in

Resprouting trees drive understory vegetation dynamics following logging in a temperate forest

  • 1.

    Franklin, J. F. et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manage. 155, 399–423 (2002).

    Google Scholar 

  • 2.

    Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 17, 2842–2852 (2011).

    ADS  Google Scholar 

  • 3.

    Frelich, L. E. & Reich, P. B. Neighborhood Effects, Disturbance Severity, and Community Stability in Forests. Ecosystems 2, 151–166 (1999).

    Google Scholar 

  • 4.

    Roberts, M. R. Response of the herbaceous layer to natural disturbance in North American forests. Can. J. Bot. 82, 1273–1283 (2004).

    Google Scholar 

  • 5.

    Halpern, C. B., McKenzie, D., Evans, S. A. & Maguire, D. A. Initial responses of forest understories to varying levels and patterns of green-tree retention. Ecol. Appl. 15, 175–195 (2005).

    Google Scholar 

  • 6.

    Royo, A. A., Collins, R., Adams, M. B., Kirschbaum, C. & Carson, W. P. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91, 93–105 (2010).

    PubMed  Google Scholar 

  • 7.

    Duguid, M. C., Frey, B. R., Ellum, D. S., Kelty, M. & Ashton, M. S. The influence of ground disturbance and gap position on understory plant diversity in upland forests of southern New England. For. Ecol. Manage. 303, 148–159 (2013).

    Google Scholar 

  • 8.

    Gilliam, F. S. The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems. Bioscience 57, 845–858 (2007).

    Google Scholar 

  • 9.

    Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).

    Google Scholar 

  • 10.

    Thomas, S. C., Halpern, C. B., Falk, D. A., Liguori, D. A. & Austin, K. A. Plant diversity in managed forests: understory responses to thinning and fertilization. Ecol. Appl. 9, 864–879 (1999).

    Google Scholar 

  • 11.

    Belote, R. T., Jones, R. H. & Wieboldt, T. F. Compositional stability and diversity of vascular plant communities following logging disturbance in Appalachian forests. Ecol. Appl. 22, 502–516 (2012).

    PubMed  Google Scholar 

  • 12.

    Halpern, C. B. Early successional pathways and the resistance and resilience of forest communities. Ecology 69, 1703–1715 (1988).

    Google Scholar 

  • 13.

    Šebesta, J., Maděra, P., Řepka, R. & Matula, R. Comparison of vascular plant diversity and species composition of coppice and high beech forest in the Banat region, Romania. Folia Geobot. 1–11 (2017).

  • 14.

    Atwood, C. J., Fox, T. R. & Loftis, D. L. Effects of alternative silviculture on stump sprouting in the southern Appalachians. For. Ecol. Manage. 257, 1305–1313 (2009).

    Google Scholar 

  • 15.

    Del Tredici, P. Sprouting in temperate trees: A morphological and ecological review. Bot. Rev. 67, 121–140 (2001).

    Google Scholar 

  • 16.

    Svátek, M. & Matula, R. Fine-scale spatial patterns in oak sprouting and mortality in a newly restored coppice. For. Ecol. Manage. 348, 117–123 (2015).

    Google Scholar 

  • 17.

    Dietze, M. C. & Clark, J. S. Changing the gap dynamics paradigm: vegetative regeneration control on forest response to disturbance. Ecol. Monogr. 78, 331–347 (2008).

    Google Scholar 

  • 18.

    Larsen, D. R. & Johnson, P. S. Linking the ecology of natural oak regeneration to silviculture. For. Ecol. Manage. 106, 1–7 (1998).

    Google Scholar 

  • 19.

    Swaim, T. J. et al. Predicting the height growth of oak species (Quercus) reproduction over a 23-year period following clearcutting. For. Ecol. Manage. 364, 101–112 (2016).

    Google Scholar 

  • 20.

    Matula, R. et al. The sprouting ability of the main tree species in Central European coppices: implications for coppice restoration. Eur. J. For. Res. 131, 1501–1511 (2012).

    Google Scholar 

  • 21.

    Clarke, P. J. et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol. 197, 19–35 (2013).

    CAS  PubMed  Google Scholar 

  • 22.

    Brudvig, L. A. & Asbjornsen, H. Stand structure, composition, and regeneration dynamics following removal of encroaching woody vegetation from Midwestern oak savannas. For. Ecol. Manage. 244, 112–121 (2007).

    Google Scholar 

  • 23.

    Shure, D. J., Phillips, D. L. & Edward Bostick, P. Gap size and succession in cutover southern Appalachian forests: an 18 year study of vegetation dynamics. Plant Ecol. 185, 299–318 (2006).

    Google Scholar 

  • 24.

    Elliott, K. J. & Knoepp, J. D. The effects of three regeneration harvest methods on plant diversity and soil characteristics in the southern Appalachians. For. Ecol. Manage. 211, 296–317 (2005).

    Google Scholar 

  • 25.

    Volařík, D. et al. Variation in canopy openness among main structural types of woody vegetation in a traditionally managed landscape. Folia Geobot. 1–18 (2017).

  • 26.

    Dinh, T. T. et al. Stump sprout dynamics of Quercus serrata Thunb. and Q. acutissima Carruth. four years after cutting in an abandoned coppice forest in western Japan. For. Ecol. Manage. 435, 45–56 (2019).

    Google Scholar 

  • 27.

    Kadavý, J., Kneifl, M. & Knott, R. Establishment and selected characteristics of the Hády coppice and coppice-with-standards research plot (TARMAG I). J. For. Sci. 57, 451–458 (2011).

    Google Scholar 

  • 28.

    Vild, O., Roleček, J., Hédl, R., Kopecký, M. & Utinek, D. Experimental restoration of coppice-with-standards: Response of understorey vegetation from the conservation perspective. For. Ecol. Manage. 310, 234–241 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Strubelt, I., Diekmann, M., Griese, D. & Zacharias, D. Inter-annual variation in species composition and richness after coppicing in a restored coppice-with-standards forest. For. Ecol. Manage. 432, 132–139 (2019).

    Google Scholar 

  • 30.

    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528–534 (2000).

    Google Scholar 

  • 31.

    Blumenthal, D. Ecology. Interrelated causes of plant invasion. Science 310, 243–4 (2005).

    CAS  PubMed  Google Scholar 

  • 32.

    Davis, M. A., Thompson, K. & Grime, J. P. Invasibility: The local mechanism driving community assembly and species diversity. Ecography (Cop.). 28, 696–704 (2005).

    Google Scholar 

  • 33.

    Funk, J. L. & Vitousek, P. M. Resource-use efficiency and plant invasion in low-resource systems. Nature 446, 1079–1081 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Oliver, C. D. Forest development in North America following major disturbances. For. Ecol. Manage. 3, 153–168 (1980).

    Google Scholar 

  • 35.

    Roberts, M. R. & Gilliam, F. S. Disturbance effects on herbaceous layer vegetation and soil nutrients in Populus forests of northern lower Michigan. J. Veg. Sci. 903–912 (1995).

  • 36.

    Rejmánek, M. Invasibility of plant communities. In Biological invasions: a global perspective 369–388 (1989).

  • 37.

    Von Holle, B., Delcourt, H. R., Simberloff, D. & Harcombe, P. The importance of biological inertia in plant community resistance to invasion. J. Veg. Sci. 14, 425–432 (2003).

    Google Scholar 

  • 38.

    Whitfeld, T. J. S., Lodge, A. G., Roth, A. M. & Reich, P. B. Community phylogenetic diversity and abiotic site characteristics influence abundance of the invasive plant Rhamnus cathartica L. J. Plant Ecol. 7, 202–209 (2014).

    Google Scholar 

  • 39.

    Davis, M. A., Wrage, K. J. & Reich, P. B. Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. J. Ecol. 86, 652–661 (1998).

    Google Scholar 

  • 40.

    Myster, R. W. Tree invasion and establishment in old fields at Hutcheson Memorial Forest. Bot. Rev. 59, 251–272 (1993).

    Google Scholar 

  • 41.

    Pyttel, P. L., Fischer, U. F., Suchomel, C., Gärtner, S. M. & Bauhus, J. The effect of harvesting on stump mortality and re-sprouting in aged oak coppice forests. For. Ecol. Manage. 289, 18–27 (2013).

    Google Scholar 

  • 42.

    Keyser, T. & Loftis, D. Stump sprouting of 19 upland hardwood species 1 year following initiation of a shelterwood with reserves silvicultural system in the southern Appalachian Mountains, USA. New For. 46, 449–464 (2015).

    Google Scholar 

  • 43.

    Nzunda, E. F., Griffiths, M. E. & Lawes, M. J. Sprouting by remobilization of above‐ground resources ensures persistence after disturbance of coastal dune forest trees. Funct. Ecol. 22, 577–582 (2008).

    Google Scholar 

  • 44.

    Jauni, M., Gripenberg, S. & Ramula, S. Non‐native plant species benefit from disturbance: a meta‐analysis. Oikos 124, 122–129 (2015).

    Google Scholar 

  • 45.

    Matula, R. et al. Pre-disturbance tree size, sprouting vigour and competition drive the survival and growth of resprouting trees. For. Ecol. Manage. 446, 71–79 (2019).

    Google Scholar 

  • 46.

    Soler, R. M., Schindler, S., Lencinas, M. V., Peri, P. L. & Pastur, G. M. Why biodiversity increases after variable retention harvesting: A meta-analysis for southern Patagonian forests. For. Ecol. Manage. 369, 161–169 (2016).

    Google Scholar 

  • 47.

    Pastur, G. J. M. et al. Survival and growth of Nothofagus pumilio seedlings under several microenvironments after variable retention harvesting in southern Patagonian forests. Ann. For. Sci. 71, 349–362 (2014).

    Google Scholar 

  • 48.

    Ogle, K. & Pacala, S. W. A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiol. 29, 587–605 (2009).

    CAS  PubMed  Google Scholar 

  • 49.

    Belote, R. T., Jones, R. H., Hood, S. M. & Wender, B. W. Diversity-invasibility across an experimental disturbance gradient in Appalachian forests. Ecology 89, 183–192 (2008).

    PubMed  Google Scholar 

  • 50.

    Kadavý, J., Kneifl, M. & Knott, R. Biodiversity and Target Management of Endangered and Protected Species in Coppices and Coppices-with-Standards Included in System of NATURA 2000. (Mendel University in Brno, 2011).

  • 51.

    Kirby, K. J. Changes in the ground flora of a broadleaved wood within a clear fell, group fells and a coppiced block. Forestry 63, 241–249 (1990).

    Google Scholar 

  • 52.

    Roberts, M. R. & Gilliam, F. S. Response of the Herbaceous Layer to Disturbance in Eastern Forests. In The Herbaceous Layer in Forests of Eastern North America 320–339 (Oxford University Press, 2014), https://doi.org/10.1093/acprof:osobl/9780199837656.003.0013.

  • 53.

    Radtke, A. et al. Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For. Ecol. Manage. 291, 308–317 (2013).

    Google Scholar 

  • 54.

    Oliver, C. D. & Larson, B. C. Forest stand dynamics. (McGraw-Hill, Inc., 1990).

  • 55.

    Bond, W. J. & Midgley, J. J. Ecology of sprouting in woody plants: The persistence niche. Trends Ecol. Evol. 16, 45–51 (2001).

    CAS  PubMed  Google Scholar 

  • 56.

    Tanentzap, A. J., Mountford, E. P., Cooke, A. S. & Coomes, D. A. The more stems the merrier: advantages of multi-stemmed architecture for the demography of understorey trees in a temperate broadleaf woodland. J. Ecol. 100, 171–183 (2012).

    Google Scholar 

  • 57.

    Vrška, T., Janík, D., Pálková, M., Adam, D. & Trochta, J. Below-and above-ground biomass, structure and patterns in ancient lowland coppices. IForest 10, 23–31 (2017).

    Google Scholar 

  • 58.

    Matula, R., Damborská, L., Nečasová, M., Geršl, M. & Šrámek, M. Measuring biomass and carbon stock in resprouting woody plants. PLoS One 10, (2015).

  • 59.

    Chamagne, J. et al. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa. Ecology 97, 2364–2373 (2016).

    PubMed  Google Scholar 

  • 60.

    Ellenberg, H. et al. Zeigerwerte von pflanzen in Mitteleuropa. (1992).

  • 61.

    Zelený, D. & Schaffers, A. P. Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J. Veg. Sci. 23, 419–431 (2012).

    Google Scholar 

  • 62.

    Pyšek, P., Sádlo, J. & Mandák, B. Catalogue of alien plants of the Czech Republic. Preslia 74, 97–186 (2002).

    Google Scholar 

  • 63.

    Cleveland, W. S. & Devlin, S. J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).

    MATH  Google Scholar 

  • 64.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • 65.

    Johnson, P. C. D. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).

    MathSciNet  MATH  Google Scholar 

  • 67.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2018).


  • Source: Ecology - nature.com

    MIT startup wraps food in silk for better shelf life

    Unlocking the secrets of a plastic-eater