilometer resolution globally and is more commonly used in energy system planning, there was much less complementarity among renewable power plants. Consequently, the total system cost was much higher. The complementarity between wind and solar farms was enhanced by the high-resolution modeling due to improved representation of renewable resource variability.The researchers say their framework is very flexible and can be easily adapted to any region to account for the local geophysical and other conditions. In Texas, for example, peak winds in the west occur in the morning, while along the south coast they occur in the afternoon, so the two naturally complement each other.Khorramfar says that this work “highlights the importance of data-driven decision making in energy planning.” The work shows that using such high-resolution data coupled with carefully formulated energy planning model “can drive the system cost down, and ultimately offer more cost-effective pathways for energy transition.”One thing that was surprising about the findings, says Amin, who is a principal investigator in the MIT Laboratory of Information and Data Systems, is how significant the gains were from analyzing relatively short-term variations in inputs and outputs that take place in a 24-hour period. “The kind of cost-saving potential by trying to harness complementarity within a day was not something that one would have expected before this study,” he says.In addition, Amin says, it was also surprising how much this kind of modeling could reduce the need for storage as part of these energy systems. “This study shows that there is actually a hidden cost-saving potential in exploiting local patterns in weather, that can result in a monetary reduction in storage cost.”The system-level analysis and planning suggested by this study, Howland says, “changes how we think about where we site renewable power plants and how we design those renewable plants, so that they maximally serve the energy grid. It has to go beyond just driving down the cost of energy of individual wind or solar farms. And these new insights can only be realized if we continue collaborating across traditional research boundaries, by integrating expertise in fluid dynamics, atmospheric science, and energy engineering.”The research was supported by the MIT Climate and Sustainability Consortium and MIT Climate Grand Challenges. More

  • in

    MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16

    For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).Building coalitions of sub-national governmentsThe ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.Technology and AI for biodiversity conservationData, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.Shaping equitable marketsIn a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation. 

    Panelists pose at the equitable markets side event at the Latin American Pavilion in the Blue Zone.

    Previous item
    Next item

    The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks  — necessary to create an inclusive and transparent market.Informing an action plan for Afro-descendant communitiesThe Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:creating financial tools for conservation and supporting Afro-descendant land rights;including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;calling for increased representation of Afro-descendant communities in international policy forums;capacity-building for local governments; andstrategies for inclusive growth in green business and energy transition.These actions aim to promote inclusive and sustainable development for Afro-descendant populations.“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16. More

  • in

    Advancing urban tree monitoring with AI-powered digital twins

    The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Google, and Purdue University merges AI and tree-growth models with Google’s Auto Arborist data to create accurate 3D models of existing urban trees. The project has produced the first-ever large-scale database of 600,000 environmentally aware, simulation-ready tree models across North America.“We’re bridging decades of forestry science with modern AI capabilities,” says Sara Beery, MIT electrical engineering and computer science (EECS) assistant professor, MIT CSAIL principal investigator, and a co-author on a new paper about Tree-D Fusion. “This allows us to not just identify trees in cities, but to predict how they’ll grow and impact their surroundings over time. We’re not ignoring the past 30 years of work in understanding how to build these 3D synthetic models; instead, we’re using AI to make this existing knowledge more useful across a broader set of individual trees in cities around North America, and eventually the globe.”Tree-D Fusion builds on previous urban forest monitoring efforts that used Google Street View data, but branches it forward by generating complete 3D models from single images. While earlier attempts at tree modeling were limited to specific neighborhoods, or struggled with accuracy at scale, Tree-D Fusion can create detailed models that include typically hidden features, such as the back side of trees that aren’t visible in street-view photos.The technology’s practical applications extend far beyond mere observation. City planners could use Tree-D Fusion to one day peer into the future, anticipating where growing branches might tangle with power lines, or identifying neighborhoods where strategic tree placement could maximize cooling effects and air quality improvements. These predictive capabilities, the team says, could change urban forest management from reactive maintenance to proactive planning.A tree grows in Brooklyn (and many other places)The researchers took a hybrid approach to their method, using deep learning to create a 3D envelope of each tree’s shape, then using traditional procedural models to simulate realistic branch and leaf patterns based on the tree’s genus. This combo helped the model predict how trees would grow under different environmental conditions and climate scenarios, such as different possible local temperatures and varying access to groundwater.Now, as cities worldwide grapple with rising temperatures, this research offers a new window into the future of urban forests. In a collaboration with MIT’s Senseable City Lab, the Purdue University and Google team is embarking on a global study that re-imagines trees as living climate shields. Their digital modeling system captures the intricate dance of shade patterns throughout the seasons, revealing how strategic urban forestry could hopefully change sweltering city blocks into more naturally cooled neighborhoods.“Every time a street mapping vehicle passes through a city now, we’re not just taking snapshots — we’re watching these urban forests evolve in real-time,” says Beery. “This continuous monitoring creates a living digital forest that mirrors its physical counterpart, offering cities a powerful lens to observe how environmental stresses shape tree health and growth patterns across their urban landscape.”AI-based tree modeling has emerged as an ally in the quest for environmental justice: By mapping urban tree canopy in unprecedented detail, a sister project from the Google AI for Nature team has helped uncover disparities in green space access across different socioeconomic areas. “We’re not just studying urban forests — we’re trying to cultivate more equity,” says Beery. The team is now working closely with ecologists and tree health experts to refine these models, ensuring that as cities expand their green canopies, the benefits branch out to all residents equally.It’s a breezeWhile Tree-D fusion marks some major “growth” in the field, trees can be uniquely challenging for computer vision systems. Unlike the rigid structures of buildings or vehicles that current 3D modeling techniques handle well, trees are nature’s shape-shifters — swaying in the wind, interweaving branches with neighbors, and constantly changing their form as they grow. The Tree-D fusion models are “simulation-ready” in that they can estimate the shape of the trees in the future, depending on the environmental conditions.“What makes this work exciting is how it pushes us to rethink fundamental assumptions in computer vision,” says Beery. “While 3D scene understanding techniques like photogrammetry or NeRF [neural radiance fields] excel at capturing static objects, trees demand new approaches that can account for their dynamic nature, where even a gentle breeze can dramatically alter their structure from moment to moment.”The team’s approach of creating rough structural envelopes that approximate each tree’s form has proven remarkably effective, but certain issues remain unsolved. Perhaps the most vexing is the “entangled tree problem;” when neighboring trees grow into each other, their intertwined branches create a puzzle that no current AI system can fully unravel.The scientists see their dataset as a springboard for future innovations in computer vision, and they’re already exploring applications beyond street view imagery, looking to extend their approach to platforms like iNaturalist and wildlife camera traps.“This marks just the beginning for Tree-D Fusion,” says Jae Joong Lee, a Purdue University PhD student who developed, implemented and deployed the Tree-D-Fusion algorithm. “Together with my collaborators, I envision expanding the platform’s capabilities to a planetary scale. Our goal is to use AI-driven insights in service of natural ecosystems — supporting biodiversity, promoting global sustainability, and ultimately, benefiting the health of our entire planet.”Beery and Lee’s co-authors are Jonathan Huang, Scaled Foundations head of AI (formerly of Google); and four others from Purdue University: PhD students Jae Joong Lee and Bosheng Li, Professor and Dean’s Chair of Remote Sensing Songlin Fei, Assistant Professor Raymond Yeh, and Professor and Associate Head of Computer Science Bedrich Benes. Their work is based on efforts supported by the United States Department of Agriculture’s (USDA) Natural Resources Conservation Service and is directly supported by the USDA’s National Institute of Food and Agriculture. The researchers presented their findings at the European Conference on Computer Vision this month.  More

  • in

    Nanoscale transistors could enable more efficient electronics

    Silicon transistors, which are used to amplify and switch signals, are a critical component in most electronic devices, from smartphones to automobiles. But silicon semiconductor technology is held back by a fundamental physical limit that prevents transistors from operating below a certain voltage.This limit, known as “Boltzmann tyranny,” hinders the energy efficiency of computers and other electronics, especially with the rapid development of artificial intelligence technologies that demand faster computation.In an effort to overcome this fundamental limit of silicon, MIT researchers fabricated a different type of three-dimensional transistor using a unique set of ultrathin semiconductor materials.Their devices, featuring vertical nanowires only a few nanometers wide, can deliver performance comparable to state-of-the-art silicon transistors while operating efficiently at much lower voltages than conventional devices.“This is a technology with the potential to replace silicon, so you could use it with all the functions that silicon currently has, but with much better energy efficiency,” says Yanjie Shao, an MIT postdoc and lead author of a paper on the new transistors.The transistors leverage quantum mechanical properties to simultaneously achieve low-voltage operation and high performance within an area of just a few square nanometers. Their extremely small size would enable more of these 3D transistors to be packed onto a computer chip, resulting in fast, powerful electronics that are also more energy-efficient.“With conventional physics, there is only so far you can go. The work of Yanjie shows that we can do better than that, but we have to use different physics. There are many challenges yet to be overcome for this approach to be commercial in the future, but conceptually, it really is a breakthrough,” says senior author Jesús del Alamo, the Donner Professor of Engineering in the MIT Department of Electrical Engineering and Computer Science (EECS).They are joined on the paper by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering at MIT; EECS graduate student Hao Tang; MIT postdoc Baoming Wang; and professors Marco Pala and David Esseni of the University of Udine in Italy. The research appears today in Nature Electronics.Surpassing siliconIn electronic devices, silicon transistors often operate as switches. Applying a voltage to the transistor causes electrons to move over an energy barrier from one side to the other, switching the transistor from “off” to “on.” By switching, transistors represent binary digits to perform computation.A transistor’s switching slope reflects the sharpness of the “off” to “on” transition. The steeper the slope, the less voltage is needed to turn on the transistor and the greater its energy efficiency.But because of how electrons move across an energy barrier, Boltzmann tyranny requires a certain minimum voltage to switch the transistor at room temperature.To overcome the physical limit of silicon, the MIT researchers used a different set of semiconductor materials — gallium antimonide and indium arsenide — and designed their devices to leverage a unique phenomenon in quantum mechanics called quantum tunneling.Quantum tunneling is the ability of electrons to penetrate barriers. The researchers fabricated tunneling transistors, which leverage this property to encourage electrons to push through the energy barrier rather than going over it.“Now, you can turn the device on and off very easily,” Shao says.But while tunneling transistors can enable sharp switching slopes, they typically operate with low current, which hampers the performance of an electronic device. Higher current is necessary to create powerful transistor switches for demanding applications.Fine-grained fabricationUsing tools at MIT.nano, MIT’s state-of-the-art facility for nanoscale research, the engineers were able to carefully control the 3D geometry of their transistors, creating vertical nanowire heterostructures with a diameter of only 6 nanometers. They believe these are the smallest 3D transistors reported to date.Such precise engineering enabled them to achieve a sharp switching slope and high current simultaneously. This is possible because of a phenomenon called quantum confinement.Quantum confinement occurs when an electron is confined to a space that is so small that it can’t move around. When this happens, the effective mass of the electron and the properties of the material change, enabling stronger tunneling of the electron through a barrier.Because the transistors are so small, the researchers can engineer a very strong quantum confinement effect while also fabricating an extremely thin barrier.“We have a lot of flexibility to design these material heterostructures so we can achieve a very thin tunneling barrier, which enables us to get very high current,” Shao says.Precisely fabricating devices that were small enough to accomplish this was a major challenge.“We are really into single-nanometer dimensions with this work. Very few groups in the world can make good transistors in that range. Yanjie is extraordinarily capable to craft such well-functioning transistors that are so extremely small,” says del Alamo.When the researchers tested their devices, the sharpness of the switching slope was below the fundamental limit that can be achieved with conventional silicon transistors. Their devices also performed about 20 times better than similar tunneling transistors.“This is the first time we have been able to achieve such sharp switching steepness with this design,” Shao adds.The researchers are now striving to enhance their fabrication methods to make transistors more uniform across an entire chip. With such small devices, even a 1-nanometer variance can change the behavior of the electrons and affect device operation. They are also exploring vertical fin-shaped structures, in addition to vertical nanowire transistors, which could potentially improve the uniformity of devices on a chip.“This work definitively steps in the right direction, significantly improving the broken-gap tunnel field effect transistor (TFET) performance. It demonstrates steep-slope together with a record drive-current. It highlights the importance of small dimensions, extreme confinement, and low-defectivity materials and interfaces in the fabricated broken-gap TFET. These features have been realized through a well-mastered and nanometer-size-controlled process,” says Aryan Afzalian, a principal member of the technical staff at the nanoelectronics research organization imec, who was not involved with this work.This research is funded, in part, by Intel Corporation. More

  • in

    Study finds mercury pollution from human activities is declining

    MIT researchers have some good environmental news: Mercury emissions from human activity have been declining over the past two decades, despite global emissions inventories that indicate otherwise.In a new study, the researchers analyzed measurements from all available monitoring stations in the Northern Hemisphere and found that atmospheric concentrations of mercury declined by about 10 percent between 2005 and 2020.They used two separate modeling methods to determine what is driving that trend. Both techniques pointed to a decline in mercury emissions from human activity as the most likely cause.Global inventories, on the other hand, have reported opposite trends. These inventories estimate atmospheric emissions using models that incorporate average emission rates of polluting activities and the scale of these activities worldwide.“Our work shows that it is very important to learn from actual, on-the-ground data to try and improve our models and these emissions estimates. This is very relevant for policy because, if we are not able to accurately estimate past mercury emissions, how are we going to predict how mercury pollution will evolve in the future?” says Ari Feinberg, a former postdoc in the Institute for Data, Systems, and Society (IDSS) and lead author of the study.The new results could help inform scientists who are embarking on a collaborative, global effort to evaluate pollution models and develop a more in-depth understanding of what drives global atmospheric concentrations of mercury.However, due to a lack of data from global monitoring stations and limitations in the scientific understanding of mercury pollution, the researchers couldn’t pinpoint a definitive reason for the mismatch between the inventories and the recorded measurements.“It seems like mercury emissions are moving in the right direction, and could continue to do so, which is heartening to see. But this was as far as we could get with mercury. We need to keep measuring and advancing the science,” adds co-author Noelle Selin, an MIT professor in the IDSS and the Department of Earth, Atmospheric and Planetary Sciences (EAPS).Feinberg and Selin, his MIT postdoctoral advisor, are joined on the paper by an international team of researchers that contributed atmospheric mercury measurement data and statistical methods to the study. The research appears this week in the Proceedings of the National Academy of Sciences.Mercury mismatchThe Minamata Convention is a global treaty that aims to cut human-caused emissions of mercury, a potent neurotoxin that enters the atmosphere from sources like coal-fired power plants and small-scale gold mining.The treaty, which was signed in 2013 and went into force in 2017, is evaluated every five years. The first meeting of its conference of parties coincided with disheartening news reports that said global inventories of mercury emissions, compiled in part from information from national inventories, had increased despite international efforts to reduce them.This was puzzling news for environmental scientists like Selin. Data from monitoring stations showed atmospheric mercury concentrations declining during the same period.Bottom-up inventories combine emission factors, such as the amount of mercury that enters the atmosphere when coal mined in a certain region is burned, with estimates of pollution-causing activities, like how much of that coal is burned in power plants.“The big question we wanted to answer was: What is actually happening to mercury in the atmosphere and what does that say about anthropogenic emissions over time?” Selin says.Modeling mercury emissions is especially tricky. First, mercury is the only metal that is in liquid form at room temperature, so it has unique properties. Moreover, mercury that has been removed from the atmosphere by sinks like the ocean or land can be re-emitted later, making it hard to identify primary emission sources.At the same time, mercury is more difficult to study in laboratory settings than many other air pollutants, especially due to its toxicity, so scientists have limited understanding of all chemical reactions mercury can undergo. There is also a much smaller network of mercury monitoring stations, compared to other polluting gases like methane and nitrous oxide.“One of the challenges of our study was to come up with statistical methods that can address those data gaps, because available measurements come from different time periods and different measurement networks,” Feinberg says.Multifaceted modelsThe researchers compiled data from 51 stations in the Northern Hemisphere. They used statistical techniques to aggregate data from nearby stations, which helped them overcome data gaps and evaluate regional trends.By combining data from 11 regions, their analysis indicated that Northern Hemisphere atmospheric mercury concentrations declined by about 10 percent between 2005 and 2020.Then the researchers used two modeling methods — biogeochemical box modeling and chemical transport modeling — to explore possible causes of that decline.  Box modeling was used to run hundreds of thousands of simulations to evaluate a wide array of emission scenarios. Chemical transport modeling is more computationally expensive but enables researchers to assess the impacts of meteorology and spatial variations on trends in selected scenarios.For instance, they tested one hypothesis that there may be an additional environmental sink that is removing more mercury from the atmosphere than previously thought. The models would indicate the feasibility of an unknown sink of that magnitude.“As we went through each hypothesis systematically, we were pretty surprised that we could really point to declines in anthropogenic emissions as being the most likely cause,” Selin says.Their work underscores the importance of long-term mercury monitoring stations, Feinberg adds. Many stations the researchers evaluated are no longer operational because of a lack of funding.While their analysis couldn’t zero in on exactly why the emissions inventories didn’t match up with actual data, they have a few hypotheses.One possibility is that global inventories are missing key information from certain countries. For instance, the researchers resolved some discrepancies when they used a more detailed regional inventory from China. But there was still a gap between observations and estimates.They also suspect the discrepancy might be the result of changes in two large sources of mercury that are particularly uncertain: emissions from small-scale gold mining and mercury-containing products.Small-scale gold mining involves using mercury to extract gold from soil and is often performed in remote parts of developing countries, making it hard to estimate. Yet small-scale gold mining contributes about 40 percent of human-made emissions.In addition, it’s difficult to determine how long it takes the pollutant to be released into the atmosphere from discarded products like thermometers or scientific equipment.“We’re not there yet where we can really pinpoint which source is responsible for this discrepancy,” Feinberg says.In the future, researchers from multiple countries, including MIT, will collaborate to study and improve the models they use to estimate and evaluate emissions. This research will be influential in helping that project move the needle on monitoring mercury, he says.This research was funded by the Swiss National Science Foundation, the U.S. National Science Foundation, and the U.S. Environmental Protection Agency. More