in

Organism body size structures the soil microbial and nematode community assembly at a continental and global scale

  • 1.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Luan, L. et al. Coupling bacterial community assembly to microbial metabolism across soil profiles. mSystems 5, e00298–20 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Stegen, J. C. et al. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 7, 11237 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 7.

    Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 9.

    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D. & Falcão Salles, J. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Chave, J. Neutral theory and community ecology. Ecol. Lett. 7, 241–253 (2004).

    ADS  Article  Google Scholar 

  • 16.

    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).

    Article  Google Scholar 

  • 17.

    Stegen, J. C., Lin, X. J., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6, 370 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Li, P. et al. Distinct Successions of common and rare bacteria in soil under humic acid amendment – a microcosm study. Front. Microbiol. 10, 2271 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, Oxford, 1992).

  • 20.

    Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Woo, C., An, C., Xu, S., Yi, S. M. & Yamamoto, N. Taxonomic diversity of fungi deposited from the atmosphere. ISME J. 12, 2051–2060 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Soininen, J., Korhonen, J. J. & Luoto, M. Stochastic species distributions are driven by organism size. Ecology 94, 660–670 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Farjalla, V. F. et al. Ecological determinism increases with organism size. Ecology 93, 1752–1759 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).

    Article  Google Scholar 

  • 25.

    Li, P. et al. Responses of microbial communities to a gradient of pig manure amendment in red paddy soils. Sci. Total Environ. 705, 135884 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 27.

    Foissner, W. Protist diversity and distribution: some basic considerations. Biodivers. Conserv. 17, 235–242 (2008).

    Article  Google Scholar 

  • 28.

    Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).

    Article  Google Scholar 

  • 29.

    Jiang, Y. et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95, 250–261 (2016).

    CAS  Article  Google Scholar 

  • 30.

    Li, P. et al. Spatial variation in soil fungal communities across paddy fields in subtropical China. mSystems 5, e00704–e00719 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Tucker, C. M., Shoemaker, L. G., Davies, K. F., Nemergut, D. R. & Melbourne, B. A. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos 125, 778–789 (2016).

    Article  Google Scholar 

  • 34.

    Doledec, S., Chessel, D. & Gimaret-Carpentier, C. Niche separation in community analysis: a new method. Ecology 81, 2914–2927 (2000).

    Article  Google Scholar 

  • 35.

    Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    De Wit, R. & Bouvier, T. Everything is everywhere, but, the environment selects; what did BaasBecking and Beijerinck really say. Environ. Microbiol. 8, 755–758 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    De Bie, T. et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15, 740–747 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Lowe, W. H. & McPeek, M. A. Is dispersal neutral? Trends Ecol. Evol. 29, 444–450 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    O’Brien, E. M., Whittaker, R. J. & Field, R. Climate and woody plant diversity in Southern Africa: relationships at species, genus and family levels. Ecography 21, 495–509 (1998).

    Article  Google Scholar 

  • 43.

    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Li, X. et al. Agriculture erases climate constraints on soil nematode communities across large spatial scales. Glob. Change Biol. 26, 919–930 (2020).

    ADS  Article  Google Scholar 

  • 45.

    Briones, M. J. I. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 22, 7 (2014).

    Google Scholar 

  • 46.

    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, 9323 (2015).

    ADS  Article  CAS  Google Scholar 

  • 47.

    Pansu, M. & Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic, and Inorganic Methods. (Springer, 2006).

  • 48.

    Biddle, J. F., Fitz-Gibbon, S., Schuster, S. C., Brenchley, J. E. & House, C. H. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc. Natl Acad. Sci. USA 105, 10583–10588 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (2008).

    Article  Google Scholar 

  • 50.

    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Zhang, Y. & Sun, Y. HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors. BMC Bioinform. 12, 198 (2011).

    Article  Google Scholar 

  • 54.

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  Article  Google Scholar 

  • 56.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Zhao, J. et al. Size spectra of soil nematode assemblages under different land use types. Soil Biol. Biochem. 85, 130–136 (2015).

    CAS  Article  Google Scholar 

  • 59.

    Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).

    Article  Google Scholar 

  • 60.

    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Article  Google Scholar 

  • 61.

    Chen, W., Jiao, S., Li, Q. & Du, N. Dispersal limitation relative to environmental filtering governs the vertical small‐scale assembly of soil microbiomes during restoration. J. Appl. Ecol. 57, 402–412 (2020).

    Article  Google Scholar 

  • 62.

    Jiao, S., Yang, Y., Xu, Y., Zhang, J. & Lu, Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 14, 202–216 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. Minpack. lm: R Interface to the levenberg–marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds (CRAN Repository, 2016).

  • 64.

    Harrell, F. E. Jr. Hmisc: harrell miscellaneous. R. package version 3.0−12 (2013). .

  • 65.

    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Fiore-Donno, A. M., Weinert, J., Wubet, T. & Bonkowski, M. Metacommunity analysis of amoeboid protists in grassland soils. Sci. Rep. 6, 19068 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Heger, T. J. et al. High-throughput environmental sequencing reveals high diversity of litter and moss associated protist communities along a gradient of drainage and tree productivity. Environ. Microbiol. 20, 1185–1203 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Oksanen, J. et al. Vegan: community ecology package. R. package version 2.5−4 (2019).

  • 69.

    Field, A., Miles, J. & Field, Z. Discovering Statistics Using R. London (Sage publications, 2012).


  • Source: Ecology - nature.com

    European rivers are fragmented by many more barriers than had been recorded

    Want cheaper nuclear energy? Turn the design process into a game