More stories

  • in

    Michael Howland gives wind energy a lift

    Michael Howland was in his office at MIT, watching real-time data from a wind farm 7,000 miles away in northwest India, when he noticed something odd: Some of the turbines weren’t producing the expected amount of electricity.

    Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering, studies the physics of the Earth’s atmosphere and how that information can optimize renewable energy systems. To accomplish this, he and his team develop and use predictive models, supercomputer simulations, and real-life data from wind farms, such as the one in India.

    The global wind power market is one of the most cost-competitive and resilient power sources across the world, the Global Wind Energy Council reported last year. The year 2020 saw record growth in wind power capacity, thanks to a surge of installations in China and the United States. Yet wind power needs to grow three times faster in the coming decade to address the worst impacts of climate change and achieve federal and state climate goals, the report says.

    “Optimal wind farm design and the resulting cost of energy are dependent on the wind,” Howland says. “But wind farms are often sited and designed based on short-term historical climate records.”

    In October 2021, Howland received a Seed Fund grant from the MIT Energy Initiative (MITEI) to account for how climate change might affect the wind of the future. “Our initial results suggest that considering the uncertainty in the winds in the design and operation of wind farms can lead to more reliable energy production,” he says.

    Most recently, Howland and his team came up with a model that predicts the power produced by each individual turbine based on the physics of the wind farm as a whole. The model can inform decisions that may boost a farm’s overall output.

    The state of the planet

    Growing up in a suburb of Philadelphia, the son of neuroscientists, Howland’s childhood wasn’t especially outdoorsy. Later, he’d become an avid hiker with a deep appreciation for nature, but a ninth-grade class assignment made him think about the state of the planet, perhaps for the first time.

    A history teacher had asked the class to write a report on climate change. “I remember arguing with my high school classmates about whether humans were the leading cause of climate change, but the teacher didn’t want to get into that debate,” Howland recalls. “He said climate change was happening, whether or not you accept that it’s anthropogenic, and he wanted us to think about the impacts of global warming, and solutions. I was one of his vigorous defenders.”

    As part of a research internship after his first year of college, Howland visited a wind farm in Iowa, where wind produces more than half of the state’s electricity. “The turbines look tall from the highway, but when you’re underneath them, you’re really struck by their scale,” he says. “That’s where you get a sense of how colossal they really are.” (Not a fan of heights, Howland opted not to climb the turbine’s internal ladder to snap a photo from the top.)

    After receiving an undergraduate degree from Johns Hopkins University and master’s and PhD degrees in mechanical engineering from Stanford University, he joined MIT’s Department of Civil and Environmental Engineering to focus on the intersection of fluid mechanics, weather, climate, and energy modeling. His goal is to enhance renewable energy systems.

    An added bonus to being at MIT is the opportunity to inspire the next generation, much like his ninth-grade history teacher did for him. Howland’s graduate-level introduction to the atmospheric boundary layer is geared primarily to engineers and physicists, but as he sees it, climate change is such a multidisciplinary and complex challenge that “every skill set that exists in human society can be relevant to mitigating it.”

    “There are the physics and engineering questions that our lab primarily works on, but there are also questions related to social sciences, public acceptance, policymaking, and implementation,” he says. “Careers in renewable energy are rapidly growing. There are far more job openings than we can hire for right now. In many areas, we don’t yet have enough people to address the challenges in renewable energy and climate change mitigation that need to be solved.

    “I encourage my students — really, everyone I interact with — to find a way to impact the climate change problem,” he says.

    Unusual conditions

    In fall 2021, Howland was trying to explain the odd data coming in from India.

    Based on sensor feedback, wind turbines’ software-driven control systems constantly tweak the speed and the angle of the blades, and what’s known as yaw — the orientation of the giant blades in relation to the wind direction.

    Existing utility-scale turbines are controlled “greedily,” which means that every turbine in the farm automatically turns into the wind to maximize its own power production.

    Though the turbines in the front row of the Indian wind farm were reacting appropriately to the wind direction, their power output was all over the place. “Not what we would expect based on the existing models,” Howland says.

    These massive turbine towers stood at 100 meters, about the length of a football field, with blades the length of an Olympic swimming pool. At their highest point, the blade tips lunged almost 200 meters into the sky.

    Then there’s the speed of the blades themselves: The tips move many times faster than the wind, around 80 to 100 meters per second — up to a quarter or a third of the speed of sound.

    Using a state-of-the-art sensor that measures the speed of incoming wind before it interacts with the massive rotors, Howland’s team saw an unexpectedly complex airflow effect. He covers the phenomenon in his class. The data coming in from India, he says, displayed “quite remarkable wind conditions stemming from the effects of Earth’s rotation and the physics of buoyancy 
that you don’t always see.”

    Traditionally, wind turbines operate in the lowest 10 percent of the atmospheric boundary layer — the so-called surface layer — which is affected primarily by ground conditions. The Indian turbines, Howland realized, were operating in regions of the atmosphere that turbines haven’t historically accessed.

    Trending taller

    Howland knew that airflow interactions can persist for kilometers. The interaction of high winds with the front-row turbines was generating wakes in the air similar to the way boats generate wakes in the water.

    To address this, Howland’s model trades off the efficiency of upwind turbines to benefit downwind ones. By misaligning some of the upwind turbines in certain conditions, the downwind units experience less wake turbulence, increasing the overall energy output of the wind farm by as much as 1 percent to 3 percent, without requiring additional costs. If a 1.2 percent energy increase was applied to the world’s existing wind farms, it would be the equivalent of adding more than 3,600 new wind turbines — enough to power about 3 million homes.

    Even a modest boost could mean fewer turbines generating the same output, or the ability to place more units into a smaller space, because negative interactions between the turbines can be diminished.

    Howland says the model can predict potential benefits in a variety of scenarios at different types of wind farms. “The part that’s important and exciting is that it’s not just particular to this wind farm. We can apply the collective control method across the wind farm fleet,” he says, which is growing taller and wider.

    By 2035, the average hub height for offshore turbines in the United States is projected to grow from 100 meters to around 150 meters — the height of the Washington Monument.

    “As we continue to build larger wind turbines and larger wind farms, we need to revisit the existing practice for their design and control,” Howland says. “We can use our predictive models to ensure that we build and operate the most efficient renewable generators possible.”

    Looking to the future

    Howland and other climate watchers have reason for optimism with the passage in August 2022 of the Inflation Reduction Act, which calls for a significant investment in domestic energy production and for reducing carbon emissions by roughly 40 percent by 2030.

    But Howland says the act itself isn’t sufficient. “We need to continue pushing the envelope in research and development as well as deployment,” he says. The model he created with his team can help, especially for offshore wind farms experiencing low wind turbulence and larger wake interactions.

    Offshore wind can face challenges of public acceptance. Howland believes that researchers, policymakers, and the energy industry need to do more to get the public on board by addressing concerns through open public dialogue, outreach, and education.

    Howland once wrote and illustrated a children’s book, inspired by Dr. Seuss’s “The Lorax,” that focused on renewable energy. Howland recalls his “really terrible illustrations,” but he believes he was onto something. “I was having some fun helping people interact with alternative energy in a more natural way at an earlier age,” he says, “and recognize that these are not nefarious technologies, but remarkable feats of human ingenuity.” More

  • in

    MIT Center for Real Estate advances climate and sustainable real estate research agenda

    Real estate investors are increasingly putting sustainability at the center of their decision-making processes, given the close association between climate risk and real estate assets, both of which are location-based.

    This growing emphasis comes at a time when the real estate industry is one of the biggest contributors to global warming; its embodied and operational carbon accounts for more than one-third of total carbon emissions. More stringent building decarbonization regulations are putting pressure on real estate owners and investors, who must invest heavily to retrofit their buildings or pay “carbon penalties” and see their assets lose value.

    The impacts of acute and chronic climate risks — flooding, hurricanes, wildfires, droughts, sea-level rise, and extreme weather — are becoming more salient. Action across all areas of the real estate sector will be required to limit the social and economic risks arising from the climate crisis. But what business and policy levers are most effective at guiding the industry toward a more sustainable future?

    The MIT Center for Real Estate (MIT/CRE) believes that the real estate industry can be a catalyst for the rapid mobilization of a global transition to a greener society. Since its inception in 1983, MIT/CRE has focused on the physical aspect of real estate, especially the development industry, and how the built environment gets produced and changed.

    “The real estate industry is now at the critical moment to address the climate crisis. That is why our center initiated this major research agenda on climate and real estate two years ago,” says William Wheaton, a former director of MIT/CRE and professor emeritus in MIT’s Department of Economics, who is leading a research project on the impact of flood risks in real estate markets.

    Producing high-quality research to support climate actions

    The work of scientists and practitioners responding to the climate crisis is often bifurcated into mitigation or adaptation responses. Mitigation seeks to reduce the severity of the climate crisis by addressing emissions, while adaptation efforts seek to anticipate the most severe effects of the crisis and minimize potential risks to people and the built environment.

    The fundamental nature of the real estate industry — location-based and capital-intensive — enables potential meaningful action for both mitigation and adaptation interventions. Exploring both avenues, MIT/CRE faculty and researchers have published academic papers exploring how chronic climate events such as extreme temperatures lower people’s expressed happiness and also disrupt habits of daily life; and how acute climate events such as hurricanes damage the built environment and decrease the financial value of real estate.

    “This ongoing research production centers on industry’s imperative to take action quickly, the real losses resulting from inaction, and the potential social and business value creation for early adopters of more sustainable practices,” says Siqi Zheng, a co-author of those papers, who is the MIT/CRE faculty director and the STL Champion Professor of Urban and Real Estate Sustainability.

    Building a global community of academics and industry leaders

    In addition to sponsoring research and related courses, MIT/CRE has created a global network of researchers and industry leaders, centered around sharing ideas and experience to quickly scale more sustainable practices, such as building decarbonization and circular economy in real estate, as well as climate risk modeling and pricing. Collaborating with industry leaders from the investment and real estate sector, such as EY, Veris Residential, Moody’s Analytics, Colliers, Finvest, KPF, Taurus Investment Holdings, Climate Alpha, and CRE alumnus Paul Clayton SM ’02, MIT/CRE blends real-world experiences and questions with applied data and projects to create a “living lab” for MIT/CRE researchers to conduct climate research.

    At an inaugural symposium on climate and real estate held at MIT in December 2022, more than a dozen scholars presented papers on the intersection of real estate and sustainability, which will form the basis of a special issue on climate change and real estate in the Journal of Regional Science. A “fireside chat” connected scholars and industry leaders in practical conversations about how to use research to aid practitioners.

    “Dissemination of research is critical to the success of our efforts to address climate change in the real estate industry,” says David Geltner, post-tenure professor of real estate finance and former director of  MIT/CRE, whose research group is working on climate risks and commercial real estate. “If we produce excellent research but it is cloistered in academic journals, it does no one any good. Similarly, if we do not work with collaborators to focus our research, we run the risk of investigating levers to reduce emissions that are of no use to practitioners.”

    Juan Palacios, coordinator of MIT/CRE’s climate and real estate research team, emphasizes that industry collaboration creates a two-way sharing of information that refines how research is being conducted at the center and ensures that it has positive impact.

    “More and more real estate investors and market players are putting sustainability at the center of their investment approach,” says Zheng. “A broad range of stakeholders (investors, regulators, insurers, and the public) have started to understand that long-term profitability cannot be achieved without embracing multiple dimensions of sustainability such as climate, wealth inequality, public health, and social welfare. Because of its unique relationship with industry collaborators and its place in the MIT innovation ecosystem, MIT/CRE has a responsibility and the opportunity to champion multiple pathways toward greater sustainability in the real estate industry.” More

  • in

    Helping the cause of environmental resilience

    Haruko Wainwright, the Norman C. Rasmussen Career Development Professor in Nuclear Science and Engineering (NSE) and assistant professor in civil and environmental engineering at MIT, grew up in rural Japan, where many nuclear facilities are located. She remembers worrying about the facilities as a child. Wainwright was only 6 at the time of the Chernobyl accident in 1986, but still recollects it vividly.

    Those early memories have contributed to Wainwright’s determination to research how technologies can mold environmental resilience — the capability of mitigating the consequences of accidents and recovering from contamination.

    Wainwright believes that environmental monitoring can help improve resilience. She co-leads the U.S. Department of Energy (DOE)’s Advanced Long-term Environmental Monitoring Systems (ALTEMIS) project, which integrates technologies such as in situ sensors, geophysics, remote sensing, simulations, and artificial intelligence to establish new paradigms for monitoring. The project focuses on soil and groundwater contamination at more than 100 U.S. sites that were used for nuclear weapons production.

    As part of this research, which was featured last year in Environmental Science & Technology Journal, Wainwright is working on a machine learning framework for improving environmental monitoring strategies. She hopes the ALTEMIS project will enable the rapid detection of anomalies while ensuring the stability of residual contamination and waste disposal facilities.

    Childhood in rural Japan

    Even as a child, Wainwright was interested in physics, history, and a variety of other subjects.

    But growing up in a rural area was not ideal for someone interested in STEM. There were no engineers or scientists in the community and no science museums, either. “It was not so cool to be interested in science, and I never talked about my interest with anyone,” Wainwright recalls.

    Television and books were the only door to the world of science. “I did not study English until middle school and I had never been on a plane until college. I sometimes find it miraculous that I am now working in the U.S. and teaching at MIT,” she says.

    As she grew a little older, Wainwright heard a lot of discussions about nuclear facilities in the region and many stories about Hiroshima and Nagasaki.

    At the same time, giants like Marie Curie inspired her to pursue science. Nuclear physics was particularly fascinating. “At some point during high school, I started wondering ‘what are radiations, what is radioactivity, what is light,’” she recalls. Reading Richard Feynman’s books and trying to understand quantum mechanics made her want to study physics in college.

    Pursuing research in the United States

    Wainwright pursued an undergraduate degree in engineering physics at Kyoto University. After two research internships in the United States, Wainwright was impressed by the dynamic and fast-paced research environment in the country.

    And compared to Japan, there were “more women in science and engineering,” Wainwright says. She enrolled at the University of California at Berkeley in 2005, where she completed her doctorate in nuclear engineering with minors in statistics and civil and environmental engineering.

    Before moving to MIT NSE in 2022, Wainwright was a staff scientist in the Earth and Environmental Area at Lawrence Berkeley National Laboratory (LBNL). She worked on a variety of topics, including radioactive contamination, climate science, CO2 sequestration, precision agriculture, and watershed science. Her time at LBNL helped Wainwright build a solid foundation about a variety of environmental sensors and monitoring and simulation methods across different earth science disciplines.   

    Empowering communities through monitoring

    One of the most compelling takeaways from Wainwright’s early research: People trust actual measurements and data as facts, even though they are skeptical about models and predictions. “I talked with many people living in Fukushima prefecture. Many of them have dosimeters and measure radiation levels on their own. They might not trust the government, but they trust their own data and are then convinced that it is safe to live there and to eat local food,” Wainwright says.

    She has been impressed that area citizens have gained significant knowledge about radiation and radioactivity through these efforts. “But they are often frustrated that people living far away, in cities like Tokyo, still avoid agricultural products from Fukushima,” Wainwright says.

    Wainwright thinks that data derived from environmental monitoring — through proper visualization and communication — can address misconceptions and fake news that often hurt people near contaminated sites.

    Wainwright is now interested in how these technologies — tested with real data at contaminated sites — can be proactively used for existing and future nuclear facilities “before contamination happens,” as she explored for Nuclear News. “I don’t think it is a good idea to simply dismiss someone’s concern as irrational. Showing credible data has been much more effective to provide assurance. Or a proper monitoring network would enable us to minimize contamination or support emergency responses when accidents happen,” she says.

    Educating communities and students

    Part of empowering communities involves improving their ability to process science-based information. “Potentially hazardous facilities always end up in rural regions; minorities’ concerns are often ignored. The problem is that these regions don’t produce so many scientists or policymakers; they don’t have a voice,” Wainwright says, “I am determined to dedicate my time to improve STEM education in rural regions and to increase the voice in these regions.”

    In a project funded by DOE, she collaborates with the team of researchers at the University of Alaska — the Alaska Center for Energy and Power and Teaching Through Technology program — aiming to improve STEM education for rural and indigenous communities. “Alaska is an important place for energy transition and environmental justice,” Wainwright says. Micro-nuclear reactors can potentially improve the life of rural communities who bear the brunt of the high cost of fuel and transportation. However, there is a distrust of nuclear technologies, stemming from past nuclear weapon testing. At the same time, Alaska has vast metal mining resources for renewable energy and batteries. And there are concerns about environmental contamination from mining and various sources. The teams’ vision is much broader, she points out. “The focus is on broader environmental monitoring technologies and relevant STEM education, addressing general water and air qualities,” Wainwright says.

    The issues also weave into the courses Wainwright teaches at MIT. “I think it is important for engineering students to be aware of environmental justice related to energy waste and mining as well as past contamination events and their recovery,” she says. “It is not OK just to send waste to, or develop mines in, rural regions, which could be a special place for some people. We need to make sure that these developments will not harm the environment and health of local communities.” Wainwright also hopes that this knowledge will ultimately encourage students to think creatively about engineering designs that minimize waste or recycle material.

    The last question of the final quiz of one of her recent courses was: Assume that you store high-level radioactive waste in your “backyard.” What technical strategies would make you and your family feel safe? “All students thought about this question seriously and many suggested excellent points, including those addressing environmental monitoring,” Wainwright says, “that made me hopeful about the future.” More

  • in

    Tackling counterfeit seeds with “unclonable” labels

    Average crop yields in Africa are consistently far below those expected, and one significant reason is the prevalence of counterfeit seeds whose germination rates are far lower than those of the genuine ones. The World Bank estimates that as much as half of all seeds sold in some African countries are fake, which could help to account for crop production that is far below potential.

    There have been many attempts to prevent this counterfeiting through tracking labels, but none have proved effective; among other issues, such labels have been vulnerable to hacking because of the deterministic nature of their encoding systems. But now, a team of MIT researchers has come up with a kind of tiny, biodegradable tag that can be applied directly to the seeds themselves, and that provides a unique randomly created code that cannot be duplicated.

    The new system, which uses minuscule dots of silk-based material, each containing a unique combination of different chemical signatures, is described today in the journal Science Advances in a paper by MIT’s dean of engineering Anantha Chandrakasan, professor of civil and environmental engineering Benedetto Marelli, postdoc Hui Sun, and graduate student Saurav Maji.

    The problem of counterfeiting is an enormous one globally, the researchers point out, affecting everything from drugs to luxury goods, and many different systems have been developed to try to combat this. But there has been less attention to the problem in the area of agriculture, even though the consequences can be severe. In sub-Saharan Africa, for example, the World Bank estimates that counterfeit seeds are a significant factor in crop yields that average less than one-fifth of the potential for maize, and less than one-third for rice.

    Marelli explains that a key to the new system is creating a randomly-produced physical object whose exact composition is virtually impossible to duplicate. The labels they create “leverage randomness and uncertainty in the process of application, to generate unique signature features that can be read, and that cannot be replicated,” he says.

    What they’re dealing with, Sun adds, “is the very old job of trying, basically, not to get your stuff stolen. And you can try as much as you can, but eventually somebody is always smart enough to figure out how to do it, so nothing is really unbreakable. But the idea is, it’s almost impossible, if not impossible, to replicate it, or it takes so much effort that it’s not worth it anymore.”

    The idea of an “unclonable” code was originally developed as a way of protecting the authenticity of computer chips, explains Chandrakasan, who is the Vannevar Bush Professor of Electrical Engineering and Computer Science. “In integrated circuits, individual transistors have slightly different properties coined device variations,” he explains, “and you could then use that variability and combine that variability with higher-level circuits to create a unique ID for the device. And once you have that, then you can use that unique ID as a part of a security protocol. Something like transistor variability is hard to replicate from device to device, so that’s what gives it its uniqueness, versus storing a particular fixed ID.” The concept is based on what are known as physically unclonable functions, or PUFs.

    The team decided to try to apply that PUF principle to the problem of fake seeds, and the use of silk proteins was a natural choice because the material is not only harmless to the environment but also classified by the Food and Drug Administration in the “generally recognized as safe” category, so it requires no special approval for use on food products.

    “You could coat it on top of seeds,” Maji says, “and if you synthesize silk in a certain way, it will also have natural random variations. So that’s the idea, that every seed or every bag could have a unique signature.”

    Developing effective secure system solutions has long been one of Chandrakasan’s specialties, while Marelli has spent many years developing systems for applying silk coatings to a variety of fruits, vegetables, and seeds, so their collaboration was a natural for developing such a silk-based coding system toward enhanced security.

    “The challenge was what type of form factor to give to silk,” Sun says, “so that it can be fabricated very easily.” They developed a simple drop-casting approach that produces tags that are less than one-tenth of an inch in diameter. The second challenge was to develop “a way where we can read the uniqueness, in also a very high throughput and easy way.”

    For the unique silk-based codes, Marelli says, “eventually we found a way to add a color to these microparticles so that they assemble in random structures.” The resulting unique patterns can be read out not only by a spectrograph or a portable microscope, but even by an ordinary cellphone camera with a macro lens. This image can be processed locally to generate the PUF code and then sent to the cloud and compared with a secure database to ensure the authenticity of the product. “It’s random so that people cannot easily replicate it,” says Sun. “People cannot predict it without measuring it.”

    And the number of possible permutations that could result from the way they mix four basic types of colored silk nanoparticles is astronomical. “We were able to show that with a minimal amount of silk, we were able to generate 128 random bits of security,” Maji says. “So this gives rise to 2 to the power 128 possible combinations, which is extremely difficult to crack given the computational capabilities of the state-of-the-art computing systems.”

    Marelli says that “for us, it’s a good test bed in order to think out-of-the-box, and how we can have a path that somehow is more democratic.” In this case, that means “something that you can literally read with your phone, and you can fabricate by simply drop casting a solution, without using any advanced manufacturing technique, without going in a clean room.”

    Some additional work will be needed to make this a practical commercial product, Chandrakasan says. “There will have to be a development for at-scale reading” via smartphones. “So, that’s clearly a future opportunity.” But the principle now shows a clear path to the day when “a farmer could at least, maybe not every seed, but could maybe take some random seeds in a particular batch and verify them,” he says.

    The research was partially supported by the U.S. Office of Naval research and the National Science Foundation, Analog Devices Inc., an EECS Mathworks fellowship, and a Paul M. Cook Career Development Professorship. More

  • in

    MIT-led teams win National Science Foundation grants to research sustainable materials

    Three MIT-led teams are among 16 nationwide to receive funding awards to address sustainable materials for global challenges through the National Science Foundation’s Convergence Accelerator program. Launched in 2019, the program targets solutions to especially compelling societal or scientific challenges at an accelerated pace, by incorporating a multidisciplinary research approach.

    “Solutions for today’s national-scale societal challenges are hard to solve within a single discipline. Instead, these challenges require convergence to merge ideas, approaches, and technologies from a wide range of diverse sectors, disciplines, and experts,” the NSF explains in its description of the Convergence Accelerator program. Phase 1 of the award involves planning to expand initial concepts, identify new team members, participate in an NSF development curriculum, and create an early prototype.

    Sustainable microchips

    One of the funded projects, “Building a Sustainable, Innovative Ecosystem for Microchip Manufacturing,” will be led by Anuradha Murthy Agarwal, a principal research scientist at the MIT Materials Research Laboratory. The aim of this project is to help transition the manufacturing of microchips to more sustainable processes that, for example, can reduce e-waste landfills by allowing repair of chips, or enable users to swap out a rogue chip in a motherboard rather than tossing out the entire laptop or cellphone.

    “Our goal is to help transition microchip manufacturing towards a sustainable industry,” says Agarwal. “We aim to do that by partnering with industry in a multimodal approach that prototypes technology designs to minimize energy consumption and waste generation, retrains the semiconductor workforce, and creates a roadmap for a new industrial ecology to mitigate materials-critical limitations and supply-chain constraints.”

    Agarwal’s co-principal investigators are Samuel Serna, an MIT visiting professor and assistant professor of physics at Bridgewater State University, and two MIT faculty affiliated with the Materials Research Laboratory: Juejun Hu, the John Elliott Professor of Materials Science and Engineering; and Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering.

    The training component of the project will also create curricula for multiple audiences. “At Bridgewater State University, we will create a new undergraduate course on microchip manufacturing sustainability, and eventually adapt it for audiences from K-12, as well as incumbent employees,” says Serna.

    Sajan Saini and Erik Verlage of the MIT Department of Materials Science and Engineering (DMSE), and Randolph Kirchain from the MIT Materials Systems Laboratory, who have led MIT initiatives in virtual reality digital education, materials criticality, and roadmapping, are key contributors. The project also includes DMSE graduate students Drew Weninger and Luigi Ranno, and undergraduate Samuel Bechtold from Bridgewater State University’s Department of Physics.

    Sustainable topological materials

    Under the direction of Mingda Li, the Class of 1947 Career Development Professor and an Associate Professor of Nuclear Science and Engineering, the “Sustainable Topological Energy Materials (STEM) for Energy-efficient Applications” project will accelerate research in sustainable topological quantum materials.

    Topological materials are ones that retain a particular property through all external disturbances. Such materials could potentially be a boon for quantum computing, which has so far been plagued by instability, and would usher in a post-silicon era for microelectronics. Even better, says Li, topological materials can do their job without dissipating energy even at room temperatures.

    Topological materials can find a variety of applications in quantum computing, energy harvesting, and microelectronics. Despite their promise, and a few thousands of potential candidates, discovery and mass production of these materials has been challenging. Topology itself is not a measurable characteristic so researchers have to first develop ways to find hints of it. Synthesis of materials and related process optimization can take months, if not years, Li adds. Machine learning can accelerate the discovery and vetting stage.

    Given that a best-in-class topological quantum material has the potential to disrupt the semiconductor and computing industries, Li and team are paying special attention to the environmental sustainability of prospective materials. For example, some potential candidates include gold, lead, or cadmium, whose scarcity or toxicity does not lend itself to mass production and have been disqualified.

    Co-principal investigators on the project include Liang Fu, associate professor of physics at MIT; Tomas Palacios, professor of electrical engineering and computer science at MIT and director of the Microsystems Technology Laboratories; Susanne Stemmer of the University of California at Santa Barbara; and Qiong Ma of Boston College. The $750,000 one-year Phase 1 grant will focus on three priorities: building a topological materials database; identifying the most environmentally sustainable candidates for energy-efficient topological applications; and building the foundation for a Center for Sustainable Topological Energy Materials at MIT that will encourage industry-academia collaborations.

    At a time when the size of silicon-based electronic circuit boards is reaching its lower limit, the promise of topological materials whose conductivity increases with decreasing size is especially attractive, Li says. In addition, topological materials can harvest wasted heat: Imagine using your body heat to power your phone. “There are different types of application scenarios, and we can go much beyond the capabilities of existing materials,” Li says, “the possibilities of topological materials are endlessly exciting.”

    Socioresilient materials design

    Researchers in the MIT Department of Materials Science and Engineering (DMSE) have been awarded $750,000 in a cross-disciplinary project that aims to fundamentally redirect materials research and development toward more environmentally, socially, and economically sustainable and resilient materials. This “socioresilient materials design” will serve as the foundation for a new research and development framework that takes into account technical, environmental, and social factors from the beginning of the materials design and development process.

    Christine Ortiz, the Morris Cohen Professor of Materials Science and Engineering, and Ellan Spero PhD ’14, an instructor in DMSE, are leading this research effort, which includes Cornell University, the University of Swansea, Citrine Informatics, Station1, and 14 other organizations in academia, industry, venture capital, the social sector, government, and philanthropy.

    The team’s project, “Mind Over Matter: Socioresilient Materials Design,” emphasizes that circular design approaches, which aim to minimize waste and maximize the reuse, repair, and recycling of materials, are often insufficient to address negative repercussions for the planet and for human health and safety.

    Too often society understands the unintended negative consequences long after the materials that make up our homes and cities and systems have been in production and use for many years. Examples include disparate and negative public health impacts due to industrial scale manufacturing of materials, water and air contamination with harmful materials, and increased risk of fire in lower-income housing buildings due to flawed materials usage and design. Adverse climate events including drought, flood, extreme temperatures, and hurricanes have accelerated materials degradation, for example in critical infrastructure, leading to amplified environmental damage and social injustice. While classical materials design and selection approaches are insufficient to address these challenges, the new research project aims to do just that.

    “The imagination and technical expertise that goes into materials design is too often separated from the environmental and social realities of extraction, manufacturing, and end-of-life for materials,” says Ortiz. 

    Drawing on materials science and engineering, chemistry, and computer science, the project will develop a framework for materials design and development. It will incorporate powerful computational capabilities — artificial intelligence and machine learning with physics-based materials models — plus rigorous methodologies from the social sciences and the humanities to understand what impacts any new material put into production could have on society. More

  • in

    Minimizing electric vehicles’ impact on the grid

    National and global plans to combat climate change include increasing the electrification of vehicles and the percentage of electricity generated from renewable sources. But some projections show that these trends might require costly new power plants to meet peak loads in the evening when cars are plugged in after the workday. What’s more, overproduction of power from solar farms during the daytime can waste valuable electricity-generation capacity.

    In a new study, MIT researchers have found that it’s possible to mitigate or eliminate both these problems without the need for advanced technological systems of connected devices and real-time communications, which could add to costs and energy consumption. Instead, encouraging the placing of charging stations for electric vehicles (EVs) in strategic ways, rather than letting them spring up anywhere, and setting up systems to initiate car charging at delayed times could potentially make all the difference.

    The study, published today in the journal Cell Reports Physical Science, is by Zachary Needell PhD ’22, postdoc Wei Wei, and Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society.

    In their analysis, the researchers used data collected in two sample cities: New York and Dallas. The data were gathered from, among other sources, anonymized records collected via onboard devices in vehicles, and surveys that carefully sampled populations to cover variable travel behaviors. They showed the times of day cars are used and for how long, and how much time the vehicles spend at different kinds of locations — residential, workplace, shopping, entertainment, and so on.

    The findings, Trancik says, “round out the picture on the question of where to strategically locate chargers to support EV adoption and also support the power grid.”

    Better availability of charging stations at workplaces, for example, could help to soak up peak power being produced at midday from solar power installations, which might otherwise go to waste because it is not economical to build enough battery or other storage capacity to save all of it for later in the day. Thus, workplace chargers can provide a double benefit, helping to reduce the evening peak load from EV charging and also making use of the solar electricity output.

    These effects on the electric power system are considerable, especially if the system must meet charging demands for a fully electrified personal vehicle fleet alongside the peaks in other demand for electricity, for example on the hottest days of the year. If unmitigated, the evening peaks in EV charging demand could require installing upwards of 20 percent more power-generation capacity, the researchers say.

    “Slow workplace charging can be more preferable than faster charging technologies for enabling a higher utilization of midday solar resources,” Wei says.

    Meanwhile, with delayed home charging, each EV charger could be accompanied by a simple app to estimate the time to begin its charging cycle so that it charges just before it is needed the next day. Unlike other proposals that require a centralized control of the charging cycle, such a system needs no interdevice communication of information and can be preprogrammed — and can accomplish a major shift in the demand on the grid caused by increasing EV penetration. The reason it works so well, Trancik says, is because of the natural variability in driving behaviors across individuals in a population.

    By “home charging,” the researchers aren’t only referring to charging equipment in individual garages or parking areas. They say it’s essential to make charging stations available in on-street parking locations and in apartment building parking areas as well.

    Trancik says the findings highlight the value of combining the two measures — workplace charging and delayed home charging — to reduce peak electricity demand, store solar energy, and conveniently meet drivers’ charging needs on all days. As the team showed in earlier research, home charging can be a particularly effective component of a strategic package of charging locations; workplace charging, they have found, is not a good substitute for home charging for meeting drivers’ needs on all days.

    “Given that there’s a lot of public money going into expanding charging infrastructure,” Trancik says, “how do you incentivize the location such that this is going to be efficiently and effectively integrated into the power grid without requiring a lot of additional capacity expansion?” This research offers some guidance to policymakers on where to focus rules and incentives.

    “I think one of the fascinating things about these findings is that by being strategic you can avoid a lot of physical infrastructure that you would otherwise need,” she adds. “Your electric vehicles can displace some of the need for stationary energy storage, and you can also avoid the need to expand the capacity of power plants, by thinking about the location of chargers as a tool for managing demands — where they occur and when they occur.”

    Delayed home charging could make a surprising amount of difference, the team found. “It’s basically incentivizing people to begin charging later. This can be something that is preprogrammed into your chargers. You incentivize people to delay the onset of charging by a bit, so that not everyone is charging at the same time, and that smooths out the peak.”

    Such a program would require some advance commitment on the part of participants. “You would need to have enough people committing to this program in advance to avoid the investment in physical infrastructure,” Trancik says. “So, if you have enough people signing up, then you essentially don’t have to build those extra power plants.”

    It’s not a given that all of this would line up just right, and putting in place the right mix of incentives would be crucial. “If you want electric vehicles to act as an effective storage technology for solar energy, then the [EV] market needs to grow fast enough in order to be able to do that,” Trancik says.

    To best use public funds to help make that happen, she says, “you can incentivize charging installations, which would go through ideally a competitive process — in the private sector, you would have companies bidding for different projects, but you can incentivize installing charging at workplaces, for example, to tap into both of these benefits.” Chargers people can access when they are parked near their residences are also important, Trancik adds, but for other reasons. Home charging is one of the ways to meet charging needs while avoiding inconvenient disruptions to people’s travel activities.

    The study was supported by the European Regional Development Fund Operational Program for Competitiveness and Internationalization, the Lisbon Portugal Regional Operation Program, and the Portuguese Foundation for Science and Technology. More

  • in

    Engaging enterprises with the climate crisis

    Almost every large corporation is committed to achieving net zero carbon emissions by 2050 but lacks a roadmap to get there, says John Sterman, professor of management at MIT’s Sloan School of Management, co-director of the MIT Sloan Sustainability Initiative, and leader of its Climate Pathways Project. Sterman and colleagues offer a suite of well-honed strategies to smooth this journey, including a free global climate policy simulator called En-ROADS deployed in workshops that have educated more than 230,000 people, including thousands of senior elected officials and leaders in business and civil society around the world. 

    Running on ordinary laptops, En-ROADS examines how we can reduce carbon emissions to keep global warming under 2 degrees Celsius, Sterman says. Users, expert or not, can easily explore how dozens of policies, such as pricing carbon and electrifying vehicles, can affect hundreds of factors such as temperature, energy prices, and sea level rise. 

    En-ROADs and related work on climate change are just one thread in Sterman’s decades of research to integrate environmental sustainability with business decisions. 

    “There’s a fundamental alignment between a healthy environment, a healthy society, and a healthy economy,” he says. “Destroy the environment and you destroy the economy and society. Likewise, hungry, ill-housed, insecure people, lacking decent jobs and equity in opportunity, will catch the last fish and cut the last tree, destroying the environment and society. Unfortunately, a lot of businesses still see the issue as a trade-off — if we focus on the environment, it will hurt our bottom line; if we improve working conditions, it will raise our labor costs. That turns out not to be true in many, many cases. But how can we help people understand that fundamental alignment? That’s where simulation models can play a big role.”

    Play video

    Learning with management flight simulators 

    “My original field is system dynamics, a method for understanding the complex systems in which we’re embedded—whether those are organizations, companies, markets, society as a whole, or the climate system” Sterman says. “You can build these wonderful, complex simulation models that offer important insights and insight into high-leverage policies so that organizations can make significant improvements.” 

    “But those models don’t do any good at all unless the folks in those organizations can learn for themselves about what those high-leverage opportunities are,” he emphasizes. “You can show people the best scientific evidence, the best data, and it’s not necessarily going to change their minds about what they ought to be doing. You’ve got to create a process that helps smart but busy people learn how they can improve their organizations.” 

    Sterman and his colleagues pioneered management flight simulators — which, like aircraft flight simulators, offer an environment in which you can make decisions, seeing what works and what doesn’t, at low cost with no risk. 

    “People learn best from experience and experiment,” he points out. “But in many of the most important settings that we face today, experience comes too late to be useful, and experiments are impossible. In such settings, simulation becomes the only way people can learn for themselves and gain the confidence to change their behavior in the real world.” 

    “You can’t learn to fly a new jetliner by watching someone else; to learn, one must be at the controls,” Sterman emphasizes. “People don’t change deeply embedded beliefs and behaviors just because somebody tells them that what they’re doing is harmful and there are better options. People have to learn for themselves.”

    Play video

    Learning the business of sustainability 

    His longstanding “laboratory for sustainable business” course lets MIT Sloan School students learn the state of the art in sustainability challenges — not just climate change but microplastics, water shortages, toxins in our food and air, and other crises. As part of the course, students work in teams with organizations on real sustainability challenges. “We’ve had a very wide range of companies and other organizations participate, and many of them come back year after year,” Sterman says. 

    MIT Sloan also offers executive education in sustainability, in both open enrollment and customized programs. “We’ve had all kinds of folks, from all over the world and every industry” he says. 

    In his opening class for executive MBAs, he polls attendees to ask if sustainability is a material issue for their companies, and how actively those companies are addressing that issue. Almost all of the attendees agree that sustainability is a key issue, but nearly all say their companies are not doing enough, with many saying they “comply with all applicable laws and regulations.” 

    “So there’s a huge disconnect,” Sterman points out. “How do you close that gap? How do you take action? How do you break the idea that if you take action to be more sustainable it will hurt your business, when in fact it’s almost always the other way around? And then how can you make the change happen, so that what you’re doing will get implemented and stick?” 

    Simulating policies for sustainability 

    Management flight simulators that offer active learning can provide crucial guidance. In the case of climate change, En-ROADs presents a straightforward interface that lets users adjust sliders to experiment with actions to try to bring down carbon emissions. “Should we have a price on carbon?” Sterman asks. “Should we promote renewables? Should we work on methane? Stop deforestation? You can try anything you want. You get immediate feedback on the likely consequences of your decisions. Often people are surprised as favorite policies — say, planting trees — have only minor impact on global warming. (In the case of trees, because it takes so long for the trees to grow).”

    One En-ROADS alumnus works for a pharmaceutical company that set a target of zero net emissions by mid-century. But, as often observed, measures proposed at the senior corporate level were often resisted by the operating units. The alumnus attacked the problem by bringing workshops with simulations and other sustainability tools to front-line employees in a manufacturing plant he knew well. He asked these employees how they thought they could reduce carbon emissions and what they needed to do so. 

    “It turns out that they had a long list of opportunities to reduce the emissions from this plant,” Sterman says. “But they didn’t have any support to get it done. He helped their ideas get that support, get the resources, come up with ways to monitor their progress, and ways to look for quick wins. It’s been highly successful.” 

    En-ROADS helps people understand that process improvement activity takes resources; you might need to take some equipment offline temporarily, for example, to upgrade or improve it. “There’s a little bit of a worse-before-better trade-off,” he says. “You need to be prepared. The active learning, the use of the simulators, helps people prepare for that journey and overcome the barriers that they will face.” 

    Interactive workshops with En-ROADS and other sustainability tools also brought change to another large corporation, HSBC Bank U.S.A. Like many other financial institutions, HSBC has committed to significantly cut its emissions, but many employees and executives didn’t understand why or what that would entail. For instance, would the bank give up potential business in carbon-intensive industries? 

    Brought to more than 1,000 employees, the En-ROADS workshops let employees surface concerns they might have about continuing to be successful while addressing climate concerns. “It turns out in many cases, there isn’t that much of a trade-off,” Sterman remarks. “Fossil energy projects, for example, are extremely risky. And there are opportunities to improve margins in other businesses where you can help cut their carbon footprint.” 

    The free version of En-ROADS generally satisfies the needs of most organizations, but Sterman and his partners also can augment the model or develop customized workshops to address specific concerns. 

    People who take the workshops emerge with a greater understanding of climate change and its effects, and a deeper knowledge of the high-leverage opportunities to cut emissions. “Even more importantly, they come out with a greater sense of urgency,” he says. “But they also come out with an understanding that it’s not too late. Time is short, but what we do can still make a difference.”  More

  • in

    Shrinky Dinks, nail polish, and smelly bacteria

    In a lab on the fourth floor of MIT’s Building 56, a group of Massachusetts high school students gathered around a device that measures conductivity.

    Vincent Nguyen, 15, from Saugus, thought of the times the material on their sample electrode flaked off the moment they took it out of the oven. Or how the electrode would fold weirdly onto itself. The big fails were kind of funny, but discouraging. The students had worked for a month, experimenting with different materials, and 17-year-old Brianna Tong of Malden wondered if they’d finally gotten it right: Would their electrode work well enough to power a microbial fuel cell?

    The students secured their electrode with alligator clips, someone hit start, and the teens watched anxiously as the device searched for even the faintest electrical current.

    Capturing electrons from bacteria

    Last July, Tong, Nguyen, and six other students from Malden Catholic High School commuted between the lab of MIT chemical engineer Ariel L. Furst and their school’s chemistry lab. Their goal was to fashion electrodes for low-cost microbial fuel cells — miniature bioreactors that generate small amounts of electricity by capturing electrons transferred from living microbes. These devices can double as electrochemical sensors.

    Furst, the Paul M. Cook Career Development Professor of Chemical Engineering, uses a mix of electrochemistry, microbial engineering, and materials science to address challenges in human health and clean energy. “The goal of all of our projects is to increase sustainability, clean energy, and health equity globally,” she says.

    Electrochemical sensors are powerful, sensitive detection and measurement tools. Typically, their electrodes need to be built in precisely engineered environments. “Thinking about ways of making devices without needing a cleanroom is important for coming up with inexpensive devices that can be deployed in low-resource settings under non-ideal conditions,” Furst says.

    For 17-year-old Angelina Ang of Everett, the project illuminated the significance of “coming together to problem-solve for a healthier and more sustainable earth,” she says. “It made me realize that we hold the answers to fix our dying planet.”

    With the help of a children’s toy called Shrinky Dinks, carbon-based materials, nail polish, and a certain smelly bacterium, the students got — literally — a trial-by-fire introduction to the scientific method. At one point, one of their experimental electrodes burst into flames. Other results were more promising.

    The students took advantage of the electrical properties of a bacterium — Shewanella oneidensis — that’s been called nature’s microscopic power plant. As part of their metabolism, Shewanella oneidensis generate electricity by oxidizing organic matter. In essence, they spit out electrons. Put enough together, and you get a few milliamps.

    To build bacteria-friendly electrodes, one of the first things the students did was culture Shewanella. They learned how to pour a growth medium into petri dishes where the reddish, normally lake-living bacteria could multiply. The microbes, Furst notes, are a little stinky, like cabbage. “But we think they’re really cool,” she says.

    With the right engineering, Shewanella can produce electric current when they detect toxins in water or soil. They could be used for bioremediation of wastewater. Low-cost versions could be useful for areas with limited or no access to reliable electricity and clean water.

    Next-generation chemists

    The Malden Catholic-MIT program resulted from a fluke encounter between Furst and a Malden Catholic parent.

    Mary-Margaret O’Donnell-Zablocki, then a medicinal chemist at a Kendall Square biotech startup, met Furst through a mutual friend. She asked Furst if she’d consider hosting high school chemistry students in her lab for the summer.

    Furst was intrigued. She traces her own passion for science to a program she’d happened upon between her junior and senior years in high school in St. Louis. The daughter of a software engineer and a businesswoman, Furst was casting around for potential career interests when she came across a summer program that enlisted scientists in academia and private research to introduce high school students and teachers to aspects of the scientific enterprise.

    “That’s when I realized that research is not like a lab class where there’s an expected outcome,” Furst recalls. “It’s so much cooler than that.”

    Using startup funding from an MIT Energy Initiative seed grant, Furst developed a curriculum with Malden Catholic chemistry teacher Seamus McGuire, and students were invited to apply. In addition to Tong, Ang, and Nguyen, participants included Chengxiang Lou, 18, from China; Christian Ogata, 14, of Wakefield; Kenneth Ramirez, 17, of Everett; Isaac Toscano, 17, of Medford; and MaryKatherine Zablocki, 15, of Revere and Wakefield. O’Donnell-Zablocki was surprised — and pleased — when her daughter applied to the program and was accepted.

    Furst notes that women are still underrepresented in chemical engineering. She was particularly excited to mentor young women through the program.

    A conductive ink

    The students were charged with identifying materials that had high conductivity, low resistance, were a bit soluble, and — with the help of a compatible “glue” — were able to stick to a substrate.

    Furst showed the Malden Catholic crew Shrinky Dinks — a common polymer popularized in the 1970s as a craft material that, when heated in a toaster oven, shrinks to a third of its size and becomes thicker and more rigid. Electrodes based on Shrinky Dinks would cost pennies, making it an ideal, inexpensive material for microbial fuel cells that could monitor, for instance, soil health in low- and middle-income countries.

    “Right now, monitoring soil health is problematic,” Furst says. “You have to collect a sample and bring it back to the lab to analyze in expensive equipment. But if we have these little devices that cost a couple of bucks each, we can monitor soil health remotely.”

    After a crash course in conductive carbon-based inks and solvent glues, the students went off to Malden Catholic to figure out what materials they wanted to try.

    Tong rattled them off: carbon nanotubes, carbon nanofibers, graphite powder, activated carbon. Potential solvents to help glue the carbon to the Shrinky Dinks included nail polish, corn syrup, and embossing ink, to name a few. They tested and retested. When they hit a dead end, they revised their hypotheses.

    They tried using a 3D printed stencil to daub the ink-glue mixture onto the Shrinky Dinks. They hand-painted them. They tried printing stickers. They worked with little squeegees. They tried scooping and dragging the material. Some of their electro-materials either flaked off or wouldn’t stick in the heating process.

    “Embossing ink never dried after baking the Shrinky Dink,” Ogata recalls. “In fact, it’s probably still liquid! And corn syrup had a tendency to boil. Seeing activated carbon ignite or corn syrup boiling in the convection oven was quite the spectacle.”

    “After the electrode was out of the oven and cooled down, we would check the conductivity,” says Tong, who plans to pursue a career in science. “If we saw there was a high conductivity, we got excited and thought those materials worked.”

    The moment of truth came in Furst’s MIT lab, where the students had access to more sophisticated testing equipment. Would their electrodes conduct electricity?

    Many of them didn’t. Tong says, “At first, we were sad, but then Dr. Furst told us that this is what science is, testing repeatedly and sometimes not getting the results we wanted.” Lou agrees. “If we just copy the data left by other scholars and don’t collect and figure it out by ourselves, then it is difficult to be a qualified researcher,” he says.

    Some of the students plan to continue the project one afternoon a week at MIT and as an independent study at Malden Catholic. The long-term goal is to create a field-based soil sensor that employs a bacterium like Shewanella.

    By chance, the students’ very first electrode — made of graphite powder ink and nail polish glue — generated the most current. One of the team’s biggest surprises was how much better black nail polish worked than clear nail polish. It turns out black nail polish contains iron-based pigment — a conductor. The unexpected win took some of the sting out of the failures.

    “They learned a very hard lesson: Your results might be awesome, and things are exciting, but then nothing else might work. And that’s totally fine,” Furst says.

    This article appears in the Winter 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More