More stories

  • in

    Research collaboration puts climate-resilient crops in sight

    Any houseplant owner knows that changes in the amount of water or sunlight a plant receives can put it under immense stress. A dying plant brings certain disappointment to anyone with a green thumb. 

    But for farmers who make their living by successfully growing plants, and whose crops may nourish hundreds or thousands of people, the devastation of failing flora is that much greater. As climate change is poised to cause increasingly unpredictable weather patterns globally, crops may be subject to more extreme environmental conditions like droughts, fluctuating temperatures, floods, and wildfire. 

    Climate scientists and food systems researchers worry about the stress climate change may put on crops, and on global food security. In an ambitious interdisciplinary project funded by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), David Des Marais, the Gale Assistant Professor in the Department of Civil and Environmental Engineering at MIT, and Caroline Uhler, an associate professor in the MIT Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, are investigating how plant genes communicate with one another under stress. Their research results can be used to breed plants more resilient to climate change.

    Crops in trouble

    Governing plants’ responses to environmental stress are gene regulatory networks, or GRNs, which guide the development and behaviors of living things. A GRN may be comprised of thousands of genes and proteins that all communicate with one another. GRNs help a particular cell, tissue, or organism respond to environmental changes by signaling certain genes to turn their expression on or off.

    Even seemingly minor or short-term changes in weather patterns can have large effects on crop yield and food security. An environmental trigger, like a lack of water during a crucial phase of plant development, can turn a gene on or off, and is likely to affect many others in the GRN. For example, without water, a gene enabling photosynthesis may switch off. This can create a domino effect, where the genes that rely on those regulating photosynthesis are silenced, and the cycle continues. As a result, when photosynthesis is halted, the plant may experience other detrimental side effects, like no longer being able to reproduce or defend against pathogens. The chain reaction could even kill a plant before it has the chance to be revived by a big rain.

    Des Marais says he wishes there was a way to stop those genes from completely shutting off in such a situation. To do that, scientists would need to better understand how exactly gene networks respond to different environmental triggers. Bringing light to this molecular process is exactly what he aims to do in this collaborative research effort.

    Solving complex problems across disciplines

    Despite their crucial importance, GRNs are difficult to study because of how complex and interconnected they are. Usually, to understand how a particular gene is affecting others, biologists must silence one gene and see how the others in the network respond. 

    For years, scientists have aspired to an algorithm that could synthesize the massive amount of information contained in GRNs to “identify correct regulatory relationships among genes,” according to a 2019 article in the Encyclopedia of Bioinformatics and Computational Biology. 

    “A GRN can be seen as a large causal network, and understanding the effects that silencing one gene has on all other genes requires understanding the causal relationships among the genes,” says Uhler. “These are exactly the kinds of algorithms my group develops.”

    Des Marais and Uhler’s project aims to unravel these complex communication networks and discover how to breed crops that are more resilient to the increased droughts, flooding, and erratic weather patterns that climate change is already causing globally.

    In addition to climate change, by 2050, the world will demand 70 percent more food to feed a booming population. “Food systems challenges cannot be addressed individually in disciplinary or topic area silos,” says Greg Sixt, J-WAFS’ research manager for climate and food systems. “They must be addressed in a systems context that reflects the interconnected nature of the food system.”

    Des Marais’ background is in biology, and Uhler’s in statistics. “Dave’s project with Caroline was essentially experimental,” says Renee J. Robins, J-WAFS’ executive director. “This kind of exploratory research is exactly what the J-WAFS seed grant program is for.”

    Getting inside gene regulatory networks

    Des Marais and Uhler’s work begins in a windowless basement on MIT’s campus, where 300 genetically identical Brachypodium distachyon plants grow in large, temperature-controlled chambers. The plant, which contains more than 30,000 genes, is a good model for studying important cereal crops like wheat, barley, maize, and millet. For three weeks, all plants receive the same temperature, humidity, light, and water. Then, half are slowly tapered off water, simulating drought-like conditions.

    Six days into the forced drought, the plants are clearly suffering. Des Marais’ PhD student Jie Yun takes tissues from 50 hydrated and 50 dry plants, freezes them in liquid nitrogen to immediately halt metabolic activity, grinds them up into a fine powder, and chemically separates the genetic material. The genes from all 100 samples are then sequenced at a lab across the street.

    The team is left with a spreadsheet listing the 30,000 genes found in each of the 100 plants at the moment they were frozen, and how many copies there were. Uhler’s PhD student Anastasiya Belyaeva inputs the massive spreadsheet into the computer program she developed and runs her novel algorithm. Within a few hours, the group can see which genes were most active in one condition over another, how the genes were communicating, and which were causing changes in others. 

    The methodology captures important subtleties that could allow researchers to eventually alter gene pathways and breed more resilient crops. “When you expose a plant to drought stress, it’s not like there’s some canonical response,” Des Marais says. “There’s lots of things going on. It’s turning this physiologic process up, this one down, this one didn’t exist before, and now suddenly is turned on.” 

    In addition to Des Marais and Uhler’s research, J-WAFS has funded projects in food and water from researchers in 29 departments across all five MIT schools as well as the MIT Schwarzman College of Computing. J-WAFS seed grants typically fund seven to eight new projects every year.

    “The grants are really aimed at catalyzing new ideas, providing the sort of support [for MIT researchers] to be pushing boundaries, and also bringing in faculty who may have some interesting ideas that they haven’t yet applied to water or food concerns,” Robins says. “It’s an avenue for researchers all over the Institute to apply their ideas to water and food.”

    Alison Gold is a student in MIT’s Graduate Program in Science Writing. More

  • in

    Concrete’s role in reducing building and pavement emissions

    Encountering concrete is a common, even routine, occurrence. And that’s exactly what makes concrete exceptional.

    As the most consumed material after water, concrete is indispensable to the many essential systems — from roads to buildings — in which it is used.

    But due to its extensive use, concrete production also contributes to around 1 percent of emissions in the United States and remains one of several carbon-intensive industries globally. Tackling climate change, then, will mean reducing the environmental impacts of concrete, even as its use continues to increase.

    In a new paper in the Proceedings of the National Academy of Sciences, a team of current and former researchers at the MIT Concrete Sustainability Hub (CSHub) outlines how this can be achieved.

    They present an extensive life-cycle assessment of the building and pavements sectors that estimates how greenhouse gas (GHG) reduction strategies — including those for concrete and cement — could minimize the cumulative emissions of each sector and how those reductions would compare to national GHG reduction targets. 

    The team found that, if reduction strategies were implemented, the emissions for pavements and buildings between 2016 and 2050 could fall by up to 65 percent and 57 percent, respectively, even if concrete use accelerated greatly over that period. These are close to U.S. reduction targets set as part of the Paris Climate Accords. The solutions considered would also enable concrete production for both sectors to attain carbon neutrality by 2050.

    Despite continued grid decarbonization and increases in fuel efficiency, they found that the vast majority of the GHG emissions from new buildings and pavements during this period would derive from operational energy consumption rather than so-called embodied emissions — emissions from materials production and construction.

    Sources and solutions

    The consumption of concrete, due to its versatility, durability, constructability, and role in economic development, has been projected to increase around the world.

    While it is essential to consider the embodied impacts of ongoing concrete production, it is equally essential to place these initial impacts in the context of the material’s life cycle.

    Due to concrete’s unique attributes, it can influence the long-term sustainability performance of the systems in which it is used. Concrete pavements, for instance, can reduce vehicle fuel consumption, while concrete structures can endure hazards without needing energy- and materials-intensive repairs.

    Concrete’s impacts, then, are as complex as the material itself — a carefully proportioned mixture of cement powder, water, sand, and aggregates. Untangling concrete’s contribution to the operational and embodied impacts of buildings and pavements is essential for planning GHG reductions in both sectors.

    Set of scenarios

    In their paper, CSHub researchers forecast the potential greenhouse gas emissions from the building and pavements sectors as numerous emissions reduction strategies were introduced between 2016 and 2050.

    Since both of these sectors are immense and rapidly evolving, modeling them required an intricate framework.

    “We don’t have details on every building and pavement in the United States,” explains Randolph Kirchain, a research scientist at the Materials Research Laboratory and co-director of CSHub.

    “As such, we began by developing reference designs, which are intended to be representative of current and future buildings and pavements. These were adapted to be appropriate for 14 different climate zones in the United States and then distributed across the U.S. based on data from the U.S. Census and the Federal Highway Administration”

    To reflect the complexity of these systems, their models had to have the highest resolutions possible.

    “In the pavements sector, we collected the current stock of the U.S. network based on high-precision 10-mile segments, along with the surface conditions, traffic, thickness, lane width, and number of lanes for each segment,” says Hessam AzariJafari, a postdoc at CSHub and a co-author on the paper.

    “To model future paving actions over the analysis period, we assumed four climate conditions; four road types; asphalt, concrete, and composite pavement structures; as well as major, minor, and reconstruction paving actions specified for each climate condition.”

    Using this framework, they analyzed a “projected” and an “ambitious” scenario of reduction strategies and system attributes for buildings and pavements over the 34-year analysis period. The scenarios were defined by the timing and intensity of GHG reduction strategies.

    As its name might suggest, the projected scenario reflected current trends. For the building sector, solutions encompassed expected grid decarbonization and improvements to building codes and energy efficiency that are currently being implemented across the country. For pavements, the sole projected solution was improvements to vehicle fuel economy. That’s because as vehicle efficiency continues to increase, excess vehicle emissions due to poor road quality will also decrease.

    Both the projected scenarios for buildings and pavements featured the gradual introduction of low-carbon concrete strategies, such as recycled content, carbon capture in cement production, and the use of captured carbon to produce aggregates and cure concrete.

    “In the ambitious scenario,” explains Kirchain, “we went beyond projected trends and explored reasonable changes that exceed current policies and [industry] commitments.”

    Here, the building sector strategies were the same, but implemented more aggressively. The pavements sector also abided by more aggressive targets and incorporated several novel strategies, including investing more to yield smoother roads, selectively applying concrete overlays to produce stiffer pavements, and introducing more reflective pavements — which can change the Earth’s energy balance by sending more energy out of the atmosphere.

    Results

    As the grid becomes greener and new homes and buildings become more efficient, many experts have predicted the operational impacts of new construction projects to shrink in comparison to their embodied emissions.

    “What our life-cycle assessment found,” says Jeremy Gregory, the executive director of the MIT Climate Consortium and the lead author on the paper, “is that [this prediction] isn’t necessarily the case.”

    “Instead, we found that more than 80 percent of the total emissions from new buildings and pavements between 2016 and 2050 would derive from their operation.”

    In fact, the study found that operations will create the majority of emissions through 2050 unless all energy sources — electrical and thermal — are carbon-neutral by 2040. This suggests that ambitious interventions to the electricity grid and other sources of operational emissions can have the greatest impact.

    Their predictions for emissions reductions generated additional insights.  

    For the building sector, they found that the projected scenario would lead to a reduction of 49 percent compared to 2016 levels, and that the ambitious scenario provided a 57 percent reduction.

    As most buildings during the analysis period were existing rather than new, energy consumption dominated emissions in both scenarios. Consequently, decarbonizing the electricity grid and improving the efficiency of appliances and lighting led to the greatest improvements for buildings, they found.

    In contrast to the building sector, the pavements scenarios had a sizeable gulf between outcomes: the projected scenario led to only a 14 percent reduction while the ambitious scenario had a 65 percent reduction — enough to meet U.S. Paris Accord targets for that sector. This gulf derives from the lack of GHG reduction strategies being pursued under current projections.

    “The gap between the pavement scenarios shows that we need to be more proactive in managing the GHG impacts from pavements,” explains Kirchain. “There is tremendous potential, but seeing those gains requires action now.”

    These gains from both ambitious scenarios could occur even as concrete use tripled over the analysis period in comparison to the projected scenarios — a reflection of not only concrete’s growing demand but its potential role in decarbonizing both sectors.

    Though only one of their reduction scenarios (the ambitious pavement scenario) met the Paris Accord targets, that doesn’t preclude the achievement of those targets: many other opportunities exist.

    “In this study, we focused on mainly embodied reductions for concrete,” explains Gregory. “But other construction materials could receive similar treatment.

    “Further reductions could also come from retrofitting existing buildings and by designing structures with durability, hazard resilience, and adaptability in mind in order to minimize the need for reconstruction.”

    This study answers a paradox in the field of sustainability. For the world to become more equitable, more development is necessary. And yet, that very same development may portend greater emissions.

    The MIT team found that isn’t necessarily the case. Even as America continues to use more concrete, the benefits of the material itself and the interventions made to it can make climate targets more achievable.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    Mitigating hazards with vulnerability in mind

    From tropical storms to landslides, the form and frequency of natural hazards vary widely. But the feelings of vulnerability they can provoke are universal.

    Growing up in hazard-prone cities, Ipek Bensu Manav, a civil and environmental engineering PhD candidate with the MIT Concrete Sustainability Hub (CSHub), noticed that this vulnerability was always at the periphery. Today, she’s studying vulnerability, in both its engineering and social dimensions, with the aim of promoting more hazard-resilient communities.

    Her research at CSHub has taken her across the country to attend impactful conferences and allowed her to engage with prominent experts and decision-makers in the realm of resilience. But more fundamentally, it has also taken her beyond the conventional bounds of engineering, reshaping her understanding of the practice.

    From her time in Miami, Florida, and Istanbul, Turkey, Manav is no stranger to natural hazards. Istanbul, which suffered a devastating earthquake in 1999, is predicted to experience an equally violent tremor in the near future, while Miami ranks among the top cities in the U.S. in terms of natural disaster risk due to its vulnerability to hurricanes.

    “Growing up in Miami, I’d always hear about hurricane season on the news,” recounts Manav, “While in Istanbul there was a constant fear about the next big earthquake. Losing people and [witnessing] those kinds of events instilled in me a desire to tame nature.”

    It was this desire to “push the bounds of what is possible” — and to protect lives in the process — that motivated Manav to study civil engineering at Boğaziçi University. Her studies there affirmed her belief in the formidable power of engineering to “outsmart nature.”

    This, in part, led her to continue her studies at MIT CSHub — a team of interdisciplinary researchers who study how to achieve resilient and sustainable infrastructure. Her role at CSHub has given her the opportunity to study resilience in depth. It has also challenged her understanding of natural disasters — and whether they are “natural” at all.

    “Over the past few decades, some policy choices have increased the risk of experiencing disasters,” explains Manav. “An increasingly popular sentiment among resilience researchers is that natural disasters are not ‘natural,’ but are actually man-made. At CSHub we believe there is an opportunity to do better with the growing knowledge and engineering and policy research.”

    As a part of the CSHub portfolio, Manav’s research looks not just at resilient engineering, but the engineering of resilient communities.

    Her work draws on a metric developed at CSHub known as city texture, which is a measurement of the rectilinearity of a city’s layout. City texture, Manav and her colleagues have found, is a versatile and informative measurement. By capturing a city’s order or disorder, it can predict variations in wind flow — variations currently too computationally intensive for most cities to easily render.  

    Manav has derived this metric for her native South Florida. A city texture analysis she conducted there found that numerous census tracts could experience wind speeds 50 percent greater than currently predicted. Mitigating these wind variations could lead to some $697 million in savings annually.

    Such enormous hazard losses and the growing threat of climate change have presented her with a new understanding of engineering.

    “With resilience and climate change at the forefront of engineering, the focus has shifted,” she explains, “from defying limits and building impressive structures to making structures that adapt to the changing environment around us.”

    Witnessing this shift has reoriented her relationship with engineering. Rather than viewing it as a distinct science, she has begun to place it in its broader social and political context — and to recognize how those social and political dynamics often determine engineering outcomes.

    “When I started grad school, I often felt ‘Oh this is an engineering problem. I can engineer a solution’,” recounts Manav. “But as I’ve read more about resilience, I’ve realized that it’s just as much a concern of politics and policy as it is of engineering.”

    She attributes her awareness of policy to MIT CSHub’s collaboration with the Portland Cement Association and the Ready Mixed Concrete Research & Education Foundation. The commitment of the concrete and cement industries to resilient construction has exposed her to the myriad policies that dictate the resilience of communities.

    “Spending time with our partners made me realize how much of a policy issue [resilience] is,” she explains. “And working with them has provided me with a seat at the table with the people engaged in resilience.”

    Opportunities for engagement have been plentiful. She has attended numerous conferences and met with leaders in the realm of sustainability and resilience, including the International Code Council (ICC), Smart Home America, and Strengthen Alabama Homes.

    Some opportunities have proven particularly fortuitous. When attending a presentation hosted by the ICC and the National Association for the Advancement of Colored People (NAACP) that highlighted people of color working on building codes, Manav felt inspired to reach out to the presenters. Soon after, she found herself collaborating with them on a policy report on resilience in communities of color.

    “For me, it was a shifting point, going from prophesizing about what we could be doing, to observing what is being done. It was a very humbling experience,” she says. “Having worked in this lab made me feel more comfortable stepping outside of my comfort zone and reaching out.”

    Manav credits this growing confidence to her mentorship at CSHub. More than just providing support, CSHub Co-director Randy Kirchain has routinely challenged her and inspired further growth.

    “There have been countless times that I’ve reached out to him because I was feeling unsure of myself or my ideas,” says Manav. “And he’s offered clarity and assurance.”

    Before her first conference, she recalls Kirchain staying in the office well into the evening to help her practice and hone her presentation. He’s also advocated for her on research projects to ensure that her insight is included and that she receives the credit she deserves. But most of all, he’s been a great person to work with.

    “Randy is a lighthearted, funny, and honest person to be around,” recounts Manav. “He builds in me the confidence to dive straight into whatever task I’m tackling.”

    That current task is related to equity. Inspired by her conversations with members of the NAACP, Manav has introduced a new dimension to her research — social vulnerability.

    In contrast to place vulnerability, which captures the geographical susceptibility to hazards, social vulnerability captures the extent to which residents have the resources to respond to and recover from hazard events. Household income could act as a proxy for these resources, and the spread of household income across geographies and demographics can help derive metrics of place and social vulnerability. And these metrics matter.

    “Selecting different metrics favors different people when distributing hazard mitigation and recovery funds,” explains Manav. “If we’re looking at just the dollar value of losses, then wealthy households with more valuable properties disproportionally benefit. But, conversely, if we look at losses as a percentage of income, we’re going to prioritize low-income households that might not necessarily have the resources to recover.”

    Manav has incorporated metrics of social vulnerability into her city texture loss estimations. The resulting approach could predict unmitigated damage, estimate subsequent hazard losses, and measure the disparate impact of those losses on low-income and socially vulnerable communities.

    Her hope is that this streamlined approach could change how funds are disbursed and give communities the tools to solve the entwined challenges of climate change and equity.

    The city texture work Manav has adopted is quite different from the gravity-defying engineering that drew her to the field. But she’s found that it is often more pragmatic and impactful.

    Rather than mastering the elements, she’s learning how to adapt to them and help others do the same. Solutions to climate change, she’s discovered, demand the collaboration of numerous parties — as well as a willingness to confront one’s own vulnerabilities and make the decision to reach out.  More

  • in

    Countering climate change with cool pavements

    Pavements are an abundant urban surface, covering around 40 percent of American cities. But in addition to carrying traffic, they can also emit heat.

    Due to what’s called the urban heat island effect, densely built, impermeable surfaces like pavements can absorb solar radiation and warm up their surroundings by re-emitting that radiation as heat. This phenomenon poses a serious threat to cities. It increases air temperatures by up as much as 7 degrees Fahrenheit and contributes to health and environmental risks — risks that climate change will magnify.

    In response, researchers at the MIT Concrete Sustainability Hub (MIT CSHub) are studying how a surface that ordinarily heightens urban heat islands can instead lessen their intensity. Their research focuses on “cool pavements,” which reflect more solar radiation and emit less heat than conventional paving surfaces.

    A recent study by a team of current and former MIT CSHub researchers in the journal of Environmental Science and Technology outlines cool pavements and their implementation. The study found that they could lower air temperatures in Boston and Phoenix by up to 1.7 degrees Celsius (3 F) and 2.1 C (3.7 F), respectively. They would also reduce greenhouse gas emissions, cutting total emissions by up to 3 percent in Boston and 6 percent in Phoenix. Achieving these savings, however, requires that cool pavement strategies be selected according to the climate, traffic, and building configurations of each neighborhood.

    Cities like Los Angeles and Phoenix have already conducted sizeable experiments with cool pavements, but the technology is still not widely implemented. The CSHub team hopes their research can guide future cool paving projects to help cities cope with a changing climate.

    Scratching the surface

    It’s well known that darker surfaces get hotter in sunlight than lighter ones. Climate scientists use a metric called “albedo” to help describe this phenomenon.

    “Albedo is a measure of surface reflectivity,” explains Hessam AzariJafari, the paper’s lead author and a postdoc at the MIT CSHub. “Surfaces with low albedo absorb more light and tend to be darker, while high-albedo surfaces are brighter and reflect more light.”

    Albedo is central to cool pavements. Typical paving surfaces, like conventional asphalt, possess a low albedo and absorb more radiation and emit more heat. Cool pavements, however, have brighter materials that reflect more than three times as much radiation and, consequently, re-emit far less heat.

    “We can build cool pavements in many different ways,” says Randolph Kirchain, a researcher in the Materials Science Laboratory and co-director of the Concrete Sustainability Hub. “Brighter materials like concrete and lighter-colored aggregates offer higher albedo, while existing asphalt pavements can be made ‘cool’ through reflective coatings.”

    CSHub researchers considered these several options in a study of Boston and Phoenix. Their analysis considered different outcomes when concrete, reflective asphalt, and reflective concrete replaced conventional asphalt pavements — which make up more than 95 percent of pavements worldwide.

    Situational awareness

    For a comprehensive understanding of the environmental benefits of cool pavements in Boston and Phoenix, researchers had to look beyond just paving materials. That’s because in addition to lowering air temperatures, cool pavements exert direct and indirect impacts on climate change.  

    “The one direct impact is radiative forcing,” notes AzariJafari. “By reflecting radiation back into the atmosphere, cool pavements exert a radiative forcing, meaning that they change the Earth’s energy balance by sending more energy out of the atmosphere — similar to the polar ice caps.”

    Cool pavements also exert complex, indirect climate change impacts by altering energy use in adjacent buildings.

    “On the one hand, by lowering temperatures, cool pavements can reduce some need for AC [air conditioning] in the summer while increasing heating demand in the winter,” says AzariJafari. “Conversely, by reflecting light — called incident radiation — onto nearby buildings, cool pavements can warm structures up, which can increase AC usage in the summer and lower heating demand in the winter.”

    What’s more, albedo effects are only a portion of the overall life cycle impacts of a cool pavement. In fact, impacts from construction and materials extraction (referred to together as embodied impacts) and the use of the pavement both dominate the life cycle. The primary use phase impact of a pavement — apart from albedo effects  — is excess fuel consumption: Pavements with smooth surfaces and stiff structures cause less excess fuel consumption in the vehicles that drive on them.

    Assessing the climate-change impacts of cool pavements, then, is an intricate process — one involving many trade-offs. In their study, the researchers sought to analyze and measure them.

    A full reflection

    To determine the ideal implementation of cool pavements in Boston and Phoenix, researchers investigated the life cycle impacts of shifting from conventional asphalt pavements to three cool pavement options: reflective asphalt, concrete, and reflective concrete.

    To do this, they used coupled physical simulations to model buildings in thousands of hypothetical neighborhoods. Using this data, they then trained a neural network model to predict impacts based on building and neighborhood characteristics. With this tool in place, it was possible to estimate the impact of cool pavements for each of the thousands of roads and hundreds of thousands of buildings in Boston and Phoenix.

    In addition to albedo effects, they also looked at the embodied impacts for all pavement types and the effect of pavement type on vehicle excess fuel consumption due to surface qualities, stiffness, and deterioration rate.

    After assessing the life cycle impacts of each cool pavement type, the researchers calculated which material — conventional asphalt, reflective asphalt, concrete, and reflective concrete — benefited each neighborhood most. They found that while cool pavements were advantageous in Boston and Phoenix overall, the ideal materials varied greatly within and between both cities.

    “One benefit that was universal across neighborhood type and paving material, was the impact of radiative forcing,” notes AzariJafari. “This was particularly the case in areas with shorter, less-dense buildings, where the effect was most pronounced.”

    Unlike radiative forcing, however, changes to building energy demand differed by location. In Boston, cool pavements reduced energy demand as often as they increased it across all neighborhoods. In Phoenix, cool pavements had a negative impact on energy demand in most census tracts due to incident radiation. When factoring in radiative forcing, though, cool pavements ultimately had a net benefit.

    Only after considering embodied emissions and impacts on fuel consumption did the ideal pavement type manifest for each neighborhood. Once factoring in uncertainty over the life cycle, researchers found that reflective concrete pavements had the best results, proving optimal in 53 percent and 73 percent of the neighborhoods in Boston and Phoenix, respectively.

    Once again, uncertainties and variations were identified. In Boston, replacing conventional asphalt pavements with a cool option was always preferred, while in Phoenix concrete pavements — reflective or not — had better outcomes due to rigidity at high temperatures that minimized vehicle fuel consumption. And despite the dominance of concrete in Phoenix, in 17 percent of its neighborhoods all reflective paving options proved more or less as effective, while in 1 percent of cases, conventional pavements were actually superior.

    “Though the climate change impacts we studied have proven numerous and often at odds with each other, our conclusions are unambiguous: Cool pavements could offer immense climate change mitigation benefits for both cities,” says Kirchain.

    The improvements to air temperatures would be noticeable: the team found that cool pavements would lower peak summer air temperatures in Boston by 1.7 C (3 F) and in Phoenix by 2.1 C (3.7 F). The carbon dioxide emissions reductions would likewise be impressive. Boston would decrease its carbon dioxide emissions by as much as 3 percent over 50 years while reductions in Phoenix would reach 6 percent over the same period.

    This analysis is one of the most comprehensive studies of cool pavements to date — but there’s more to investigate. Just as with pavements, it’s also possible to adjust building albedo, which may result in changes to building energy demand. Intensive grid decarbonization and the introduction of low-carbon concrete mixtures may also alter the emissions generated by cool pavements.

    There’s still lots of ground to cover for the CSHub team. But by studying cool pavements, they’ve elevated a brilliant climate change solution and opened avenues for further research and future mitigation.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    A new approach to preventing human-induced earthquakes

    When humans pump large volumes of fluid into the ground, they can set off potentially damaging earthquakes, depending on the underlying geology. This has been the case in certain oil- and gas-producing regions, where wastewater, often mixed with oil, is disposed of by injecting it back into the ground — a process that has triggered sizable seismic events in recent years.

    Now MIT researchers, working with an interdisciplinary team of scientists from industry and academia, have developed a method to manage such human-induced seismicity, and have demonstrated that the technique successfully reduced the number of earthquakes occurring in an active oil field.

    Their results, appearing today in Nature, could help mitigate earthquakes caused by the oil and gas industry, not just from the injection of wastewater produced with oil, but also that produced from hydraulic fracturing, or “fracking.” The team’s approach could also help prevent quakes from other human activities, such as the filling of water reservoirs and aquifers, and the sequestration of carbon dioxide in deep geologic formations.

    “Triggered seismicity is a problem that goes way beyond producing oil,” says study lead author Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “This is a huge problem for society that will have to be confronted if we are to safely inject carbon dioxide into the subsurface. We demonstrated the kind of study that will be necessary for doing this.”

    The study’s co-authors include Ruben Juanes, professor of civil and environmental engineering at MIT, and collaborators from the University of California at Riverside, the University of Texas at Austin, Harvard University, and Eni, a multinational oil and gas company based in Italy.

    Safe injections

    Both natural and human-induced earthquakes occur along geologic faults, or fractures between two blocks of rock in the Earth’s crust. In stable periods, the rocks on either side of a fault are held in place by the pressures generated by surrounding rocks. But when a large volume of fluid is suddenly injected at high rates, it can upset a fault’s fluid stress balance. In some cases, this sudden injection can lubricate a fault and cause rocks on either side to slip and trigger an earthquake.

    The most common source of such fluid injections is from the oil and gas industry’s disposal of wastewater that is brought up along with oil. Field operators dispose of this water through injection wells that continuously pump the water back into the ground at high pressures.

    “There’s a lot of water produced with the oil, and that water is injected into the ground, which has caused a large number of quakes,” Hager notes. “So, for a while, oil-producing regions in Oklahoma had more magnitude 3 quakes than California, because of all this wastewater that was being injected.”

    In recent years, a similar problem arose in southern Italy, where injection wells on oil fields operated by Eni triggered microseisms in an area where large naturally occurring earthquakes had previously occurred. The company, looking for ways to address the problem, sought consulation from Hager and Juanes, both leading experts in seismicity and subsurface flows.

    “This was an opportunity for us to get access to high-quality seismic data about the subsurface, and learn how to do these injections safely,” Juanes says.

    Seismic blueprint

    The team made use of detailed information, accumulated by the oil company over years of operation in the Val D’Agri oil field, a region of southern Italy that lies in a tectonically active basin. The data included information about the region’s earthquake record, dating back to the 1600s, as well as the structure of rocks and faults, and the state of the subsurface corresponding to the various injection rates of each well.

    This video shows the change in stress on the geologic faults of the Val d’Agri field from 2001 to 2019, as predicted by a new MIT-derived model. Video credit: A. Plesch (Harvard University)

    This video shows small earthquakes occurring on the Costa Molina fault within the Val d’Agri field from 2004 to 2016. Each event is shown for two years fading from an initial bright color to the final dark color. Video credit: A. Plesch (Harvard University)

    The researchers integrated these data into a coupled subsurface flow and geomechanical model, which predicts how the stresses and strains of underground structures evolve as the volume of pore fluid, such as from the injection of water, changes. They connected this model to an earthquake mechanics model in order to translate the changes in underground stress and fluid pressure into a likelihood of triggering earthquakes. They then quantified the rate of earthquakes associated with various rates of water injection, and identified scenarios that were unlikely to trigger large quakes.

    When they ran the models using data from 1993 through 2016, the predictions of seismic activity matched with the earthquake record during this period, validating their approach. They then ran the models forward in time, through the year 2025, to predict the region’s seismic response to three different injection rates: 2,000, 2,500, and 3,000 cubic meters per day. The simulations showed that large earthquakes could be avoided if operators kept injection rates at 2,000 cubic meters per day — a flow rate comparable to a small public fire hydrant.

    Eni field operators implemented the team’s recommended rate at the oil field’s single water injection well over a 30-month period between January 2017 and June 2019. In this time, the team observed only a few tiny seismic events, which coincided with brief periods when operators went above the recommended injection rate.

    “The seismicity in the region has been very low in these two-and-a-half years, with around four quakes of 0.5 magnitude, as opposed to hundreds of quakes, of up to 3 magnitude, that were happening between 2006 and 2016,” Hager says. 

    The results demonstrate that operators can successfully manage earthquakes by adjusting injection rates, based on the underlying geology. Juanes says the team’s modeling approach may help to prevent earthquakes related to other processes, such as the building of water reservoirs and the sequestration of carbon dioxide — as long as there is detailed information about a region’s subsurface.

    “A lot of effort needs to go into understanding the geologic setting,” says Juanes, who notes that, if carbon sequestration were carried out on depleted oil fields, “such reservoirs could have this type of history, seismic information, and geologic interpretation that you could use to build similar models for carbon sequestration. We show it’s at least possible to manage seismicity in an operational setting. And we offer a blueprint for how to do it.”

    This research was supported, in part, by Eni. More