More stories

  • in

    Study: Climate change will reduce the number of satellites that can safely orbit in space

    MIT aerospace engineers have found that greenhouse gas emissions are changing the environment of near-Earth space in ways that, over time, will reduce the number of satellites that can sustainably operate there.In a study appearing today in Nature Sustainability, the researchers report that carbon dioxide and other greenhouse gases can cause the upper atmosphere to shrink. An atmospheric layer of special interest is the thermosphere, where the International Space Station and most satellites orbit today. When the thermosphere contracts, the decreasing density reduces atmospheric drag — a force that pulls old satellites and other debris down to altitudes where they will encounter air molecules and burn up.Less drag therefore means extended lifetimes for space junk, which will litter sought-after regions for decades and increase the potential for collisions in orbit.The team carried out simulations of how carbon emissions affect the upper atmosphere and orbital dynamics, in order to estimate the “satellite carrying capacity” of low Earth orbit. These simulations predict that by the year 2100, the carrying capacity of the most popular regions could be reduced by 50-66 percent due to the effects of greenhouse gases.“Our behavior with greenhouse gases here on Earth over the past 100 years is having an effect on how we operate satellites over the next 100 years,” says study author Richard Linares, associate professor in MIT’s Department of Aeronautics and Astronautics (AeroAstro).“The upper atmosphere is in a fragile state as climate change disrupts the status quo,” adds lead author William Parker, a graduate student in AeroAstro. “At the same time, there’s been a massive increase in the number of satellites launched, especially for delivering broadband internet from space. If we don’t manage this activity carefully and work to reduce our emissions, space could become too crowded, leading to more collisions and debris.”The study includes co-author Matthew Brown of the University of Birmingham.Sky fallThe thermosphere naturally contracts and expands every 11 years in response to the sun’s regular activity cycle. When the sun’s activity is low, the Earth receives less radiation, and its outermost atmosphere temporarily cools and contracts before expanding again during solar maximum.In the 1990s, scientists wondered what response the thermosphere might have to greenhouse gases. Their preliminary modeling showed that, while the gases trap heat in the lower atmosphere, where we experience global warming and weather, the same gases radiate heat at much higher altitudes, effectively cooling the thermosphere. With this cooling, the researchers predicted that the thermosphere should shrink, reducing atmospheric density at high altitudes.In the last decade, scientists have been able to measure changes in drag on satellites, which has provided some evidence that the thermosphere is contracting in response to something more than the sun’s natural, 11-year cycle.“The sky is quite literally falling — just at a rate that’s on the scale of decades,” Parker says. “And we can see this by how the drag on our satellites is changing.”The MIT team wondered how that response will affect the number of satellites that can safely operate in Earth’s orbit. Today, there are over 10,000 satellites drifting through low Earth orbit, which describes the region of space up to 1,200 miles (2,000 kilometers), from Earth’s surface. These satellites deliver essential services, including internet, communications, navigation, weather forecasting, and banking. The satellite population has ballooned in recent years, requiring operators to perform regular collision-avoidance maneuvers to keep safe. Any collisions that do occur can generate debris that remains in orbit for decades or centuries, increasing the chance for follow-on collisions with satellites, both old and new.“More satellites have been launched in the last five years than in the preceding 60 years combined,” Parker says. “One of key things we’re trying to understand is whether the path we’re on today is sustainable.”Crowded shellsIn their new study, the researchers simulated different greenhouse gas emissions scenarios over the next century to investigate impacts on atmospheric density and drag. For each “shell,” or altitude range of interest, they then modeled the orbital dynamics and the risk of satellite collisions based on the number of objects within the shell. They used this approach to identify each shell’s “carrying capacity” — a term that is typically used in studies of ecology to describe the number of individuals that an ecosystem can support.“We’re taking that carrying capacity idea and translating it to this space sustainability problem, to understand how many satellites low Earth orbit can sustain,” Parker explains.The team compared several scenarios: one in which greenhouse gas concentrations remain at their level from the year 2000 and others where emissions change according to the Intergovernmental Panel on Climate Change (IPCC) Shared Socioeconomic Pathways (SSPs). They found that scenarios with continuing increases in emissions would lead to a significantly reduced carrying capacity throughout low Earth orbit.In particular, the team estimates that by the end of this century, the number of satellites safely accommodated within the altitudes of 200 and 1,000 kilometers could be reduced by 50 to 66 percent compared with a scenario in which emissions remain at year-2000 levels. If satellite capacity is exceeded, even in a local region, the researchers predict that the region will experience a “runaway instability,” or a cascade of collisions that would create so much debris that satellites could no longer safely operate there.Their predictions forecast out to the year 2100, but the team says that certain shells in the atmosphere today are already crowding up with satellites, particularly from recent “megaconstellations” such as SpaceX’s Starlink, which comprises fleets of thousands of small internet satellites.“The megaconstellation is a new trend, and we’re showing that because of climate change, we’re going to have a reduced capacity in orbit,” Linares says. “And in local regions, we’re close to approaching this capacity value today.”“We rely on the atmosphere to clean up our debris. If the atmosphere is changing, then the debris environment will change too,” Parker adds. “We show the long-term outlook on orbital debris is critically dependent on curbing our greenhouse gas emissions.”This research is supported, in part, by the U.S. National Science Foundation, the U.S. Air Force, and the U.K. Natural Environment Research Council. More

  • in

    Developing materials for stellar performance in fusion power plants

    When Zoe Fisher was in fourth grade, her art teacher asked her to draw her vision of a dream job on paper. At the time, those goals changed like the flavor of the week in an ice cream shop — “zookeeper” featured prominently for a while — but Zoe immediately knew what she wanted to put down: a mad scientist.When Fisher stumbled upon the drawing in her parents’ Chicago home recently, it felt serendipitous because, by all measures, she has realized that childhood dream. The second-year doctoral student at MIT’s Department of Nuclear Science and Engineering (NSE) is studying materials for fusion power plants at the Plasma Science and Fusion Center (PSFC) under the advisement of Michael Short, associate professor at NSE. Dennis Whyte, Hitachi America Professor of Engineering at NSE, serves as co-advisor.On track to an MIT educationGrowing up in Chicago, Fisher had heard her parents remarking on her reasoning abilities. When she was barely a preschooler she argued that she couldn’t have been found in a purple speckled egg, as her parents claimed they had done.Fisher didn’t put together just how much she had gravitated toward science until a high school physics teacher encouraged her to apply to MIT. Passionate about both the arts and sciences, she initially worried that pursuing science would be very rigid, without room for creativity. But she knows now that exploring solutions to problems requires plenty of creative thinking.It was a visit to MIT through the Weekend Immersion in Science and Engineering (WISE) that truly opened her eyes to the potential of an MIT education. “It just seemed like the undergraduate experience here is where you can be very unapologetically yourself. There’s no fronting something you don’t want to be like. There’s so much authenticity compared to most other colleges I looked at,” Fisher says. Once admitted, Campus Preview Weekend confirmed that she belonged. “We got to be silly and weird — a version of the Mafia game was a hit — and I was like, ‘These are my people,’” Fisher laughs.Pursuing fusion at NSEBefore she officially started as a first-year in 2018, Fisher enrolled in the Freshman Pre-Orientation Program (FPOP), which starts a week before orientation starts. Each FPOP zooms into one field. “I’d applied to the nuclear one simply because it sounded cool and I didn’t know anything about it,” Fisher says. She was intrigued right away. “They really got me with that ‘star in a bottle’ line,” she laughs. (The quest for commercial fusion is to create the energy equivalent of a star in a bottle). Excited by a talk by Zachary Hartwig, Robert N. Noyce Career Development Professor at NSE, Fisher asked if she could work on fusion as an undergraduate as part of an Undergraduate Research Opportunities Program (UROP) project. She started with modeling solders for power plants and was hooked. When Fisher requested more experimental work, Hartwig put her in touch with Research Scientist David Fischer at the Plasma Science and Fusion Center (PSFC). Fisher eventually moved on to explore superconductors, which eventually morphed into research for her master’s thesis.For her doctoral research, Fisher is extending her master’s work to explore defects in ceramics, specifically in alumina (aluminum oxide). Sapphire coatings are the single-crystal equivalent of alumina, an insulator being explored for use in fusion power plants. “I eventually want to figure out what types of charge defects form in ceramics during radiation damage so we can ultimately engineer radiation-resistant sapphire,” Fisher says.When you introduce a material in a fusion power plant, stray high-energy neutrons born from the plasma can collide and fundamentally reorder the lattice, which is likely to change a range of thermal, electrical, and structural properties. “Think of a scaffolding outside a building, with each one of those joints as a different atom that holds your material in place. If you go in and you pull a joint out, there’s a chance that you pulled out a joint that wasn’t structurally sound, in which case everything would be fine. But there’s also a chance that you pull a joint out and everything alters. And [such unpredictability] is a problem,” Fisher says. “We need to be able to account for exactly how these neutrons are going to alter the lattice property,” Fisher says, and it’s one of the topics her research explores.The studies, in turn, can function as a jumping-off point for irradiating superconductors. The goals are two-fold: “I want to figure out how I can make an industry-usable ceramic you can use to insulate the inside of a fusion power plant, and then also figure out if I can take this information that I’m getting with ceramics and make it superconductor-relevant,” Fisher says. “Superconductors are the electromagnets we will use to contain the plasma inside fusion power plants. However, they prove pretty difficult to study. Since they are also ceramic, you can draw a lot of parallels between alumina and yttrium barium copper oxide (YBCO), the specific superconductor we use,” she adds. Fisher is also excited about the many experiments she performs using a particle accelerator, one of which involves measuring exactly how surface thermal properties change during radiation.Sailing new pathsIt’s not just her research that Fisher loves. As an undergrad, and during her master’s, she was on the varsity sailing team. “I worked my way into sailing with literal Olympians, I did not see that coming,” she says. Fisher participates in Chicago’s Race to Mackinac and the Melges 15 Series every chance she gets. Of all the types of boats she has sailed, she prefers dinghy sailing the most. “It’s more physical, you have to throw yourself around a lot and there’s this immediate cause and effect, which I like,” Fisher says. She also teaches sailing lessons in the summer at MIT’s Sailing Pavilion — you can find her on a small motorboat, issuing orders through a speaker.Teaching has figured prominently throughout Fisher’s time at MIT. Through MISTI, Fisher has taught high school classes in Germany and a radiation and materials class in Armenia in her senior year. She was delighted by the food and culture in Armenia and by how excited people were to learn new ideas. Her love of teaching continues, as she has reached out to high schools in the Boston area. “I like talking to groups and getting them excited about fusion, or even maybe just the concept of attending graduate school,” Fisher says, adding that teaching the ropes of an experiment one-on-one is “one of the most rewarding things.”She also learned the value of resilience and quick thinking on various other MISTI trips. Despite her love of travel, Fisher has had a few harrowing experiences with tough situations and plans falling through at the last minute. It’s when she tells herself, “Well, the only thing that you’re gonna do is you’re gonna keep doing what you wanted to do.”That eyes-on-the-prize focus has stood Fisher in good stead, and continues to serve her well in her research today. More

  • in

    Will neutrons compromise the operation of superconducting magnets in a fusion plant?

    High-temperature superconducting magnets made from REBCO, an acronym for rare earth barium copper oxide, make it possible to create an intense magnetic field that can confine the extremely hot plasma needed for fusion reactions, which combine two hydrogen atoms to form an atom of helium, releasing a neutron in the process.But some early tests suggested that neutron irradiation inside a fusion power plant might instantaneously suppress the superconducting magnets’ ability to carry current without resistance (called critical current), potentially causing a reduction in the fusion power output.Now, a series of experiments has clearly demonstrated that this instantaneous effect of neutron bombardment, known as the “beam on effect,” should not be an issue during reactor operation, thus clearing the path for projects such as the ARC fusion system being developed by MIT spinoff company Commonwealth Fusion Systems.The findings were reported in the journal Superconducting Science and Technology, in a paper by MIT graduate student Alexis Devitre and professors Michael Short, Dennis Whyte, and Zachary Hartwig, along with six others.“Nobody really knew if it would be a concern,” Short explains. He recalls looking at these early findings: “Our group thought, man, somebody should really look into this. But now, luckily, the result of the paper is: It’s conclusively not a concern.”The possible issue first arose during some initial tests of the REBCO tapes planned for use in the ARC system. “I can remember the night when we first tried the experiment,” Devitre recalls. “We were all down in the accelerator lab, in the basement. It was a big shocker because suddenly the measurement we were looking at, the critical current, just went down by 30 percent” when it was measured under radiation conditions (approximating those of the fusion system), as opposed to when it was only measured after irradiation.Before that, researchers had irradiated the REBCO tapes and then tested them afterward, Short says. “We had the idea to measure while irradiating, the way it would be when the reactor’s really on,” he says. “And then we observed this giant difference, and we thought, oh, this is a big deal. It’s a margin you’d want to know about if you’re designing a reactor.”After a series of carefully calibrated tests, it turned out the drop in critical current was not caused by the irradiation at all, but was just an effect of temperature changes brought on by the proton beam used for the irradiation experiments. This is something that would not be a factor in an actual fusion plant, Short says.“We repeated experiments ‘oh so many times’ and collected about a thousand data points,” Devitre says. They then went through a detailed statistical analysis to show that the effects were exactly the same, under conditions where the material was just heated as when it was both heated and irradiated.This excluded the possibility that the instantaneous suppression of the critical current had anything to do with the “beam on effect,” at least within the sensitivity of their tests. “Our experiments are quite sensitive,” Short says. “We can never say there’s no effect, but we can say that there’s no important effect.”To carry out these tests required building a special facility for the purpose. Only a few such facilities exist in the world. “They’re all custom builds, and without this, we wouldn’t have been able to find out the answer,” he says.The finding that this specific issue is not a concern for the design of fusion plants “illustrates the power of negative results. If you can conclusively prove that something doesn’t happen, you can stop scientists from wasting their time hunting for something that doesn’t exist.” And in this case, Short says, “You can tell the fusion companies: ‘You might have thought this effect would be real, but we’ve proven that it’s not, and you can ignore it in your designs.’ So that’s one more risk retired.”That could be a relief to not only Commonwealth Fusion Systems but also several other companies that are also pursuing fusion plant designs, Devitre says. “There’s a bunch. And it’s not just fusion companies,” he adds. There remains the important issue of longer-term degradation of the REBCO that would occur over years or decades, which the group is presently investigating. Others are pursuing the use of these magnets for satellite thrusters and particle accelerators to study subatomic physics, where the effect could also have been a concern. For all these uses, “this is now one less thing to be concerned about,” Devitre says.The research team also included David Fischer, Kevin Woller, Maxwell Rae, Lauryn Kortman, and Zoe Fisher at MIT, and N. Riva at Proxima Fusion in Germany. This research was supported by Eni S.p.A. through the MIT Energy Initiative. More

  • in

    Rooftop panels, EV chargers, and smart thermostats could chip in to boost power grid resilience

    There’s a lot of untapped potential in our homes and vehicles that could be harnessed to reinforce local power grids and make them more resilient to unforeseen outages, a new study shows.In response to a cyber attack or natural disaster, a backup network of decentralized devices — such as residential solar panels, batteries, electric vehicles, heat pumps, and water heaters — could restore electricity or relieve stress on the grid, MIT engineers say.Such devices are “grid-edge” resources found close to the consumer rather than near central power plants, substations, or transmission lines. Grid-edge devices can independently generate, store, or tune their consumption of power. In their study, the research team shows how such devices could one day be called upon to either pump power into the grid, or rebalance it by dialing down or delaying their power use.In a paper appearing this week in the Proceedings of the National Academy of Sciences, the engineers present a blueprint for how grid-edge devices could reinforce the power grid through a “local electricity market.” Owners of grid-edge devices could subscribe to a regional market and essentially loan out their device to be part of a microgrid or a local network of on-call energy resources.In the event that the main power grid is compromised, an algorithm developed by the researchers would kick in for each local electricity market, to quickly determine which devices in the network are trustworthy. The algorithm would then identify the combination of trustworthy devices that would most effectively mitigate the power failure, by either pumping power into the grid or reducing the power they draw from it, by an amount that the algorithm would calculate and communicate to the relevant subscribers. The subscribers could then be compensated through the market, depending on their participation.The team illustrated this new framework through a number of grid attack scenarios, in which they considered failures at different levels of a power grid, from various sources such as a cyber attack or a natural disaster. Applying their algorithm, they showed that various networks of grid-edge devices were able to dissolve the various attacks.The results demonstrate that grid-edge devices such as rooftop solar panels, EV chargers, batteries, and smart thermostats (for HVAC devices or heat pumps) could be tapped to stabilize the power grid in the event of an attack.“All these small devices can do their little bit in terms of adjusting their consumption,” says study co-author Anu Annaswamy, a research scientist in MIT’s Department of Mechanical Engineering. “If we can harness our smart dishwashers, rooftop panels, and EVs, and put our combined shoulders to the wheel, we can really have a resilient grid.”The study’s MIT co-authors include lead author Vineet Nair and John Williams, along with collaborators from multiple institutions including the Indian Institute of Technology, the National Renewable Energy Laboratory, and elsewhere.Power boostThe team’s study is an extension of their broader work in adaptive control theory and designing systems to automatically adapt to changing conditions. Annaswamy, who leads the Active-Adaptive Control Laboratory at MIT, explores ways to boost the reliability of renewable energy sources such as solar power.“These renewables come with a strong temporal signature, in that we know for sure the sun will set every day, so the solar power will go away,” Annaswamy says. “How do you make up for the shortfall?”The researchers found the answer could lie in the many grid-edge devices that consumers are increasingly installing in their own homes.“There are lots of distributed energy resources that are coming up now, closer to the customer rather than near large power plants, and it’s mainly because of individual efforts to decarbonize,” Nair says. “So you have all this capability at the grid edge. Surely we should be able to put them to good use.”While considering ways to deal with drops in energy from the normal operation of renewable sources, the team also began to look into other causes of power dips, such as from cyber attacks. They wondered, in these malicious instances, whether and how the same grid-edge devices could step in to stabilize the grid following an unforeseen, targeted attack.Attack modeIn their new work, Annaswamy, Nair, and their colleagues developed a framework for incorporating grid-edge devices, and in particular, internet-of-things (IoT) devices, in a way that would support the larger grid in the event of an attack or disruption. IoT devices are physical objects that contain sensors and software that connect to the internet.For their new framework, named EUREICA (Efficient, Ultra-REsilient, IoT-Coordinated Assets), the researchers start with the assumption that one day, most grid-edge devices will also be IoT devices, enabling rooftop panels, EV chargers, and smart thermostats to wirelessly connect to a larger network of similarly independent and distributed devices. The team envisions that for a given region, such as a community of 1,000 homes, there exists a certain number of IoT devices that could potentially be enlisted in the region’s local network, or microgrid. Such a network would be managed by an operator, who would be able to communicate with operators of other nearby microgrids.If the main power grid is compromised or attacked, operators would run the researchers’ decision-making algorithm to determine trustworthy devices within the network that can pitch in to help mitigate the attack.The team tested the algorithm on a number of scenarios, such as a cyber attack in which all smart thermostats made by a certain manufacturer are hacked to raise their setpoints simultaneously to a degree that dramatically alters a region’s energy load and destabilizes the grid. The researchers also considered attacks and weather events that would shut off the transmission of energy at various levels and nodes throughout a power grid.“In our attacks we consider between 5 and 40 percent of the power being lost. We assume some nodes are attacked, and some are still available and have some IoT resources, whether a battery with energy available or an EV or HVAC device that’s controllable,” Nair explains. “So, our algorithm decides which of those houses can step in to either provide extra power generation to inject into the grid or reduce their demand to meet the shortfall.”In every scenario that they tested, the team found that the algorithm was able to successfully restabilize the grid and mitigate the attack or power failure. They acknowledge that to put in place such a network of grid-edge devices will require buy-in from customers, policymakers, and local officials, as well as innovations such as advanced power inverters that enable EVs to inject power back into the grid.“This is just the first of many steps that have to happen in quick succession for this idea of local electricity markets to be implemented and expanded upon,” Annaswamy says. “But we believe it’s a good start.”This work was supported, in part, by the U.S. Department of Energy and the MIT Energy Initiative. More

  • in

    Reducing carbon emissions from residential heating: A pathway forward

    In the race to reduce climate-warming carbon emissions, the buildings sector is falling behind. While carbon dioxide (CO2) emissions in the U.S. electric power sector dropped by 34 percent between 2005 and 2021, emissions in the building sector declined by only 18 percent in that same time period. Moreover, in extremely cold locations, burning natural gas to heat houses can make up a substantial share of the emissions portfolio. Therefore, steps to electrify buildings in general, and residential heating in particular, are essential for decarbonizing the U.S. energy system.But that change will increase demand for electricity and decrease demand for natural gas. What will be the net impact of those two changes on carbon emissions and on the cost of decarbonizing? And how will the electric power and natural gas sectors handle the new challenges involved in their long-term planning for future operations and infrastructure investments?A new study by MIT researchers with support from the MIT Energy Initiative (MITEI) Future Energy Systems Center unravels the impacts of various levels of electrification of residential space heating on the joint power and natural gas systems. A specially devised modeling framework enabled them to estimate not only the added costs and emissions for the power sector to meet the new demand, but also any changes in costs and emissions that result for the natural gas sector.The analyses brought some surprising outcomes. For example, they show that — under certain conditions — switching 80 percent of homes to heating by electricity could cut carbon emissions and at the same time significantly reduce costs over the combined natural gas and electric power sectors relative to the case in which there is only modest switching. That outcome depends on two changes: Consumers must install high-efficiency heat pumps plus take steps to prevent heat losses from their homes, and planners in the power and the natural gas sectors must work together as they make long-term infrastructure and operations decisions. Based on their findings, the researchers stress the need for strong state, regional, and national policies that encourage and support the steps that homeowners and industry planners can take to help decarbonize today’s building sector.A two-part modeling approachTo analyze the impacts of electrification of residential heating on costs and emissions in the combined power and gas sectors, a team of MIT experts in building technology, power systems modeling, optimization techniques, and more developed a two-part modeling framework. Team members included Rahman Khorramfar, a senior postdoc in MITEI and the Laboratory for Information and Decision Systems (LIDS); Morgan Santoni-Colvin SM ’23, a former MITEI graduate research assistant, now an associate at Energy and Environmental Economics, Inc.; Saurabh Amin, a professor in the Department of Civil and Environmental Engineering and principal investigator in LIDS; Audun Botterud, a principal research scientist in LIDS; Leslie Norford, a professor in the Department of Architecture; and Dharik Mallapragada, a former MITEI principal research scientist, now an assistant professor at New York University, who led the project. They describe their new methods and findings in a paper published in the journal Cell Reports Sustainability on Feb. 6.The first model in the framework quantifies how various levels of electrification will change end-use demand for electricity and for natural gas, and the impacts of possible energy-saving measures that homeowners can take to help. “To perform that analysis, we built a ‘bottom-up’ model — meaning that it looks at electricity and gas consumption of individual buildings and then aggregates their consumption to get an overall demand for power and for gas,” explains Khorramfar. By assuming a wide range of building “archetypes” — that is, groupings of buildings with similar physical characteristics and properties — coupled with trends in population growth, the team could explore how demand for electricity and for natural gas would change under each of five assumed electrification pathways: “business as usual” with modest electrification, medium electrification (about 60 percent of homes are electrified), high electrification (about 80 percent of homes make the change), and medium and high electrification with “envelope improvements,” such as sealing up heat leaks and adding insulation.The second part of the framework consists of a model that takes the demand results from the first model as inputs and “co-optimizes” the overall electricity and natural gas system to minimize annual investment and operating costs while adhering to any constraints, such as limits on emissions or on resource availability. The modeling framework thus enables the researchers to explore the impact of each electrification pathway on the infrastructure and operating costs of the two interacting sectors.The New England case study: A challenge for electrificationAs a case study, the researchers chose New England, a region where the weather is sometimes extremely cold and where burning natural gas to heat houses contributes significantly to overall emissions. “Critics will say that electrification is never going to happen [in New England]. It’s just too expensive,” comments Santoni-Colvin. But he notes that most studies focus on the electricity sector in isolation. The new framework considers the joint operation of the two sectors and then quantifies their respective costs and emissions. “We know that electrification will require large investments in the electricity infrastructure,” says Santoni-Colvin. “But what hasn’t been well quantified in the literature is the savings that we generate on the natural gas side by doing that — so, the system-level savings.”Using their framework, the MIT team performed model runs aimed at an 80 percent reduction in building-sector emissions relative to 1990 levels — a target consistent with regional policy goals for 2050. The researchers defined parameters including details about building archetypes, the regional electric power system, existing and potential renewable generating systems, battery storage, availability of natural gas, and other key factors describing New England.They then performed analyses assuming various scenarios with different mixes of home improvements. While most studies assume typical weather, they instead developed 20 projections of annual weather data based on historical weather patterns and adjusted for the effects of climate change through 2050. They then analyzed their five levels of electrification.Relative to business-as-usual projections, results from the framework showed that high electrification of residential heating could more than double the demand for electricity during peak periods and increase overall electricity demand by close to 60 percent. Assuming that building-envelope improvements are deployed in parallel with electrification reduces the magnitude and weather sensitivity of peak loads and creates overall efficiency gains that reduce the combined demand for electricity plus natural gas for home heating by up to 30 percent relative to the present day. Notably, a combination of high electrification and envelope improvements resulted in the lowest average cost for the overall electric power-natural gas system in 2050.Lessons learnedReplacing existing natural gas-burning furnaces and boilers with heat pumps reduces overall energy consumption. Santoni-Colvin calls it “something of an intuitive result” that could be expected because heat pumps are “just that much more efficient than old, fossil fuel-burning systems. But even so, we were surprised by the gains.”Other unexpected results include the importance of homeowners making more traditional energy efficiency improvements, such as adding insulation and sealing air leaks — steps supported by recent rebate policies. Those changes are critical to reducing costs that would otherwise be incurred for upgrading the electricity grid to accommodate the increased demand. “You can’t just go wild dropping heat pumps into everybody’s houses if you’re not also considering other ways to reduce peak loads. So it really requires an ‘all of the above’ approach to get to the most cost-effective outcome,” says Santoni-Colvin.Testing a range of weather outcomes also provided important insights. Demand for heating fuel is very weather-dependent, yet most studies are based on a limited set of weather data — often a “typical year.” The researchers found that electrification can lead to extended peak electric load events that can last for a few days during cold winters. Accordingly, the researchers conclude that there will be a continuing need for a “firm, dispatchable” source of electricity; that is, a power-generating system that can be relied on to produce power any time it’s needed — unlike solar and wind systems. As examples, they modeled some possible technologies, including power plants fired by a low-carbon fuel or by natural gas equipped with carbon capture equipment. But they point out that there’s no way of knowing what types of firm generators will be available in 2050. It could be a system that’s not yet mature, or perhaps doesn’t even exist today.In presenting their findings, the researchers note several caveats. For one thing, their analyses don’t include the estimated cost to homeowners of installing heat pumps. While that cost is widely discussed and debated, that issue is outside the scope of their current project.In addition, the study doesn’t specify what happens to existing natural gas pipelines. “Some homes are going to electrify and get off the gas system and not have to pay for it, leaving other homes with increasing rates because the gas system cost now has to be divided among fewer customers,” says Khorramfar. “That will inevitably raise equity questions that need to be addressed by policymakers.”Finally, the researchers note that policies are needed to drive residential electrification. Current financial support for installation of heat pumps and steps to make homes more thermally efficient are a good start. But such incentives must be coupled with a new approach to planning energy infrastructure investments. Traditionally, electric power planning and natural gas planning are performed separately. However, to decarbonize residential heating, the two sectors should coordinate when planning future operations and infrastructure needs. Results from the MIT analysis indicate that such cooperation could significantly reduce both emissions and costs for residential heating — a change that would yield a much-needed step toward decarbonizing the buildings sector as a whole. More

  • in

    J-WAFS: Supporting food and water research across MIT

    MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.Over the past decade, J-WAFS has invested approximately $25 million in direct research funding to support MIT faculty pursuing transformative research with the potential for significant impact. “Since awarding our first cohort of seed grants in 2015, it’s remarkable to look back and see that over 10 percent of the MIT faculty have benefited from J-WAFS funding,” observes J-WAFS Executive Director Renee J. Robins ’83. “Many of these professors hadn’t worked on water or food challenges before their first J-WAFS grant.” By fostering interdisciplinary collaborations and supporting high-risk, high-reward projects, J-WAFS has amplified the capacity of MIT faculty to pursue groundbreaking research that addresses some of the world’s most pressing challenges facing our water and food systems.Drawing MIT faculty to water and food researchJ-WAFS open calls for proposals enable faculty to explore bold ideas and develop impactful approaches to tackling critical water and food system challenges. Professor Patrick Doyle’s work in water purification exemplifies this impact. “Without J-WAFS, I would have never ventured into the field of water purification,” Doyle reflects. While previously focused on pharmaceutical manufacturing and drug delivery, exposure to J-WAFS-funded peers led him to apply his expertise in soft materials to water purification. “Both the funding and the J-WAFS community led me to be deeply engaged in understanding some of the key challenges in water purification and water security,” he explains.Similarly, Professor Otto Cordero of the Department of Civil and Environmental Engineering (CEE) leveraged J-WAFS funding to pivot his research into aquaculture. Cordero explains that his first J-WAFS seed grant “has been extremely influential for my lab because it allowed me to take a step in a new direction, with no preliminary data in hand.” Cordero’s expertise is in microbial communities. He was previous unfamiliar with aquaculture, but he saw the relevance of microbial communities the health of farmed aquatic organisms.Supporting early-career facultyNew assistant professors at MIT have particularly benefited from J-WAFS funding and support. J-WAFS has played a transformative role in shaping the careers and research trajectories of many new faculty members by encouraging them to explore novel research areas, and in many instances providing their first MIT research grant.Professor Ariel Furst reflects on how pivotal J-WAFS’ investment has been in advancing her research. “This was one of the first grants I received after starting at MIT, and it has truly shaped the development of my group’s research program,” Furst explains. With J-WAFS’ backing, her lab has achieved breakthroughs in chemical detection and remediation technologies for water. “The support of J-WAFS has enabled us to develop the platform funded through this work beyond the initial applications to the general detection of environmental contaminants and degradation of those contaminants,” she elaborates. Karthish Manthiram, now a professor of chemical engineering and chemistry at Caltech, explains how J-WAFS’ early investment enabled him and other young faculty to pursue ambitious ideas. “J-WAFS took a big risk on us,” Manthiram reflects. His research on breaking the nitrogen triple bond to make ammonia for fertilizer was initially met with skepticism. However, J-WAFS’ seed funding allowed his lab to lay the groundwork for breakthroughs that later attracted significant National Science Foundation (NSF) support. “That early funding from J-WAFS has been pivotal to our long-term success,” he notes. These stories underscore the broad impact of J-WAFS’ support for early-career faculty, and its commitment to empowering them to address critical global challenges and innovate boldly.Fueling follow-on funding J-WAFS seed grants enable faculty to explore nascent research areas, but external funding for continued work is usually necessary to achieve the full potential of these novel ideas. “It’s often hard to get funding for early stage or out-of-the-box ideas,” notes J-WAFS Director Professor John H. Lienhard V. “My hope, when I founded J-WAFS in 2014, was that seed grants would allow PIs [principal investigators] to prove out novel ideas so that they would be attractive for follow-on funding. And after 10 years, J-WAFS-funded research projects have brought more than $21 million in subsequent awards to MIT.”Professor Retsef Levi led a seed study on how agricultural supply chains affect food safety, with a team of faculty spanning the MIT schools Engineering and Science as well as the MIT Sloan School of Management. The team parlayed their seed grant research into a multi-million-dollar follow-on initiative. Levi reflects, “The J-WAFS seed funding allowed us to establish the initial credibility of our team, which was key to our success in obtaining large funding from several other agencies.”Dave Des Marais was an assistant professor in the Department of CEE when he received his first J-WAFS seed grant. The funding supported his research on how plant growth and physiology are controlled by genes and interact with the environment. The seed grant helped launch his lab’s work addressing enhancing climate change resilience in agricultural systems. The work led to his Faculty Early Career Development (CAREER) Award from the NSF, a prestigious honor for junior faculty members. Now an associate professor, Des Marais’ ongoing project to further investigate the mechanisms and consequences of genomic and environmental interactions is supported by the five-year, $1,490,000 NSF grant. “J-WAFS providing essential funding to get my new research underway,” comments Des Marais.Stimulating interdisciplinary collaborationDes Marais’ seed grant was also key to developing new collaborations. He explains, “the J-WAFS grant supported me to develop a collaboration with Professor Caroline Uhler in EECS/IDSS [the Department of Electrical Engineering and Computer Science/Institute for Data, Systems, and Society] that really shaped how I think about framing and testing hypotheses. One of the best things about J-WAFS is facilitating unexpected connections among MIT faculty with diverse yet complementary skill sets.”Professors A. John Hart of the Department of Mechanical Engineering and Benedetto Marelli of CEE also launched a new interdisciplinary collaboration with J-WAFS funding. They partnered to join expertise in biomaterials, microfabrication, and manufacturing, to create printed silk-based colorimetric sensors that detect food spoilage. “The J-WAFS Seed Grant provided a unique opportunity for multidisciplinary collaboration,” Hart notes.Professors Stephen Graves in the MIT Sloan School of Management and Bishwapriya Sanyal in the Department of Urban Studies and Planning (DUSP) partnered to pursue new research on agricultural supply chains. With field work in Senegal, their J-WAFS-supported project brought together international development specialists and operations management experts to study how small firms and government agencies influence access to and uptake of irrigation technology by poorer farmers. “We used J-WAFS to spur a collaboration that would have been improbable without this grant,” they explain. Being part of the J-WAFS community also introduced them to researchers in Professor Amos Winter’s lab in the Department of Mechanical Engineering working on irrigation technologies for low-resource settings. DUSP doctoral candidate Mark Brennan notes, “We got to share our understanding of how irrigation markets and irrigation supply chains work in developing economies, and then we got to contrast that with their understanding of how irrigation system models work.”Timothy Swager, professor of chemistry, and Rohit Karnik, professor of mechanical engineering and J-WAFS associate director, collaborated on a sponsored research project supported by Xylem, Inc. through the J-WAFS Research Affiliate program. The cross-disciplinary research, which targeted the development of ultra-sensitive sensors for toxic PFAS chemicals, was conceived following a series of workshops hosted by J-WAFS. Swager and Karnik were two of the participants, and their involvement led to the collaborative proposal that Xylem funded. “J-WAFS funding allowed us to combine Swager lab’s expertise in sensing with my lab’s expertise in microfluidics to develop a cartridge for field-portable detection of PFAS,” says Karnik. “J-WAFS has enriched my research program in so many ways,” adds Swager, who is now working to commercialize the technology.Driving global collaboration and impactJ-WAFS has also helped MIT faculty establish and advance international collaboration and impactful global research. By funding and supporting projects that connect MIT researchers with international partners, J-WAFS has not only advanced technological solutions, but also strengthened cross-cultural understanding and engagement.Professor Matthew Shoulders leads the inaugural J-WAFS Grand Challenge project. In response to the first J-WAFS call for “Grand Challenge” proposals, Shoulders assembled an interdisciplinary team based at MIT to enhance and provide climate resilience to agriculture by improving the most inefficient aspect of photosynthesis, the notoriously-inefficient carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk/high-reward project following a competitive process that engaged external reviewers through a several rounds of iterative proposal development. The technical feedback to the team led them to researchers with complementary expertise from the Australian National University. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”Professor Leon Glicksman and Research Engineer Eric Verploegen’s team designed a low-cost cooling chamber to preserve fruits and vegetables harvested by smallholder farmers with no access to cold chain storage. J-WAFS’ guidance motivated the team to prioritize practical considerations informed by local collaborators, ensuring market competitiveness. “As our new idea for a forced-air evaporative cooling chamber was taking shape, we continually checked that our solution was evolving in a direction that would be competitive in terms of cost, performance, and usability to existing commercial alternatives,” explains Verploegen. Following the team’s initial seed grant, the team secured a J-WAFS Solutions commercialization grant, which Verploegen say “further motivated us to establish partnerships with local organizations capable of commercializing the technology earlier in the project than we might have done otherwise.” The team has since shared an open-source design as part of its commercialization strategy to maximize accessibility and impact.Bringing corporate sponsored research opportunities to MIT facultyJ-WAFS also plays a role in driving private partnerships, enabling collaborations that bridge industry and academia. Through its Research Affiliate Program, for example, J-WAFS provides opportunities for faculty to collaborate with industry on sponsored research, helping to convert scientific discoveries into licensable intellectual property (IP) that companies can turn into commercial products and services.J-WAFS introduced professor of mechanical engineering Alex Slocum to a challenge presented by its research affiliate company, Xylem: how to design a more energy-efficient pump for fluctuating flows. With centrifugal pumps consuming an estimated 6 percent of U.S. electricity annually, Slocum and his then-graduate student Hilary Johnson SM ’18, PhD ’22 developed an innovative variable volute mechanism that reduces energy usage. “Xylem envisions this as the first in a new category of adaptive pump geometry,” comments Johnson. The research produced a pump prototype and related IP that Xylem is working on commercializing. Johnson notes that these outcomes “would not have been possible without J-WAFS support and facilitation of the Xylem industry partnership.” Slocum adds, “J-WAFS enabled Hilary to begin her work on pumps, and Xylem sponsored the research to bring her to this point … where she has an opportunity to do far more than the original project called for.”Swager speaks highly of the impact of corporate research sponsorship through J-WAFS on his research and technology translation efforts. His PFAS project with Karnik described above was also supported by Xylem. “Xylem was an excellent sponsor of our research. Their engagement and feedback were instrumental in advancing our PFAS detection technology, now on the path to commercialization,” Swager says.Looking forwardWhat J-WAFS has accomplished is more than a collection of research projects; a decade of impact demonstrates how J-WAFS’ approach has been transformative for many MIT faculty members. As Professor Mathias Kolle puts it, his engagement with J-WAFS “had a significant influence on how we think about our research and its broader impacts.” He adds that it “opened my eyes to the challenges in the field of water and food systems and the many different creative ideas that are explored by MIT.” This thriving ecosystem of innovation, collaboration, and academic growth around water and food research has not only helped faculty build interdisciplinary and international partnerships, but has also led to the commercialization of transformative technologies with real-world applications. C. Cem Taşan, the POSCO Associate Professor of Metallurgy who is leading a J-WAFS Solutions commercialization team that is about to launch a startup company, sums it up by noting, “Without J-WAFS, we wouldn’t be here at all.”  As J-WAFS looks to the future, its continued commitment — supported by the generosity of its donors and partners — builds on a decade of success enabling MIT faculty to advance water and food research that addresses some of the world’s most pressing challenges. More

  • in

    Pivot Bio is using microbial nitrogen to make agriculture more sustainable

    The Haber-Bosch process, which converts atmospheric nitrogen to make ammonia fertilizer, revolutionized agriculture and helped feed the world’s growing population, but it also created huge environmental problems. It is one of the most energy-intensive chemical processes in the world, responsible for 1-2 percent of global energy consumption. It also releases nitrous oxide, a potent greenhouse gas that harms the ozone layer. Excess nitrogen also routinely runs off farms into waterways, harming marine life and polluting groundwater.In place of synthetic fertilizer, Pivot Bio has engineered nitrogen-producing microbes to make farming more sustainable. The company, which was co-founded by Professor Chris Voigt, Karsten Temme, and Alvin Tamsir, has engineered its microbes to grow on plant roots, where they feed on the root’s sugars and precisely deliver nitrogen in return.Pivot’s microbial colonies grow with the plant and produce more nitrogen at exactly the time the plant needs it, minimizing nitrogen runoff.“The way we have delivered nutrients to support plant growth historically is fertilizer, but that’s an inefficient way to get all the nutrients you need,” says Temme, Pivot’s chief innovation officer. “We have the ability now to help farmers be more efficient and productive with microbes.”Farmers can replace up to 40 pounds per acre of traditional nitrogen with Pivot’s product, which amounts to about a quarter of the total nitrogen needed for a crop like corn.Pivot’s products are already being used to grow corn, wheat, barley, oats, and other grains across millions of acres of American farmland, eliminating hundreds of thousands of tons of CO2 equivalent in the process. The company’s impact is even more striking given its unlikely origins, which trace back to one of the most challenging times of Voigt’s career.A Pivot from despairThe beginning of every faculty member’s career can be a sink-or-swim moment, and by Voigt’s own account, he was drowning. As a freshly minted assistant professor at the University of California at San Francisco, Voigt was struggling to stand up his lab, attract funding, and get experiments started.Around 2008, Voigt joined a research group out of the University of California at Berkeley that was writing a grant proposal focused on photovoltaic materials. His initial role was minor, but a senior researcher pulled out of the group a week before the proposal had to be submitted, so Voigt stepped up.“I said ‘I’ll finish this section in a week,’” Voigt recalls. “It was my big chance.”For the proposal, Voigt detailed an ambitious plan to rearrange the genetics of biologic photosynthetic systems to make them more efficient. He barely submitted it in time.A few months went by, then the proposal reviews finally came back. Voigt hurried to the meeting with some of the most senior researchers at UC Berkeley to discuss the responses.“My part of the proposal got completely slammed,” Voigt says. “There were something like 15 reviews on it — they were longer than the actual grant — and it’s just one after another tearing into my proposal. All the most famous people are in this meeting, future energy secretaries, future leaders of the university, and it was totally embarrassing. After that meeting, I was considering leaving academia.”A few discouraging months later, Voigt got a call from Paul Ludden, the dean of the School of Science at UC Berkeley. He wanted to talk.“As I walk into Paul’s office, he’s reading my proposal,” Voigt recalls. “He sits me down and says, ‘Everybody’s telling me how terrible this is.’ I’m thinking, ‘Oh my God.’ But then he says, ‘I think there’s something here. Your idea is good, you just picked the wrong system.’”Ludden went on to explain to Voigt that he should apply his gene-swapping idea to nitrogen fixation. He even offered to send Voigt a postdoc from his lab, Dehua Zhao, to help. Voigt paired Zhao with Temme, and sure enough, the resulting 2011 paper of their work was well-received by the nitrogen fixation community.“Nitrogen fixation has been a holy grail for scientists, agronomists, and farmers for almost a century, ever since somebody discovered the first microbe that can fix nitrogen for legumes like soybeans,” Temme says. “Everybody always said that someday we’ll be able to do this for the cereal crops. The excitement with Pivot was this is the first time that technology became accessible.”Voigt had moved to MIT in 2010. When the paper came out, he founded Pivot Bio with Temme and another Berkeley researcher, Alvin Tamsir. Since then, Voigt, who is the Daniel I.C. Wang Professor at MIT and the head of the Department of Biological Engineering, has continued collaborating with Pivot on things like increasing nitrogen production, making strains more stable, and making them inducible to different signals from the plant. Pivot has licensed technology from MIT, and the research has also received support from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).Pivot’s first goals were to gain regulatory approval and prove themselves in the marketplace. To gain approval in the U.S., Pivot’s team focused on using DNA from within the same organism rather than bringing in totally new DNA, which simplified the approval process. It also partnered with independent corn seed dealers to get its product to farms. Early deployments occurred in 2019.Farmers apply Pivot’s product at planting, either as a liquid that gets sprayed on the soil or as a dry powder that is rehydrated and applied to the seeds as a coating. The microbes live on the surface of the growing root system, eating plant sugars and releasing nitrogen throughout the plant’s life cycle.“Today, our microbes colonize just a fraction of the total sugars provided by the plant,” Temme explains. “They’re also sharing ammonia with the plant, and all of those things are just a portion of what’s possible technically. Our team is always trying to figure out how to make those microbes more efficient at getting the energy they need to grow or at fixing nitrogen and sharing it with the crop.”In 2023, Pivot started the N-Ovator program to connect companies with growers who practice sustainable farming using Pivot’s microbial nitrogen. Through the program, companies buy nitrogen credits and farmers can get paid by verifying their practices. The program was named one of the Inventions of the Year by Time Magazine last year and has paid out millions of dollars to farmers to date.Microbial nitrogen and beyondPivot is currently selling to farmers across the U.S. and working with smallholder farmers in Kenya. It’s also hoping to gain approval for its microbial solution in Brazil and Canada, which it hopes will be its next markets.”How do we get the economics to make sense for everybody — the farmers, our partners, and the company?” Temme says of Pivot’s mission. “Because this truly can be a deflationary technology that upends the very expensive traditional way of making fertilizer.”Pivot’s team is also extending the product to cotton, and Temme says microbes can be a nitrogen source for any type of plant on the planet. Further down the line, the company believes it can help farmers with other nutrients essential to help their crops grow.“Now that we’ve established our technology, how can Pivot help farmers overcome all the other limitations they face with crop nutrients to maximize yields?” Temme asks. “That really starts to change the way a farmer thinks about managing the entire acre from a price, productivity, and sustainability perspective.” More

  • in

    Creating smart buildings with privacy-first sensors

    Gaining a better understanding of how people move through the spaces where they live and work could make those spaces safer and more sustainable. But no one wants cameras watching them 24/7.Two former Media Lab researchers think they have a solution. Their company, Butlr, offers places like skilled nursing facilities, offices, and senior living communities a way to understand how people are using buildings without compromising privacy. Butlr uses low-resolution thermal sensors and an analytics platform to help detect falls in elderly populations, save energy, and optimize spaces for work.“We have this vision of using the right technology to understand people’s movements and behaviors in space,” says Jiani Zeng SM ’20, who co-founded Butlr with former Media Lab research affiliate Honghao Deng. “So many resources today go toward cameras and AI that take away people’s privacy. We believe we can make our environments safer, healthier, and more sustainable without violating privacy.”To date, the company has sold more than 20,000 of its privacy-preserving sensors to senior living and skilled nursing facilities as well as businesses with large building footprints, including Verizon, Netflix, and Microsoft. In the future, Butlr hopes to enable more dynamic spaces that can understand and respond to the ways people use them.“Space should be like a digital user interface: It should be multi-use and responsive to your needs,” Deng says. “If the office has a big room with people working individually, it should automatically separate into smaller rooms, or lights and temperature should be adjusted to save energy.”Building intelligence, with privacyAs an undergraduate at Tianjin University in China, Deng joined the Media Lab’s City Science Group as a visiting student in 2016. He went on to complete his master’s at Harvard University, but he returned to the Media Lab as a research affiliate and led projects around what he calls responsive architecture: spaces that can understand their users’ needs through non-camera sensors.“My vision of the future of building environments emerged from the Media Lab,” Deng says. “The real world is the largest user interface around us — it’s not the screens. We all live in a three-dimensional world and yet, unlike the digital world, this user interface doesn’t yet understand our needs, let alone the critical situations when someone falls in a room. That could be life-saving.”Zeng came to MIT as a master’s student in the Integrated Design and Management program, which was run jointly out of the MIT Sloan School of Management and the School of Engineering. She also worked as a research assistant at the Media Lab and the Computer Science and Artificial Intelligence Lab (CSAIL).The pair met during a hackathon at the Media Lab and continued collaborating on various projects. During that time, they worked with MIT’s Venture Mentoring Service (VMS) and the MIT I-Corps Program. When they graduated in 2019, they decided to start a company based on the idea of creating smart buildings with privacy-preserving sensors. Crucial early funding came from the Media Lab-affiliated E14 Fund.“I tell every single MIT founder they should have the E14 Fund in their cap table,” Deng says. “They understand what it takes to go from an MIT student to a founder, and to transition from the ‘scientist brain’ to the ‘inventor brain.’ We wouldn’t be where we are today without MIT.”Ray Stata ’57, SM ’58, the founder of Analog Devices, is also an investor in Butlr and serves as Butlr’s board director.“We would love to give back to the MIT community once we become successful entrepreneurs like Ray, whose advice and mentoring has been invaluable,” Deng says.After launching, the founders had to find the right early customers for their real-time sensors, which can discern rough body shapes but no personally identifiable information. They interviewed hundreds of people before starting with owners of office spaces.“People have zero baseline data on what’s happening in their workplace,” Deng says. “That’s especially true since the Covid-19 pandemic made people hybrid, which has opened huge opportunities to cut the energy use of large office spaces. Sometimes, the only people in these buildings are the receptionist and the cleaner.”Butlr’s multiyear, battery-powered sensors can track daily occupancy in each room and give other insights into space utilization that can be used to reduce energy use. For companies with a lot of office space, the opportunities are immense. One Butlr customer has 40 building leases. Deng says optimizing the HVAC controls based on usage could amount to millions of dollars saved.“We can be like the Google Analytics for these spaces without any concerns in terms of privacy,” Deng says.The founders also knew the problem went well beyond office spaces.“In skilled nursing facilities, instead of office spaces it’s individual rooms, all with people who may need the nurse’s help,” Deng says. “But the nurses have no visibility into what’s happening unless they physically enter the room.”Acute care environments and senior living facilities are another key market for Butlr. The company’s platform can detect falls and instances when someone isn’t getting out of bed to alert staff. The system integrates with nurse calling systems to alert staff when something is wrong.The “nerve cells” of the buildingButlr is continuing to develop analytics that give important insights into spaces. For instance, today the platform can use information around movement in elderly populations to help detect problems like urinary tract infections. Butlr also recently started a collaboration with Harvard Medical School’s Beth Israel Deaconess Medical Center and the University of Massachusetts at Amherst’s Artificial Intelligence and Technology Center for Connected Care in Aging and Alzheimer’s Disease. Through the project, Butlr will try to detect changes in movement that could indicate declining cognitive or physical abilities. Those insights could be used to provide aging patients with more supervision.“In the near term we are preventing falls, but the vision is when you look up in any buildings or homes, you’ll see Butlr,” Deng says. “This could allow older adults to age in place with dignity and privacy.”More broadly, Butlr’s founders see their work as an important way to shape the future of AI technology, which is expected to be a growing part of everyone’s lives.“We’re the nerve cells in the building, not the eyes,” Deng says. “That’s the future of AI we believe in: AI that can transform regular rooms into spaces that understand people and can use that understanding to do everything from making efficiency improvements to saving lives in senior care communities. That’s the right way to use this powerful technology.” More